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The radiative Green s function for the one-dimensional wave equation with the Regge-%heeler
and Zerilli potentials is formally constructed from recently developed analytic representations for
generalized spheroidal wave functions, and decomposed into a convergent sum over quasinormal

modes, an integral around a branch cut in the frequency domain, and a high-frequency remnant of
the free-space propagator. This paper discusses the contribution to the time response made by the

quasinormal modes and, at very late times, by the branch-cut integral. The initial-value problem is

considered for source fields with both compact and extended radial dependences, and the problem of
the formal divergence of the integrals of extended sources over quasinormal-mode wave functions is

solved. The branch-cut integral produces a weak late-time radiative power-law decay tail that will

characterize the astrophysically observed radiation spectrum for times subsequent to the exponential

decay of the quasinormal ringing, when (ct —rs, )&~2'/e and (ct —r+)/r+ g~1. This radiative

decay tail is shown to diminish to Price s nonradiative tail in the final limit ct/r+ gal. The method

is applied to a characteristic-value problem used to model the gravitational collapse of massive stars,
and to the small-body radial in-fall problem. The analysis presented is generalizable„ through the
Newman-Penrose formalism and Teukolsky's equations, to obtain the radiative Green's function for
perturbations to the Kerr geometry.

I. INTRODUCTION

Although Green's-function techniques have for many
years been used to describe radiation phenomena involving
perturbations to black-hole geometries, ' the relevant
wave equations have thus far been integrable only by nu-
merical methods, and no analytic insight has been afford-
ed into the nature of the propagator function itself. The
present study uses new results concerning generalized
spheroidal wave functions to describe some of the analytic
properties of the radiative Green's function that propa-
gates small perturbations to the Schwarzschild geometry.
While the Schwarzschild geometry itself is of diminishing
interest in studies of black-hole dynamics, as current ques-
tions concerning black-hole stability and radiance focus
on rotating and charged black holes, there remain a few
outstanding questions concerning the physical significance
of the resonant, or quasinormal, modes of any black hole.
In particular, while a quasinormal-mode decomposition,
or singularity expansion, seems a desirable approach to
the interpretation of gravitational radiation expected from
(for instance) type-II supernova in terms of stellar condi-
tions prevalent at the final stage of the collapse, formal
divergence of the integrals describing the excitation of the
quasinormal riiiging, a paucity of values for all but the
least damped of the quasinorinal frequencies, lack of ana-
lytic representation for the quasinormal-mode wave func-
tions, and the question of the relative completeness of the
quasinormal modes, have heretofore made the interpreta-
tion of proposed quasinormal mode decompositions im-
possible. The present analysis addresses these questions,
and the relative familiarity of most properties of the
Schwarzschild geometry allows the accuracy and predic-
tions of the new analytic methods to be compared with es-

tablished results.
In a previous article, to be referred to as paper I, an al-

gorithm was demonstrated for computing values for
essentially all quasinormal frequencies for both
Schwarzschild and Kerr black holes, and an analytic rep-
resentation for the quasinormal wave functions was given.
The wave functions for arbitrary frequencies are general-
ized spheroidal wave functions, and a detailed study of
these will be found in paper II (Ref. 7). This previous
work provides the foundation for the present study, which
shows for the first time how a quasinormal mode expan-
sion can be obtained in a convergent form, and solves the
problem of divergent source-term integrals. The new ana-
lytic representations for the generalized spheroidal wave
functions yield a complete description of the branch cut in
the frequency parameter of the frequency-domain Green's
function, which in turn allows the degree of completeness
of the quasinormal modes to be estimated as a function of
time subsequent to the arrival of the first response to the
perturbation. Many of the known properties of gravita-
tional perturbations to the Schwarzschild geometry can
then be expressed in a fashion that reflects the underlying
analytic properties of the propagating Green's function.
In particular, I mill show how each individual quasinor-
mal mode contributes to the overall time response from a
perturbation to the black hole, and will demonstrate how
the response at times subsequent to the decay of the quasi-
normal ringing will be characterized by a never-before-
postulated radiating decay tail.

The analysis described in this article is generalizable to
the Newman-Penrose formalism and Teukolsky's equa-
tions for perturbations to the Kerr geometry, and the
techniques outlined in this paper should prove useful in
addressing the question of the excitation of the Kerr
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quasinormal modes, including the unstable modes recently
suggested by Detweiler and Ove: these applications will
be the subject of a future study. The algorithms presented
herein are rapid, accurate, and require no numerical in-
tegration of the differential equations. They essentially
solve the forward problem of the spectral decomposition
of gravitational radiation due to perturbations to the
Schwarzschild geometry, and should provide a usable
computational foundation for the eventual inversion and
interpretation of radiation signals from astrophysical
black holes.

Outline of the problem

The radial part of the separated partial differential
equations that describe small perturbations to the
Schwarzschild geometry can be expressed as an inhomo-
geneous one-dimensional wave equation with a potential:

m —1
I ( I + 1)— 0 (r„r) = —Q(r „t),

r r

Equation (1), with appropriate source terms Q(r„t), can
therefore be considered to be the fundamental differential
equation describing perturbations to the Schwarzschild
geometry, and the method of its solution will be applic-
able to nearly all perturbation problems involving un-
charged black holes.

The specific relationship between the response function
%(r„t) and the actual metric perturbations, and between
the source function Q(r„t) and the stress-energy tensor,
are given in the references cited and will not be dealt with
in this study. The present concern is a mathematical
description of how a general source perturbation Q(r„,t)
is radiated to r, =+ oo. The paper is outlined as follows.

Section II demonstrates how the Green's function
G(r„t

~

r'„,t'), that solves Eq. (1) when Q(r„t)
=5(r —r')5(t —t'), can be expressed as a sum over quasi-
normal modes, an integral around a branch cut in the
complex frixluency plane, and a high-frequency remnant
of the corresponding free-space propagator. The quasi-
normal mode suin is expressed in concise analytic form,
and the branch cut integral is exactly solvable when
t ~~r„ independent of the observer's position r, .

Section III examines the initial-value problem

Q (r„t)=1(0(r, )5'(t) +Uo(r, )5(t), and analyzes the
response both from compact and from analytic sources.
Response from the compact sources is given by a simple
numeric integration, while an analytic expression for the
response from extended sources of the general form

where r„=r+ln(r —1) and the Schwarzschild r and t
coordinates have been normalized such that
e =6 =2M= 1. Note that the asterisk used to denote the
tortoise coordinate can appear interchangeably as both a
superscript and as a subscript: r' is the same as r, .
When a function f ( r, ) is written in terms of the
Schwarzschild coordinate r, the inverse function, r (r„), is
to be assumed.

The parameter m in (1) denotes the spin of the perturb-
ing field, and takes the values 0, 1, or 2 for components of
scalar, electromagnetic, and gravitational fields. When
m=0 the function %(r„t) represents a small scalar per-
turbation field, and the derivation of Eq. (1) in this case is
a straightforward exercise in perturbation theory.
Wheeler' showed how the components of the electromag-
netic field could be expressed in terms of solutions to this
equation when m=1, while Regge and %'heeler" showed
how odd-parity (axial) gravitational perturbations to the
geometry could be expressed in terms of its solutions
when m=2. A similar equation obeyed by the com-
ponents of even-parity (polar) gravitational perturbations,
but with a slightly different potential, was derived by
Zerilli. Chandrasekhar, and Chandrasekhar and
Detweiler, ' subsequent1y showed that solutions to
Zerilli s even-parity equation could be expressed in terms
of the Regge-Wheeler odd-parity solutions. The Teukol-
sky equations that describe all perturbations to the Kerr
geometry via the Newman-Penrose formalism are also
generalized spheroidal wave equations, and can be solved
by essentially the same methods as those presented here.

is obtained as a series of confluent hypergeometric func-
tions. Sources with 5(t) and 5'(t) time dependences may
be interpreted in terms of the initial-value problem, the
response from which may also be obtained by direct nu-
merical integration of the homogeneous form of Eq. (1) by
the method of characteristics. This provides a valuable
check on the new results. A unified derivation is given
for the amplitudes of the radiative (t r, )

' ' and final-
t decay tails.

Section IV addresses the problem of determining the
quasinormal mode response for the characteristic-value
problem, and results are compared with those of previous
studies of gravitational radiation emitted by collapsing
relativistic stars. In the present study the contribu-
tions from the higher-order quasinormal modes are expli-
citly identified for the first time, and are seen to be signi-
ficant for ( r r, ) less th—an approximately 30.

Section V discusses the quasinormal mode response
from sources with more general time dependences. The
quasinormal model component of the Green's function for
the Zerilli equation is derived, and applied to the classic
problem of a test particle falling radially into the black
hole. The present results are again compared with those
of previous workers
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II. CONSTRUCTION OF THE TIME-DOMAIN
GREEN'S FUNCTION

3, , 8G(r„t
f

r', ,t') — G(r„,t [r', ,t')

A unique solution to Eq. (1) requires, in addition to the
source term Q(r„t), the specification of Cauchy data at
some initial time t =to. For general source terms the usu-
al choice requires %(r, , t) and %,(r„t) to be zero for all
times prior to the appearance of the first nonzero Q (r„,t)
Astrophysical sources are frequently of infinite extent in
both space and time, with Q(r„t)~0 only as t~ oo, —
and in these cases causality requires that Wr, ,t)~0 as
t~—oo. The time domain Green's function
G(r„,t

~

r', , t') is defined to satisfy the differential equa-
tion

—V(r, )G(r, , t
~

r', , t') = —5(r, r', —)5(t t—'), (2)

V(r~ ) = I (I +1)—
r 3 r

subject to the condition that G(r„t
~

r', ,t')=0 for t &t'
The solution 4(r„t) to Eq. (1) is then given by

'

%'(r„t)= f f G(r„t
~

r'„,t')Q(r', , t')dr', dt'

+ 6 r~~ r~ t' 'Il» r'„t' —+ r t 6»' r

(4)

where to may be either finite or —oo. The last integral is
over surface terms at the horizon and spatial infinity: the
present radiation boundary conditions require that its con-
tribution vanish. The response function %(r„t) is then
uniquely determined by the source Q(r„,t), the initial
data +(r„to), and by the Green's function, which satis-
fies the important reciprocity relation

G(r„t
~

r'„,t')=G(r', , t'
~

r„t—) . —

In this section I show how G(r„t
~

r', ,t') can be decom-
posed into a sum over quasinormal modes, an integral
around the branch cut in the frequency parameter, and an
integral over asymptotically large magnitudes of the fre-
quency.

A. The frequency-domain Green's function

The frequency-domain Green's function g(r„,r'„s) is
obtained by a Laplace transform

g(r, , r', ,s)= f e" 'IG(r„t ~, r'„,t')dt, (6)

and the time-domain function is recovered by the inverse

E+l cc
[ g)G(r„t

~

r'„t')= e' ' ' g(r„r,',s)ds .
E—I cc

It is important when considering the frequency response
of the black hole to distinguish between those frequencies
comparable in magnitude to the normalized scale of the
hole, and those that are appreciably larger. In this paper
2M, the dimension of the hole, has been incorporated into
the scaling of r and t, so that the low frequencies that
strongly characterize the interaction dynamics of the hole
are of magnitude

~

s
~

—1, while "high frequencies" are
typically of order

~

s
~

~ 10. The differential equation sa-

lim P„(r„s)-e
r~~ —ce +

lim g, (r„)-sA;„(s) e*+A,„,(s)e
r+ ~+ ee) +

lim g„(r„s)-e
r~ +~ +

(10)

lim P„(r„s)-8;„(s)e *+8,„,(s)e
r~~ —~ +

lim g (r„s)-e
rg ~+ ca

(12)
lim g (r„s) 8,„,( —s)e-*+8;„(—s)e

These solutions are not all three independent, being relat-
ed by

tisfied by the frequency-domain Green's function
g(r„r', ,s) is

Gf
2 r —1 m —1

2

g(r, ,r'„s)— s + 1(1+1)—
Brg r r

&(g(r„r,',s) = 5(r, r', ) . ——

The solution, in a notation similar to that used by
Detweiler, can be expressed

g (r„r'„s)= IV '(s)P„(r, &,s)g (r, &,s), (9)

where r, &
——min(r„r ), «r„& max(r„r', ), ——and IV(s) is

the Wronskian of the two independent homogeneous solu-
tions g„and g„. The event horizon is at r„=—oo, or

r =r+ ——l. A third useful homogeneous solution is
denoted by g„(r„s). The homogeneous solutions are

defined by their asymptotic properties:
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g, (r„s)=&;„(s)g„ (r„s)+A,„,(s)f„ (r„s)

8,„,(s)=Am(s), 8;„(s)=—A,„,( —s),
A;„(s)A;„(—s) —A,„,(s)A,„,( —s) =1 .

(13)

(14)

The corresponding Wronskian of g„and P, is equal to
—2sA,„,. It is convenient to express g„(r„s) and the

(r„s) in terms of the Schwarzschild coordinate r,
wherein they satisfy the differential equation

The transmission and reflection amplitudes are defined by

A,„,(s)
T(s)=, R (s)—:

A;„(s}
'

A;„(s)

r(r —1)g „,+P, — r s I —I+1(l +1)— /=0 .
, r —1 r

and the Wronskian of g„and P, is

8"(s)=g g, „—g, f„,=2sA;„(s) .

Equation (16) is a generalized spheroidal wave equation.
Analytic expressions for the solutions f, , f„, and

, as discussed in Appendix A and in paper II, are

(r,s) =r (r —1)'e '" ' g a„(1—1/r)",
n=0

+ 00

(r,s) =(2is)—+'e +-(1—1 lr)' g bL [GL, +„(ri,p) iFt +„(rt,p)],

(17)

(18)

where Gt +„(ri,p) and Ft +„(rt,p) are Coulomb wave functions with ri= is and—p=isr. The expansion coefficients a„
and bt satisfy three-term recurrence relations, and Eq. (10) requires the a„be normalized such that ao ——1. The phase
parameter v is chosen such that the bL are minimal as L ~+ oo. The a„are minimal as n ~~ when s =sq, a quasinor-
mal frequency. The normalization phases P+ and P are given by

P+ ——+i ln g bt [I (L+v+1+s)/I (X+v+1—s)]+-' e+" +' ~

I.= —cc

(19)

Expansions (17), (18), and (19) may be accurately evaluat-
ed over a wide range of complex values of r and s.

8. The time-domain Green's function

lirn 3;„(s)—(s —sq)dA;„(s)/ds =(s —sq)aq .
$~$

(20)

The Schwarzschild quasinormal frequencies occur in
comPlex-conjugate Pairs sq and sq. They are the zeros of
A;„(s), and hence the poles of g(r„r'„s) Near the. se

frequencies
the amplitude A;„(s) may be approximated

by2

where G& is the sum of the residues at the poles of
g(r, ,r'„s), Gtt is the integral of g(r„r'„s) around the
branch cut in s, and GF is the integral along the large

~

s
~

quarter circles, It is Gr that propagates the high-
frequency response, and which reduces to the free-space
Green's function in the limit as the mass of the black hole
goes to zero. The low-frequency ringing and late-time de-
cay tails, that together give radiation phenomena involv-
ing black holes its distinct character, are, respectively,
described by G& and Gs, and it is these two functions
that are the subjects of the present investigation. Figure 1

and Eqs. (7) and (21) give the residue sum as

The complex conjugate of this equation holds for the
comPlex-conjugate frequencies sq, and derivatives aq. By
Eqs. (9), (15), and (20), we can approximate the
frequency-domain Green's function near the pole sq by

tP„(r, &,s)P„(r,&,s)

$~$ $ ~$ 2s (s —sq )cxq

Gg(r„t
~

r', , t')
I

(r, &,sq)f (r, &,sq)e '
=X-

q=l 2$q Aq

$ (t —f')
(r, (,sq)t/r (r, &,sq)e '

(23)

G(r„t
~

r'„t')=GF(r„t
~
r'„t')+G~(r„t

~

r', , t')

+Gtt(r„t
~

r'„t'), (22)

The contour for the inversion integral (7) for
G(r„t

~

r'„t') may be deformed as illustrated in Fig. 1,
and the time-domain Careen's function expressed as three
distinct terms:

while

Gs(r„t
i
r'. , t')

QG

[g(rg, r g,s + le)
2+i

g(r„r', ,s —i e}]e' d—s . (24)
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Numerical studies by Vishveshwara, Press, Price, '

Davis, Rllff1111, a11d T10111110, C111111lnglia111, Price, a11d

Moncrief, ' Detweiler and Szedenits, Betweiler, and
Smarr show that quasinormal ringing wiH dominate the
response at all but very early and very late times; therefore
I will discuss the evaluation of G(2 first.

()( (r, )=A,„, '(sq)e ' 'It(„(r„,sq)

g a„(sq)(1—I /r)"
r —l n=0

ttu(sq )

Contribution from the quosinormal modes

At the quasinormal frequencies sq the functions 1l(„

and P are proportional:

Zs (r+ —1)
The gq(r, ) diverge like e ' ' as r~l, and go to uni-

ty as r, ~ ac. The quasinormal mode contribution to Eq.
(22) can then be written

Gg(r„t
~

r', „t')

(~u sq )/g (r sq ) =A ((sq )

zs=e ' g a„(sq) . (25)

Im (s)

Since tt„(s)=tt„(s) (see Appendix A), it foHows at the
complex-conjugate quasinormal frequencies sq that
A,„,(sq) =A,„,(sq). As any physical observation of quasi-
normal ringing will be done at large values of r„ it is
natural to define normalized quasinormal mode wave
functions gq(r, ) by

I

I)jq(», )gq(r', )e '
=2 Re

q=i 2sq&qAou( (sq)
(27)

Although I cannot yet give a complete answer to the
question of the convergence of series (27), an argument
approximately valid for large values of r„and r', suggests
itself from the values of A,„,(sq)/(2sqaq) Hsted in Table
I.

For large r, and r', the quasinormal sum 6@ becomes

The coefficient Ao«(sq) and the derivative aq are both
proportional to the first expansion coefficient ao, hence
expression (27) is independent of the normahzation of

The computation of the aq is discussed in Appendix

A.

2. Conuergence of the quasinormol mode sum

s (t —t' —r —r~ )e'
G~(r„t

~

r', ,t')-2Re
2SqQq Ao„( (Sq )

(28)

and the ratio of successive terms in this series is

Re {s)

FIG. 1. Inversion contour for
6+1oo

G(ru, t
~

r' t')=s(2sti) ' g(ru, rs„s)e"' ' 'ds,
6—I ee)

Eq. (7). A few of the infinity of quasinormal frequencies and
their complex conjugates are indicated by &(. These are the s
poles of g(r~, r+,s). The desired integral extends along the
vertical line from s = —i ao to s =+i ~„and is obtained for
t ~ t' by closing the contour as shown and subtracting the in-

tegral around the branch cut. The contribution from the two
quarter circles at

~

s
~

=oo is not considered in the present
study. Note the convention used in this paper: the sq are de-
fined to lie in the third quadrant of the complex s plane, while
their complex conjugates, sq, lie in the second.

(29)

If, for the sake of argument, one assumes that the magni-
tude of the term in large parentheses goes to unity for
large q, then the magnitude of successive terms in series
(28), from values of sq listed in Table I, goes asymptoti-
cally as exp[ —(t t' r, r', )/2], —in —which c—ase the
quasinormal mode expansion 6&( r„,t

~

r '„t ') converges
for large r, and r', if (t t' r, —r', ) ~0. —Thi—s is the
type of convergence behavior one would expect from a
quasinormal mode expansion, as can be seen if one consid-
ers as an initial source an impulse located at r'~~1 at
time t, that is moving inward toward the horizon with
velocity P= l. This impulse will pass an observer located
at a position r slightly less than r' long before it interacts
with the highly curved geometry of the black hole, and
the quasinormal modes cannot be expected to represent
the impulse as it passes the observer going inward. This is
the role of the free-space propagator G~. Part of this in-
going initial perturbation is eventually reflected from the
curvature potential near the event horizon back to spatial
infinity, and it is this reflective interaction that excites the
quasinormal ringing. The initial response from the re-
fiected component will pass the observer at a time

sq+qAout(sq+1) (s )
—s )(t t' su r'u )—— —q+1 q

sq+) &q+) Aou((sq )
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TABLE I. Selected values of the quasinormal frequencies s~, transmission amplitude derivatives a~ =dA;„(s)/ds ~. . . and nor-

malization factors 3 „,{s~). The parameter l is the multipole moment, and m denotes the field s spin.

( —0.18498,—0.496 53}
( —0.587 34,—0.429 03)
( —1.050 38,—0.349 55)
{—1.543 82, —0.292 35)
( —0.17792,—0.747 34)
( —0.547 83,—0.69342)
( —0.956 55,—0.602 11)
( —1.410 30,—0.503 01)
( —1.893 69,—0.41503)
( —2.391 22, —0.338 60)
( —2.895 82,—0.266 50)
( —0.18541,—1.198 89)
( —0.562 60,—1.165 29 }
( —0.958 19,—1.103 37)
( —1.380 67,—1.023 92)
( —0.188 33,—1.61836)
( —0.568 67,—1.593 26)
( —0.959 82,—1.545 42)
( —1.367 85,—1.479 67}

( —5.903 73,—1.817 80)
( —3.656 81,2.839 26)
( —2.244 9,5.134 1)
( —1.505,6.741)
(0.098 66,—5.21940)
( —2.449 04, —1.16095}
( —2.428 32,1.028 26)
( —2,001 05,2.582 29)
( —1.583 71,3.823 22)
( —1.186 76,4.765 34)
( —0.13208,4.069 06)
(4.070 78,1.060 36)
(0.830 36,—1.345 51)
( —0.555 62, —1.003 80)
(1,13903,0.282 53)
(1.563 66,—3.285 71)
( —0.834 11,—0.667 66)
( —0.53905,0.293 36)
( —0.039 82,0.51068)

2$q 0!q

( —0.16140,0.011 86)
(0.01177,0.18094)
(0.081 57,—0.072 11)
( —0.06197,0.01872)
(0.126 90,0.020 32)
(0.047 68,—0.223 76)
( —0.19028,0.015 75)
(0.080 87,0.079 61)
{—0.017 10,—0.060 53)
( —0.001 69,0.036 43)
(0.01067,—0.027 41)
( —0.093 90,—0.049 19)
( —0.151 13,0.269 77)
(0.41504,0.141 01)
(0.043 38,0.412 72)
{—0.065 35,—0.065 24)
( —0.261 47,0.251 52)
(0.549 26,0.435 31)
(0.31688,—0.837 88)

t =t'+ r +r', and it is from this time onward that the
quasinormal modes can be expected to contribute to the
observed response. This behavior is illustrated in Fig. 2
for an electric dipole field, where the initial impulse
source is approximated by a unit Gaussian centered at
r'=28 at t'=0, and the observer is positioned at r=25,
The first four modes adequately represent the response for
t t r' p 1—0,—and the addition of more modes will prob-
ably improve the representation for earlier times. Thus
far, however, the most ae I have been able to calculate is
the first seven for the 1=2 gravitational modes. The
ninth 1=2 gravitational quasinormal frequency is com-
puted to lie very near the negative real s axis within
round-off error of s = —4, and probably does not contri-
bute strongly to the sum. The ultimate convergence of
series (27) depends on the presently unknown values of
A,„,(s&)/(2s&a&) for the tenth and higher modes. There-
fore, while the present results strongly suggest conver-
gence, they are unable to give a precise lower limit for the
time t at which the convergence starts, and indeed do not

exclude the possibility that at series (27) may be asymp-
totic. Further, the completeness of the quasinormal mode
sum must decrease at early times, as it depends on the rel-
ative contribution from the branch cut integral Gs. I will
discuss this integral next, and show that its magnitude,
while decreasing rapidly for (t t' r,——r—', ) & 1, may be-
come quite large (and perhaps infinite) as
(t t' r, r', )~0—. — —

3. Late-time response and the integral
around the branch cut

The branch cut integral Gz is interesting. It contri-
butes heavily to the initial burst of radiation near
( t —t' —r, r', )=0, decreases —rapidly for ( t t' r, — —
—r', ) ~ 1, but also gives rise to the late time power-law
decay tail that eventually dominates the exponentially de-
caying quasinormal ringing. The branch cut in
g(r„r'„s) is itself due to the branch cut in g„(r„s),
and thc branch cut integral can be written

(r, &,s)

W(s)
e'"-"ds

9 (30)

where s is taken to lie on the bottom of the branch cut, and s e on the top. The value of
hatt

on each side of the
branch cut may be determined from the analysis of generalized spheroidal wave functions given in paper II, and Eq.
(128) of that paper can be applied to the present equation (18) to give

(r„s e2 ') =g„(r„s) K(s)g„(r„s), — (31)

where the function E(s) is defined by
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K(s)=—(1 —e '" ')(2is) 'e i(p +p )

QC

bL [I (L +v+1 s—)/1 (L +v+1+s)] ' e+'
~(f++P ) I.= —oo

b [l (L +v+1 s)/I—"(L+v+1+s)]+'~ e ' +" ~

Equations (10) and (31) then enable us to evaluate the Wronskian (15) on the top of the cut:

W(s e ') =2sA;„(s)+2sK(s)A,„,(s) . (34)

Equations (31) and (34) allow expression (30) for Gtt to be reduced to an integral on just the lower side of the branch cut:

„e"' ' 'g„(r, (,s)K(s)[A;„tc't„+Ap„,li„(r,),s)]
2tri o 2sA;„(s)[A;„(s)+K(s)A,„,(s)]

(35

Relation (13) then gives the final result

„e" ''K(s)i)'t, (r, (,s)tj~„(r,),s)

2rri && 2sA;„(s)[A;„(s)+K (s)A p„,(s) ]
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FIG. 2. Time response of Eq. (1) due to a source

q(r~, t)=tr ' [e 5'(t) 2(r' rp—)e — 5(t)],
corresponding to a unit Gaussian distribution initially centered at rp, and moving toward the horizon with velocity factor P= 1. Here
rp ——28, aud the point of observation is r, 2i5. The solid curves represent the complete solution to Eq. (1) as determined by direct
numerical integration by the method of characteristics. (a) is for an electric dipole field, for which 1=1 and I= 1 in Eq. (1). The
spike at t =3=ro —r,& is just the initial Gaussian as it moves inward past the observer. The next prominent maximum, at
g =60-ro +r~, is the component of the initial Gaussian that is reflected (with dispersion) back from the Regge-%heeler potential
outside r=1. The quasinormal modes cannot contribute to the response before this time, but are responsible for aB the subsequent os-
cillations. (b) is a similar curve for an electric quadrupole source, I=2 and m=1. The inverted peak at I=60 is a consequence of Eq.
(42), the reflected amplitude being given by 8 =—A,„,{s)/3;„(s). Note the increased dispersion over that for I= l: a detailed analysis
of the GF and G~ will be necessary before the nature of this precursor dispersion can be understood. (c) and (d) are details of the ring-
ing region of (a). The dashed curve in (c) represents the contribution from the fundamental quasinormal mode, q= 1 in Eq. (49), while
in {d) the dashed curve represents the response from the first two modes, q= I,2.
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The quantity v+s is an integer only as s~O and, for gravitational fields, at the algebraically special frequency
s, = ——,1(l —1)(l +1)(1+2). At these points K(s) is still well behaved, since the poles in the y functions are canceled

by the zero of (1—exp[2ni(s —v)] J. By definition, A;„(s) and A,„,(s) cannot have any simultaneous zeros, so there are
no infinities in the integrand of expression (36) if (t —t' —r» r—» ) is greater than approximately zero. Expression (36)
can now be integrated, in principle, for any r„r», t, and t'

A. n estimate of the magnitude of Gs can be made by con-

sidering the limit where r and r are both much larger than unity. In this limit, by Eqs. (10)—(12),

Qo K(s)A;„(s) sit —t +r+ +r+ }Gs(r„t
I
r', , t') =— 8 CB

2ni o 2s [A;„(s)+K(s)A«,(s)]

—Oo

2m''

K(s)A,„,(s)
cosh[s(r, r',—)]e"' ' 'ds

X(s)A.„,'(s) s(t —t' —r+ —r+ }
e ' 'ds.

2sA;„(s)[A;„(s)+K(s)A,„,(s)]
(37)

Equation (37) may be further simplified through the in-
troduction of the transmission and refiection amplitudes
T(s):A;„'(s—) and R(s)—:A,„,(s)/A;„(s). The ampli-
tudes A;„(s) and A,„,(s) both become infinite, such that
T(s)~0 while R(s) remains finite, at values of the fre-
quency parameter s = n/2 fo—r n =0, 1,2, . . . , although
it is difficult to speak of the black hole as completely re-
fiecting "waves" with these frequencies because, with the
important exception of s=O [where

I
R(s)

I
=1], the ac-

tual frequency values co=is are purely imaginary. Since
the infmities of A;„and A,„, are of the same relative size,
the integrands in Eq. (37) remain finite and the integrals
all converge, at least if ( t —t' —r, r', ) & 0. A—s s ~0 the
function E(s)~ 2mis e—' ', while g„(r„s) remains fi-

nite for finite r. The integrand of Eq. (36) then vanishes
as s ~0, and the magnitude of Gs usually decreases faster
than ( t t' r, —r', )

' —as —( t t' r, r—', ) —beco—mes
much larger than about one. The quasinormal modes at
intermediate times then become essentially complete, until
at late times they de:ay beneath the power-law tail.

4. Late-time decay taiIs

Considerable simplification of expression (36) for Gs is
obtained in the important case (t —t' —r, r', ) »1, for-
then only

I
s

I
«1 will contribute to the integral. From

results given in Sec. VIC of paper II, the s~O limiting
forms for v, g, , g„,and g„can be found to be

limv-i+O(s ),
s-+0

lim f„(r,s)-(2v+1)!!(is) " '(1 —r ')'F„( is,isr),—
s~0 +

lim g„(r,s) —(1—r ')'[G„( is,isr)—
s~0

+iF„( is,isr) ]e+-—'~~

Other necessary relations are

lim E(s)- 2mis —e.
s-+0

(39)

(41)

lim A,„,(s)- —e' lim A;„(s),
s —+0 s~O

lim 2sA;„(s)—(2v+ 1)!!(s)
s~0 (43)

The last result follows from Eqs. (39) and (40) and the
Wronskian relation for the Coulomb wave functions,
Ft&(rt p}Gt(ri p) Gt&(rt p)Ft(g, p—) =1. The limiting rela-
tionship between A;„(s) and A,„,(s) is a result of (39) and
the fact that Ft( is,isr) -sin(i—sr, le /2) in—the limit as
s~O and

I
isr

I
~ oo, and is an expression of the proper-

ty that the black hole completely refiects very low-
frequency radiation.

This last set of expressions yields, from Eq. (36), the fi-
nal result for the limit that ( t t' r, r—', ) »—1—:

Gti(r„t
I
r', ,t')- —2 J (1—1/r)'(1 —1/r')'Fi( is, isr)Fi( is—,isr')e'" —' 'ds . (44)

If r and r' are not too near unity, (1—1/r)'=1 and this
integral may be taken to be that given by Gradshteyn and
Ryzhik [Eq. (6.626)], if one uses the approximation

lim Ft( is, isr) -isrj t(isr), —
s~0

where ji is the regular spherical Bessel function. If
I

s"
I
»1, with

I
s

I
remaining small, then ji(isr} must

be replaced by jt(isr» }. Integral (44) simplifies to a single
term for bvo important contributions of r, and r', .

(1} r, r', « t t' and (t—t' —r, +r', )/r, « l. — —
These are the astrophysically significant radiation zone
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conditions for which

F(( i—s,isr') -[(2l + 1)!!] '(isr')'+',

Ft( is,—isr)-sin(isr, —lm/2) .

In this case

Gtt(r„t
~

r', ,t')

( —1)'+' ' + '
( ')'+'(t t' r—)-'—-' (45)

(2l + 1}!!

(2) r', « t t' a—nd r, « t —t'. This case gives rise to
the very-late-time nonradiating tails first discovered by
Price, ' who considered extended source fields (Secs. III
and IV). In this limit

Ft(is, —isr') - [(2l + 1)!!] '( isr')'+)—,

Ft(is, isr—)-[(2l+1)!!] '( is@}t+—',
which gives

Gtt(r„t (
r'„t')

( )t+ i 2(21+2)!
[(2i+1)!!]'

Equations (22), (27), (46), and (45) form a useful com-
putational defimtion for the low-frequency part of the
time-domain Green's function that propagates small per-
turbations to the Schwmzschild geometry. This analysis
of the Green's function shows that the response functions
for perturbations originating far from the horizon and as

seen by a distant observer, as typified by Fig. 2, can be
broken into approximately six distinct time regions.

(i) t=t'+
~
r, r—', ~. If the perturbation possesses an

initial component moving in the direction of the observer,
that component will pass the observer at about this time.
It is propagated by the free-space, or high-frequency, rem-
nant that I denote by GF.

(ii) t'+
~
r, r—',

~
&t &t'+r, +r', P.recursor region

The nonzero value of the response in this region are due
to the dispersiveness of GF, and possibly a contribution
from Gt). Much additional work will be necessary to
understand the relative interactions of the two contribut-
ing parts of the propagator.

(iii) t=t'+r, +r', Ini. tial burst and onset of ringing.
The contribution of both Gt) and G& is greatest at this
time, and there is probably much cancellation of their ef-
fects, as both the quasinormal mode sum (27) and the
branch cut integral (36) appear not to be uniformly con-
vergent as t approaches approximately this value from
above. As in the previous case, more study will be needed
to clarify the relative contributions of Gli and G~ near
this time.

(iv) t'+ r, + r', & t & t'+r, +r'„+1 n[(r')' +'(t t'—
r, )

' —]/Re(si ). Ringing region. From Eq. (45), this
is the region in which the response is dominated by the
quasinormal ringing, before the exponential decay of G&
subsides beneath the power-law decay of Gt) .

(v) t'+ r, + r', +in[(r') +'(t t' r—, ) —' ]/Re(s))
& t,r, —r', « t t', a—nd (t t' r, +r', )—/r, —«1. Late
tilnc radlatlllg decay tail, as spcclf lcd by Eq. (45).

(vi) t/r, &&1. Very-late time nonradiating decay, as
spcciflcd by Eq. (46).

Even though the power-Iaw decay tail is now shown to
radiate, it is extremely weak, and will be very difficult to
detect.

III. THE INITIAL-VALUE PROBLEM AND THE RESPONSE FROM A SPATIALLY EXTENDED SOURCE

Equations (4) and (22) can be combined to give

'Is(r„t)= f fGt;(rs, t I" t )Q(r'„t')dr', dt'+ f fG~(r„t I"' t')Q(r', , t')dr', dt'

+ f fGtt(r„t
~

r'„t')Q(r', t')dr', dt'

=
qsF (r„t)+4'g (r, t) + )Istt (r„t),

where %z(r„t) is the response from the high-frequency propagator, )Is&(r„t) is the response from the quasinormal
modes, and %tt(r„t} is the contribution from the integral around the branch cut. We have already seen that the quasi-
normal modes form the dominant part of the response after the initial burst, and Eq. (27) allows the quasinormal mode
response from Q (r„t) to be written, assuming Q is real for real r and t, as

+~(r, , t) = f f G&(r„t
~

r'„t')Q(r'„t')dr', dt'

s (s r+)—
+ce +ao

=2RC g, f f e ' " ge(r'„t')Q(r'„t')dr', dt'
2$ecxeA~„( (se )

(48)

It is convenient to express (48) as

+g(r„t)=2Re g Cence(r, )e '
q=l

where the excitation coefficients Ce are defined by

~0.«&e } + +- —.(s+.', )

Cq = e ' ' Pq(r', )Q(r'„t')
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Since Re(s~) &0, the excitation coefficient integral (50)
shows a marked propensity toward divergence if Q(r„t)
is of noncompact support (infirute extent) in either r, or
t. This is always the case for physically realizable source
terms, which must be analytic at least in r, . The classical
normal modes of closed mechanical systems are Sturm-
Liouville eigenfunctions of the wave equation, and their
excitation coefficients are just the weighted integral of the
driving term over the mode. The classical eigenfunctions
are always bounded, and the integrals always converge.
The divergence of the corresponding quasinormal mode
integral, Eq. (60), is the striking difference between quasi-
normal ringing and classical resonance, ' and the diver-
gence of this source-term integral has been the major
impediment to the proposed interpretation of quasinormal
mode decompositions of the radiation response from per-
turbations to black holes.

However, the fact that the function Q(r„t) is analytic,
while necessarily resulting in formal divergence of the in-
tegral, is also the key to its successful evaluation. To il-
lustrate this I consider in detail the ease of the initial-
value problem for the homogeneous wave equation:

a' a'
%(r„t) I)( r—„t)

Br, Bt

dependences are hardly analytic, the treatment of the spa-
tial part of the integral gives a fiavor of how the integra-
tion of sources with more general time dependences can be
handled (Secs. IV and V, below).

The excitation coefficients for the initial-value problem
are then

~out(sq ) +~ —s (to+ran )

2$q Cq

X [sq)Y(0(r', )+uo(r', )]dr', . (52)

A. Response from compact sources

2 —;(t,+. )
(g & r

Cq= 8
q r sq or +Uo r

Sq&q 1

If it)0 and uo are reasonably smooth, and nonzero only if
the Schwarzschild coordinate r lies on the compact inter-
val r, & r & r2 where r) and ri are both finite and bound-
ed away from r= 1, the integral for the C~ is

2
1

1 (1 + 1)— g (r„t)=0, (51)
r r

X (r' 1) ~—r'dr' . (53)

where %(r„to)=$0(r, ) and )Ii,(r„to)=uo(r, ). This
may be treated as a special case of the inhomoge-
neous equation by setting Q (r„t)= )t)u(r, )5'(t —to)
+ uo(r~ )5(t —to) in Eq. (1) (Ref. 28). The distribution

5' is defined by the derivative property

I f(t)5'(t)dt = —f'(0). While the 5-function time

This compact source integral is finite, and can be evaluat-
ed numerically on the real r axis, as was demonstrated in
Fig. 2. The late-time response may also be simply calcu-
lated. Equation (45) allows the last of integrals (47) to be
evaluated to give the compact source radiative decay tail
for t to » r, r—', an—d ( t —to r, +r', )/r, « 1—as

%t)(r„t)- — [(1+2)!I(ij)0)(t to r„) —' ——(1+1))J(uo)(t —to r, )
' —],(

t

(21 + 1)!!

where the integrals I(f(r) ) are given by

P2

I(f)= (r') +'f (r')(r' 1) 'r'dr' . —

At very late times, ( t to) ir', » 1 and ( t —to )ir, » 1., Eq—. (46) gives

'pa(r, t)-, r'+'f(21+3))1(iijo)(t —to) " '—(2l+2)!I(uo)(t to) 2 i], —2( )

[(21+ 1)!!]'

(54)

(55)

(56)

where the integrals I(f) are the same as in Eq. (55). The
tail that this last expression predicts for the
$0(r)=n. ' exp[ (r —ro) ] source is show—n as part of
Fig. 5, below.

B. Response from analytic sources

r, . They usually remain nonzero but finite as r, ~—co,
and typically fall off as r ' and r ' ', respectively,
as r, ~+~. The quasinormal mode function

e ' 'fe(r', ) diverges exponentially at both points. The
resulting convergence problem for integral (52) can be
solved by expanding the initial-condition functions in
series of the form

Physically "meaningful" initial-value source functions
)to and uo, to the extent that any purely initial-value prob-
lem is meaningful in black-hole physics, are analytic in

$0(r)= g ejr "(r —1) "e—k1 k2 1 '(r —1)

j=l
(57)
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uo(r}= g djr "(r —1) "e
j=l

(58) Pq(k], ki, o)= f e

&(pq(r, )r '(r —1) 'dr„.

Cq ——
A,„,(sq )e

g [cjsqPq(k]j, kij, cr]j )
2$q Qq

+djPq(k3j, k«j, cr3j)], (59)

where the integrals Pq(k], ki, cr) are given by

Although it will usually be the case that k&j+kzj is
greater than or equal to the multipole moment I, that

k3j+ k4j is greater than or equal to 1+ 1, and that Re(cr;j }
is positive or zero, no such restrictions are formally re-
quired by the following developments, and the exponents
k,J and cr;j may be assigned whatever complex values are
most convenient to the physics being considered. Vhth
these expansions Eq. (52) gives the excitation coefficients
for the quasinormal modes as

(60)

This integral is but a formal expression for the Pq(k),
since Re(sq) (0 and Re(o) frequently vanishes. In fact,
since Re(sq)~ —oo as q~ oo, for any cr there will be a
minimum q for which the integrand diverges as r„~+ «c]

along the real r, axis. However, the analyticity of the in-
tegrand in r, is the key property that allows integral (60)
to be evaluated despite this formal divergence. If one con-
siders r, =+ ao and r, = —ao to be, in the Riemannian
sense, the same point, then by Cauchy's theorem there is
no reason to constrain the integration contour to real
values of r, . All that is required is that the contour begin
and end at the point r, = ao, and that on the contour the
integral be nonzero and finite. Equation (26) defines

gq(r, ) in terms of the Schwarzschild coordinate r, and al-
lows us to write

where the contour C must be chosen to include the points r= 1 and r = (x . The integrand in this expression is singular
at r= 1 for n —k2 (—Re(sq ), and usually is also singular as r ~ ao along the real r axis. However, the branch point at
r = 1 allows the integral to be evaluated term by term on the contour C illustrated in Fig. 3.

With the variable change u =(sq+o )(r —1), the integrals in Eq. (61) for Pq(k], k2, cr) become

Pq(k„k2, cr)=e 'A, „, (sq) g a„(sq)(sq+o) ' fF e u ' [I+ /u(s +q)cj7«du
n=0

(62)

where the contour C for the original variable r becomes, for the new variable u, the contour F illustrated by Morse and
Feshbach's Fig. 5.12, and those authors Eq. (5.3.52) then yields the immediate solution

]X]

Pq(ki, k2, cr)=e «Aog, '(sq) y a„(sq)1 (n+sq —k2)e ' ' U2(n+sq —k2
~

2 —k] —k2 —sq ~sq+cr) .
n=0

(63)

The irregular confluent hypergeometric function Uz(a
~
c

~
z) defined by Morse and Feshbach is related to the more

commonly used U(a, c,z) defined by Slater '
by Uz(a

~
c

~

z) =e' 'U(a, c,z), so that the ultimate expression for the coeffi-
cient Pq(ki, kz) becomes

Pq(k„kz, cr)=e 'A,„, '(sq) g a„(sq)I (n+sq —k2)U(n+sq —k2, 2 —k] —k2 sq, sq+o) . —

The coefficients a„(sq ) are ininimal solutions of the recurrence relation (A3), and U(a +n, b, c) are minimal solutions of
Slater s equation (13.4.15). Proof of the convergence of series of the form (64) is given in Appendix C of paper II. The
confluent hypergeometric functions can be generated from Slater*s ' equations (13.1.2), (13.1.3), and (13.4.15), while the
complex y-function evaluation is discussed by Kuki. The validity of expressions (59) and (64) is illustrated by Fig. 4,
where only the e~ term was used in the series and o~& was zero. Similar calculations have been done retaining more
terms in the series (59), and using complex values for the o and k's.

C. The branch-cut contribution and late-time decay tails

The branch-cut contribution ]pji(r„t) due to the analytic source (57) and (58) can be evaluated at late times by in-
tegrating

+Jj(r„&)=f fGjj(r„,t
~

r'„r'}Q(r'„r')dr', dt'

$(t —fo) s(,t —ro)= —2 g cj e sF&( is,isr)IO(k]j, kzz, cr]j, l,s)ds+—dj. e F&( is,isr)IO(k3j k4j cT3—j 1 s)ds
0 f' Jf Jf Jf f J Oj=l

(65)
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" (with ac= 1). It should be noted
that, for 1=2, the magnitude of this decay tail becomes
comparable in magnitude to the ringing of the fundamen-
tal quasinormal mode only for t to—r,—-75, at which
time the magnitude is less than than 10 of its value at
the onset of the quasinormal ringing.

(2) r~ & 1 and (r to—)/r~ &&1. In this very-late-time
region the only s that wi11 contribute to the integrals in
(65) are so small that

i
sr,

i « 1 and Fi( is—,isr)
-(isr)'+'/(2/+1)!!. In this case

—2l —2

4'q(r„t) -(—)'+'2r'+'(2/)!!
(2/ —1)!!

(69)

Re(r)

FIG. 3. Contour C for the evaluation of the quasinormal
mode excitation coefficient P~(k) of Eq. (61). This contour is to
be used when Im( s~+ o ) ~ O. The contour used when

Im(s~+o) gO, as is usually the case for the complex-conjugate
frequencies s~, is obtained by reflecting the contour |." through
the real r axis. Deformations of this contour are useful for a
wide variety of excitation problems.

(66)

Evaluation of these integrals is more difficult than their
simple appearance would suggest, but Gradshteyn and
Ryzhik's equations (6.563) and (6.569), at the small s limit
for the Coulomb wave function Fi in Eq. {66),are helpful.
For the important case when k, =1, kz ——0, and o =0 they
yield

(is)'
lim Io(1,0,0, /, s)— (67)

This result is fairly limited, but it does allow us to evalu-
ate expression (65) for the important case when go r-—
and vo ——0 in two distinct asymptotic regions in time.

(1) (t —to —r, )»1 but (i —to r, )/r, «1. In this—
radiation region the inagnitudes of

i
sr,

i
that contrib-

ute to the integrals are very large, the Coulomb wave
functions may be approximated by Fi( is,isr)—
-(—, )exp[ —sr, —(/+ 1)im/2], and the br'anch-cut contri-
bution by

( )I+1/) —I —1%~(r„t)- '
(t —to —r, )

(21 —1)f!

This radiating decay tail represents a new and heretofore
unsuspected feature in radiation effects from black holes.
The investigation of the (r to)/r, »1 reg—ion discussed
next suggests that a small correction must probably be
made to these coefficients when the source field %{r,r),
has the more physically reasonable form

where the integrals Io(k, , k2, o, /, s) are given, for
is i « l, by

lim Io(k, ,k2, cr, /, s)
@~0

This very-late-time nonradiating tail was first described
by Price, ' and expression (69) is identical to Cunning-
ham, Price, and Moncrief's' Eqs. (IV.1) and (IV.2). Nu-
merical experiments (Fig. 5) suggest that initial sources

Po r ——for k =1+ 1 and k =1+2 will also produce
(t —to) ' decay tails, but of somewhat smaller magni-
tude. The hypergeometric source function relevant to
stellar collapse problems' (see Sec. IV below) contains
such higher-order terms, so these minor corrections will
be of some physical significance. It is interesting that the
sign of expressions (68) and (69) for the tails from the ana, -

lytic sources differs from the sign of expressions (54) and
(55) for the tails from the compact sources.

Figure 5 shows log-log plots of the function %z(r, t) for
electric dipole fields, as measured by an observer at r = 10,
with to ——0; the time interval is 20' t&50, which is
moderately late compared to r. The curves plot the loga-
rithm of the magnitude of the difference between the total
time response, as obtained by integrating the initially sta-
tionary source fields +(r, t), c forward in time by the
method of characteristics, and the contribution from the
first four quasinormal modes as given by expression (59).
The curves are labeled by the functional form of the per-
turbing source field. The r " curves were computed from
expression (59) with ci ——1, ci ——0, l=l, and ki ——1, 2,
and 3. Each of these curves has the same slope at i=50,
namely, Blog+(r, t)/Blogt i, io, &z- —4.5, which sug-
gests that the components of an initially stationary source
field that fall off as r ", for k =/, k =I+ 1, and
k =1+2, may also contribute to the final
( t to r, )

' —' de—cay tail. This difference plot provides
a valuable check on the predictions of Eq. (69), and allows
another method of estimating the small s limiting value of
the integral Io(k, /, s), Eq. (66), for k & /. For the present I
attribute the deviation of the slopes of these curves from
the predicted value —4 to the relatively short times over
which they are plotted: (t to)/r=5 at the la—st point on
the interval. The form of the late-time response from
noncompact source fields which fall off faster than r
remains to be established.

The astrophysical conditions that prevail for the radia-
tive decay tails, which correspond to a distance in light-
seconds between the black hole and the observer that is
much longer than the time period of the radiation events,
is more difficult to study numerically than is the very-
late-time regime of the nonradiating decay tails, and is de-
ferred to the next section. The present derivation of the
radiative expressions (54) and (68) differs from that for
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FiG. 4. Excitation of the first six I=2 gravitational Schwarzschild quasinormal modes resulting from a stationary initial perturba-
tion %'{r,t =0)=r, as seen by an observer at r= 100. The dashed curves are the sum of quasinormal mode contributions, and were
obtained by evaluating expansion (59) with c~ ——1, e~ ——0, k~ ——1=2, and q =1,2, . . . , 6. Only the fundamental term q=1 was re-
tained in (a); the first two terms q=1,2 were retained in (b); the first three terms in (c), etc. The solid curve is the total response due
to this perturbation as obtained by numerical integration, via the method of characteristics, of Eq. (1) with q(r~, t) =r 5'{t). The
step size for the numerical integration was 6 r+ ——At=0.0125.

the very-late-time nonradiative result (69) only in the limit
in which one evaluates the Coulomb wave function
F~(is, isr) This is —a very. simple generalization, and uni-
fies the two decay-tail results in a most elegant fashion.

A generalization of the initial-value problem discussed
in Sec. III is the problem of mixed Cauchy and charac-

teristic data. The Green's-function integrals that propa-
gate such mixed data are derived in Appendix 8, the re-
sults of which are used here to compute the excitation of
the quasinorrnal ringing. An astrophysically interesting
example of quasinormal ringing from a characteristic-
value problem is offered by the work of Cunningham„
Price, and Moncrief, ' ' who followed the gravitational
radiation emitted during the collapse, via the
Qppenheimer-Snyder model, of a massive star. I recapitu-
late their approach.
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FIG. 5. Log-log (base 10) plot of the function +~(r, t) for
electric dipole fields as a function of t, as measured by an ob-

server at r =10. The curves are the difference between the total
time response, obtained by integrating the initially stationary
source fields, 'P(r, t), 0, forward in time by the method of
characteristics, and subtracting the contribution from the first
four quasinormal modes as given by expressions (48) and (59).
The curves are labeled according to the source field as a,
%(rt), 0 ——r; b, %(rt), o——r; c, 0'(rt), 0——r; d,
%(r, t), 0 m'~ exp[ ———(r' —l)2]. The response from the

Gaussian source field was obtained by integrating expression

(48) along the real r axis from r=2 to 8. The slope of this curve

at t=50 is Bio +g(r, t)/Blo tgI, ~0, ~———6.3, which is within

r/t -20% of the predicted value of —6.

The star is assumed to be in equilibrium prior to the on-
set of collapse at t=O, and the evolution of radiation in
the region exterior to the surface of the star is formulated
in terms of the characteristic-value problem. Assume the
stellar surface is initially at r, = —uo at t=O. Reference
16 deals with axial perturbations and, the sources being
interior to the surface, the value of ill and its derivative on
the t —r~ =uo characteristic is taken to be the static solu-
tion to the wave equation (1):

8 %(r„t)
Brg

the asymptotic form of the data on this characteristic
must approach a +b exp( ——,

'
tt) as u ~ ao. The value of

U~, the magnitudes of the constants a and b, and the way

in which 4' approaches this asymptotic form, are deter-

mined by the details of the collapse. Cunningham, Price,
and Moncrief determined the value of 4 on the U =Ui
characteristic by numerically integrating the interior wave

equation for density perturbations during Oppenheimer-

Snyder collapse outward to the stellar surface, changing

coordinates, and continuing the integration out to the

U =U, characteristic. They found that, apart from deter-

mining the magnitude qt of the external perturbation,
"the dynamics of the field in the interior of the star plays

an unimportant role in determining the exterior radia-

tion. "
The characteristics are diagramed in Fig. 6. In the fol-

lowing example I will approximate the value of ~P on the
t =r, = U

&
characteristics by the explicit function

4(r, t) I,+, „,——a+b(1 —1/r)+c(1 —1 lr)2, (72)

which approaches a+be ' in the limit as r, ~—ce.
This simple form is suggested by the shape df the topmost
boundary of Cunninghain, Price„and Moncrief's'6 Fig. 3.
It should be noted that this form has been chosen only as
an example of how these calculations might proceed.
More terms, perhaps involving other functional forms
such as damped or undamped sinusoids, can always be
added to series (72) in order for it to more accurately
match the conditions on the U =U~ characteristic as deter-
mined by some other method of calculation. Alternative-
ly, a relatively sitnple form such as the one shown might
be retained, with the values of qt, a, and Ui chosen to
match those generated in a more detailed model. The
difference function between the detailed and the simple
models will then be compact, and easily dealt with numer-
ically.

=0 . (70)

The solution that is regular as r, ~ ao is simply

0'(r, t)
I ~ r, =u =qtr zFi(l —l, l —+3;2l +2;1/r), (71)

where 2Fi(a, b;c;z) is the hypergeometric function that is
regular as z~O. Here ql is a scaling parameter that re-
flects the strength of the perturbation, and is obtained
from the junction conditions on the exterior solution to
the wave equation with the solution interior to the star.
Since the data on the tt =tto characteristic is that of a
field that was initially stationary on the t=O hypersur-
face, this characteristic-value problem shares some of the
aspects of the initial-value problem discussed in the previ-
ous section, and in particular will be seen to possess the
same radiative decay tails arising from the frequency-
domain branch cut.

In terms of the characteristic coordinates U =t +r, and
u =t r„ the world line of—the stellar surface asymptoti-
cally approaches an ingoing null ray t+r~ =U&
surface falls through the horizon. Price'5 has shown that

CO
~~
CO

o

r*1 V1 robs

t'* axlS

FIG. 6. Spacetirne diagram for the simplified model problem
approximating Oppenheimer-Snyder collapse from an initial ra-
dius ro. The world line of the stellar surface asymptotically ap-
proaches the U =UI characteristic as the collapse progresses.
The value of the metric perturbation, +(u, U), „, is given on

1

this characteristic by Eq. (72). The corresponding value on the
u =uo ———ro characteristic is given by Eq. (71). The time
response at r+ ——r~ ls then found by integrating Eq. (1) within
the rectangular region bounded by the dashed lines and the
u =u, and v =U, characteristics.
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Cunningham, Moncreif, and Price's results show that
for the Oppenheimer-Snyder model of stellar collapse the
value of the initially static gravitational perturbation, as
measured at the surface of the star, increases smoothly
and stays within +20% of ro/r as the surface collapses
through the horizon. Using the median value and Eq.
(71), the parameter a in Eq. (72) is therefore chosen to be

ql"0 2+i(l l +3 2l+2 1/ 0

The parameters b and c are then chosen such that %(r„t)

on the t +r, =U ~ characteristic smoothly matches
%(r„t) on the t r, =—uo characteristic at the point the
two characteristics intersect:

a+b(1 —1/ri)+c(1 —1/ri )

=qiri 2Fi(1 —I,I +3;2l+2;1/ri ), (74)

[b(1—1/r)+c {1—1/r)2]

0.020
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+ -0.005
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15 20 85 30 35 40t-tl

FIG. 7. Comparison of the result of integrating the approxi-
mate model with the full Oppenheimer-Snyder result as pub-
lished by Cunningham, Price, and Moncrief (Ref. 17). The ini-
tial radius was taken to be ro ——SM. The dashed curve is a
reproduction of the dashed curve in Moncrief, Cunningha,
and Price's (Ref. 19) Fig. 1 {values furnished courtesy of R. H.
Price). The solid curve is the result of integrating the simplified
model problem.

d
[qtr 2F, (l —l, l+3;21+2;1/r)]

(75)

It remains only to determine r i from Fig. 6, and the value

u, of the final ingoing characteristic.
Denote the radius of the collapsing Qppenheimer-

Snyder star, in Schwarzchild's coordinate, by r„and let
the collapse start from r, =ro at t=0 The val. ue of the
ingoing characteristic Ui is found by following the world
line (r,', t, ) of the stellar surface during the collapse, and
determining the value of T, +r,' when the surface passes
through the horizon. The horizon is at r =2M, which is
scaled to r=1. Hence

Ui ——hm {t,+r,*)
r ~1

and the simplified model problem is then specified as fol-
lows: (1) Choose a radius ro from which to begin the col-
lapse, and a perturbation magnitude qi, (2) compute Ui

from (79); (3) from Fig. 6, find r; = —,'(U, +ro), and

t, = —,'(U, ro); (4) spec—ify the data everywhere on the
"first ray" t r, =uo= r—o by Eq—. (71); (5) choose the
constants a, b, and c in Eq. (72) to satisfy Eqs. (73), (74),
and (75); (6) integrate, via the method of characteristics,
the solution %(r„t) up to the observer's position at r,'b,
for times between t =r,'b, ro an—d t =to.

The waveform resulting from this simplifimi model is
compared with that produced by exact Oppenheimer-
Snyder collapse in Fig. 7. The two waveforms have, for
the present purposes, their essential features in common.

= lim [t, +r, +ln(r, —1)] .
r

(76)

Excitation coefficients for the quasivormal modes

r, (g ) =rocos (g/2),

(r, —1)'~'+ tan(g/2)
t, (q) =ln

(r —1)' —tan(rt/2)

(77)

The Schwarzchild coordinates of the stellar surface, r,
and t„are parametrized by the cycloid coordinate g;

The response for this model problem is obtained from
Eq. (B7) with Q(u, u)=0, a=1, uo —— ri, and Uo———Ui
=+ P'&.'

+ (ro —1)'~ [g+ —,
' ro(q+ sing) ] . —2 f, G, '(»U

~
uo, u')p(uo, U )« . (80)

The collapse starts at qo ——0, and the final singularity is
encountered at g~ ——m. The horizon is passed at
gi ——2cos '(ro ' ). Equations (76)—(78) yield

Ui ——lim (t, +r,')
r ~1

= 1+ln4(1 —ro ')

+ (ro —1)'~2[g, + —,
'

ro(gati+

sinai�

)],

Note that the UI illustrated in Fig. 6 is equivalent to the
Uo used in Fig. 11. The functions %(u, u) and
6{u,u

~

u', U') are exactly the same as when expressed ex-
plicitly in terms of r, and t, and expressions (17) and (18)
allow ready evaluation of 6 and its derivatives. In this
particular example, however, 4 is specified in closed form
on the boundary characteristics u =uo and U =U&, and
hence is slightly easier to manipulate than is expression
{27) for G~. It is therefore convenient to integrate the
second integral once by parts and cast the derivative on 4
to obtain
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4(u, u) =26(u, u
i uu, ui )%'(uO, ui )

+2, 6 u, v u', v~ + „u', v& du'
—PI

+2 6(u, u
i uo, u')qi, (uo, u')du',

1

where causality has required that the first term's contribu-
tion at u = ao vanish. In other problems, where values of
4' on the boundary characteristics might be obtainable
only through numerical calculation of a more complicated
collapse process, it may be preferable to cast all the
derivatives on G. Either way, the integrals in (81}are ex-

pressed in terms of the r„t coordinates using the deriva-

tive relations

d 1 8 8
du 2 dt dr,

d 1 8 8—+
du 2 dt dr„

In the direction of the u = r—,*b, and u =ui characteris-
tics, the differentials du and du are related to dr, by

dv =2dI'g, du = —2dfg (83)

Further, the time derivative of our particular data func-
tion qi, given by Eqs. (71) and (72), vanishes on both these
characteristics, so that

4(r„t)=26(r„t
~

r i, t, )%(r i, ti )+2 f „6(r„t
~

r', ,t')4 „(r', ,t')dr',

+2 f G(r„t
~

r', , t')'0 „(r', , t')dr',
PI

(84)

(85)

where, for the present characteristic data problem, the excitation coefficients are given by

A,„,(sq )
%(r1,ti )gq(ri )e « '+e « ' 4 (r', t')fq(r')dr'

S Qq
f «

1
f =P'I —f'g

The excitation coefficients for the quasinormal modes are found by substituting G~ of Eq. (27) into the integrals of (84).
The ringing portion 4'g of the response function W r„t) can then be expressed as in Eq. (49) by

4g(r~, t) =2 Re g Cqgq(r~ )e «

q=l

I

+e ' ' f 4';(r', t')P (r'}e ' 'dr'
P)

(86)

The value of %(r',t'), on the u =ui characteristic for the first integral is given by Eq. (72), and its value on the
f =p'( —T ~

u =uo characteristic for the second integral by Eq. (71). The integrals in Eq. (86) do not converge on the real r axis, and
contours must be chosen such that the contributions at r =1 and 00 vanish. In terms of the contours Ci and C2 of Fig.
8, the excitation coefficients are finally obtained by

Cq —— %(ri, ti )gq(r 1 )e « ' —e « '(1 —e «) 4 „(r',t')Pq(r')dr' ~,,sa
q q

I
—Pg

I

+e «"' f e (r', t')gq(r')e «' dr'
~

As stressed previously, the analytic behavior of 4 on the
source characteristics, u =uo and v =v~ as u~ao and
v~ao, is needed in order to evaluate the integrals. As
Cunningham, Price, and Moncrief have shown however,
this information is readily approximated. The factor

4&lS
(1—e ') comes from the integral around the branch
point r= 1 in Fig. 8(a)„and is required if the integral is to
reduce to the correct" expression (87) in the limit the
data + „has compact support.

The integrals in Eq. (87} are readily evaluated numeri-
cally. The hypergeometric function 2Fi(a, b;c;z) was gen-
erated by the Chebyshev expansion subroutines ccoEF2
and EYA.L given by Luke, and checked by the rational

approximation subroutine R2F1 of the same author. The
quasinormal mode functions gq(r) were generated by the
algorithm explained in the present Appendix A. As a
check on the equivalence of this contour method with the
method of subtracting divergences used by Detweiler and
Szedenits, the first of the integrals in (86) was evaluated
independently as

(1—e «) f 4 „(r',t')gq(r')dr'
~

I

= f [+„(r',t')gq(r') f(r')t, . . dr'—
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V. THE RADIAL IN-FALL PROBLEM
AND THE RESPONSE FROM SOURCES EXTENDED

IN BOTH SPACE AND TIME

Im(r)
j4 2 Jk

The explicit expansion (27} for the quasinormal mode
component Gg(r„r

~

r', ,r') of the time domain Green's
function G(r„t

~

r'„t') in principle allows one to deter-
rnine the quasinormal mode excitation due to an arbitrary
source Q(r„t). Convergence of the double integral (50)
for the expansion coefficients C» may create difficulties,
although none that are insurmountable provided one has
an analytic representation for Q in the limits as r, and t
go to + ao. If one has such an asymptotic representation
for Q, and numeric values (for real r, and r) over a finite
range connecting the asymptotic limits, then the integrals
(50) may be evaluated numerically on the finite range, and
the divergences at the end points eliminated by finishing

0.020,

FIG. 8. Contours for determining the quasinormal mode ex-

citation for the characteristic value problem. Contour C~ is

used for the Schwarzschild r coordinate integration of the
u =u~ characteristic„Eq. (87). It begins and ends on opposite
sides of the branch cut at r =r~. Contour C2 goes from r~ to
imaginary infinity, where the second of the integrands in (87)
will converge since Im(s~) go: the contour must be inverted for
the complex-conjugate frequencies s~.

g oooo

II

0.005

IO

o.ooo

@-0.005

-0,010

-O.0i5
0

I

10 15 20 25 30
t—ti

40

where F(r)=ff(r)dr, and f (r) was chosen to cancel the

singularity of III;(r', 1')gq(r) at r= 1. This was done by
taking f to be the first two terms in the Taylor-series ex-
pansion for + (r, t), „gq(r) about r= 1, which is

another way of using the analytic information about 4' on
the source characteristic near that point. The integrand
on the right-hand side of (88) is then finite at r= 1 for the
lowest-order frequencies si and s2, and the integration
can proceed along the real r axis between r= 1 and r =r, .
This result agrees with the contour integral on the left-
hand side of (88} to within the truncation error of six de-
cimal places. Results of Eqs. (85)—(87) are shown in
Fig. 9(a}, where the result of numerically integrating the
model problem of collapse starting from ro =4 is com-
pared with the excitation due to the first four quasinormal
modes. A log-log plot of the difference between these two
curves, demonstrating the late-time radiative decay tail
predicted 111 Scc. III, is show11 111 Fig. 9(b). A detailed
analysis of the response from this (and other) collapse
models could be presented along the same lines as the six
time-region discussion of the impulse response given in
Sec. II. However, the time-evolution of the geometry dur-
ing supernova is extensive enough that only those ele-
ments occurring relatively late in the collapse are amen-
able to analysis by simple pertnrbation theory: these will
be characterizable by their excitation of the underdamped
quasinormal modes, and of the late-time decay tails.

-3.0

-4.0
II

"s -4.5

-5.0

+

0cg 60

1.5 2.1

FIG. 9. Comparison of the quasinormal mode response for
the simplified model collapse problem with the total response as
determined by direct integration of the wave equation. The
solid curve in (a) is the same as in Fig. 7, while the dashed curve
represents the contribution of the first six quasinormal modes.
The pattern of the contribution from successive modes is slIDilar
to that shown in Fig. 4. The collapse was started at ro ——8M,
and the observer was placed at r=4002.25. The solid curve in
(b) is a 1og-log (base 10) plot of the difference between the two
curves in (a), demonstrating the late-time radiating decay tail
discussed in Sec. III. The dashed curve is the derivative of this
logarithmic difference, and shows how the tail slowly ap-
proaches the predicted —

3 ( t —r,b, ) behavior.
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the integrals at + oo, either numerically or analytically, on
a path for which the integrals converge. The order in
which the integrations are done, and the contours used,
will naturally be determined by the ease in which the
quantities involved can be evaluated, and will depend on
the particular probleID being considered.

For temporally extended sources it will frequently be
convenient to write the integrals for the response function
as

4(r„t)= f f G(r„t
~

r', ,t')Q(r', ,t')dr,'dt'

6+I oo ao

g (r„r', ,s}q (r'„s)dr'„ds,
f—l c~ (Xt

/A+5 +1
d ~ (r —1)', („()
dr „(t gq+n + 1

(95)

and the integral (92) for the expansion coefficient can then
be written

A,„t(sq )

Cq = [e q fq(r)q(r, sq)(r —1) q r
QqQq f =1

where X is greater than or equal to the largest integer in
the real part of —gq, and a is any convenient complex
constant. The coefficients b„ar erelated to the („by

bo go——l(gq+1), ((q+n +1)b„ab—„
n =1,2, . . . , X, (96)

where f(r) jd—r . (97}

q(»'», s) = f e "Q(r', , t')dt' .

The excitation coefficients, as defined in Eq. (50), are then

(90)

~out(sq) +~ +~ —s (t'+r'» )

Cq
—— e ' ' Pq(r', )Q(r'„t')

X dr '„dt' (91)

&.„t(sq) +
e q pq(r» )q(r», sq)dr»

2SqQq

&,„t(sq) ... , , , —s,-(,e q Pq(r')q(r', sq)(r' —1) q r'dr' .
2Sq 0,'q

(93)

lime ' fq+'(r)q(r, sq)(r —1) ' = g g„(» —1) '
r~l

@ =0

(94)

where gq will usually be some positive multiple of sq.
Since the integral along the contour C of the total deriva-
tive of any function I'(r) that vanishes as r~ oo is zero,
the integrand of (93} can be made finite at r=1 by sub-
tracting from it the (nonunique) function

The frequency-domain source function q (r'„sq ) may
be thought of as the Fourier transform+ (N ~e'"' Q (r'„t')dt', either analytically continued to
to=isq, or else integrated along a contour for which the
integral converges. The spatial integral (93) will then
remain, and may be evaluated on some suitably normal-
ized deformation of the contour C of Fig. 3, of which the
combination of contours Ci and C2 of Fig. 8 is an exam-
ple. The approach to r = oo will depend on the analytic
nature of Q as r~oo, while the difference across the
branch cut and the integral around r= 1 will depend on
the behavior of q(r, sq ) as r ~1.

A simplification may result if the integrand in (93)
possesses a Taylor expansion about r=1:

The integration may proceed along the real values of r for
which q (r,sq ) can be generated numerically, and complet-
ed to r =00 on a convergent path using the requisite
asymptotic knowledge of q as r ~ oo. Once again, howev-

er, the subtraction of a suitable total derivative can
presumably cancel the large r divergence of the integrand,
and lead to an integral for Cq that can be evaluated entire-

ly on the real r axis.
The vanishing of the contribution of total derivatives

has been used by Detweiler and Szedenits in their study
of the radiation emitted by a test particle spiraling into a
black hole. In their Eq. (A7) these authors experienced
similar convergence problems for source-term integrals,
but rather than a discussion in terms of the contour of in-
tegration, Detweiler and Szedenits consider the freedom to
subtract arbitrary total derivatives in the same aspect as
integrations by parts, and interpret both in terms of the
boundary conditions on the radiation problem: "It may
be noticed that all surface terms from the integrations by
parts leading to equation (A7) were dropped intentionally.
This is aBowed. Any nonvanishing surface term may be
ultimately identified as an additional gravitational wave
sent in from infinity or out of the black hole. By drop-
ping all surface terms, we are effectively enforcing the
boundary conditions: the waves must be outgoing at in-
finity and ingoing at the event horizon. To rectify the
nonconvergence of the equation, we are now free to sub-
tract from the integrand any vanishing or nonvanishing
divergence. "

More is said of surface terms and boundary conditions,
in terms of characteristics, in Appendix B. It should be
noted that the two methods, the subtracting of derivatives
and the deforming of integration contours, both require
the same analytic information about the source-term in-
tegrand. I illustrate the equivalence of the two procedures
by considering quasinorrnal mode excitation in the small
body radial in-fall problem.

The radial in-fall problem

The problem of determining the gravitational radiation
emitted by a small test particle falling radially into a
Schwarzschild black hole was first formulated by Zerilli, '

and solved by Davis, Ruffini, Press, Price, and Tiomno, '



ED%'ARD %. LEAVER

who computed the total radiation emitted by numerically
evaluating the Green's function for real frequencies. The
more general problem of spiral in-fall was subsequently
solved by Detweiler and Szedenits, who used the
Newman-Penrose formalism.

Here I retain Zerilli s formalism and look at the sim-
plest case where the test particle is initially at rest at spa-
tial infinity in the distant past, r, = 0() at t = —ao, and
reaches the horizon, r, = —Oc, at t =+ ao. The radial
in-fall problem is the easier to deal with, as the source
term can be written in closed form. Zerilli used the sym-
metric normalization for the Fourier transform,

F(to) =(2m) ' fe'"'f (t)dt,

f{t)=(2n) ' f e ' '+(co)da),

and defined the source term [Zerilli, ' Eq. (18)] without
the minus sign. In the Laplace transforms used here the
1/(2qr) is multiplied at the inverse transform, Eq. (7). The
frequency-domain source, as given by Davis, Ruffini,
Press, and Price' is, when multiplied by —(2m)'~ to
match the convention used in this paper,

where V'+' is the Zerilli potential: '

(+) r —1 8A, ())(,+1)r +12k, r +18Ar+9
T r (2A.r+3)

(101)

The homogeneous solutions g(+)(r„s) to Eq. (100) are
given in terms of the corresponding homogeneous solu-
tions to the Regge-Wheeler equation (1), with m=2, by
Ch and rasekhar:

[2A,(A, + 1)—3s]PI,+m)(r „s)
r

2A, (A, +1)+ P~, (r„s)
r (2ir+3)

+31(})„,„,(r„s) . (102)

The superscript (+ ) indicates that the source is for the
even-parity metric perturbations which satisfy the Zerilli
equation

82

z
f'+'(r„s) —[s + V'+'(r„)jP(+'(r„s)

r~

q'—+ '(r, ,s ), (100)

4(2m. )' (1+—, )' (r —1)
q(+)(r, sq) =-

r(2Ar +3)

X
4A, -s T(r)

sq(2Ar +3) (98)

The quasinormal mode function Pq+'(r, ) is then found
from Eqs. (26) and (102):

~(+) 9(r —1)
ri(2))(.r +3)[2A,(A, +1)—3sq]

where A, —= —,
' (I —1)(1+2), and t =T(r) gives the time as a

function of the radial coordinate along the geodesic fol-
lowed by the particle:

3(r —1)
r [2A,(A, +1)—3sq]

(103)

1/2+ lT(r) = — r 2r' +l—n—
1/2 (99)

Simple algebra gives lj)q(+)(r, ) in terms of the expansion
coefficients a„used in (26) for the odd-parity wave func-
tion P(r, ):

2$

(+, (1—1/r) q

ga„(sq )

6sq(2Ar+3)+9{r —1) ~ 3(r 1)1+- g a„(1—1/r)" + g na„(1 —1/r)"
r (2Ar +3)[2A(i, + 1)—3sq] „() r [2A(A, + 1)—3sq ]

(104}

One last result, due to Chandrasekhar and Detweiler and
verifiable by inspection of Eq. (104), relates the transmis-
sion and refiection coefficients for the even-parity Zerilli
wave functions to those for the odd-parity Regge-Wheeler
wave functions:

T'+'(s) = T(s) =A;„'(s),

2A,(l+ 1)—3sq
(108)

Expressions (98) and (104)—(108) are then substituted into
(92) to give the excitation coefficient Cq+' for the even-
parity perturbation:

~(+) 2A(A, + 1)—3s
2A(A, + 1)+3s

which in turn implies

(+)
Qq =Cq )

(106)
A(+) sC(+) (I) e q g(+ )(r)9(+)(r s )

)&(r —1) ' rdr . (109}
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The final contribution from the even-parity quasinormal
modes is given by

(110)

The e ' term in the q'+'(r) defined by Eq. (98) lets
the integral (109) converge as r~oo through real values,
and the contour Ci of Fig. 8(a) can be used if the end
point is extended from r =r i to r = oo. The result of in-
tegrating (109) on this contour was compared, for q= 1,
with integrating (97) on the real axis retaining only the
n=0 term in Eq. (95) with a=1. Agreement was to
within the truncation error of six decimal places.

For the purpose of comparison, the response function
%(r„t) can, for large positive values of r„be generated
by a Fourier transform of the single-particle wave ampli-
tudes AP"'(r0) tabulated by Petrich, Shapiro, and Wasser-
man, ~

%(r„t)=(2ir) 'i J Ai'"(co)e ' dc@,

0.16

and is the same as those authors' Ri(r„t) .Figure 10
compares %(r„t) as generated by Eq. (111) with the
quasinormal mode expansion %ii(r „r)of Eq. (110). I ten-
tatively assign the —10% discrepancy in the time region
r r, —=5 to inaccuracies in the Fourier coefficients: the
excitation coefficients are probably accurate to at least
five decimal places, and it is not likely that the branch-cut
integral will contribute significantly at these times.
Petrich, Shapiro, and %asserman generate their wave
functions by numerical integration of the homogeneous
Zerilli equation. More accurate low-frequency results
might be obtained using the algorithm for g'+~(r, s) dis-
cussed here: expression (104) can be used at arbitrary
complex s provided sufficient precision is used when gen-
erating the expansion coefficients (see Appendix A). As
in the case of the initial- and characteristic-value prob-
lems, the branch-cut contribution %ii will cause the radia-
tion generated by small body in-fall to be characterized at
late times by a radiative decay tail. The analysis is diffi-
cult, however, and must await more detailed study.

VI. CONCLUSION

0.12

0.08

8 0.04

o.oo

m -0.04

--0.06

~-0.124
+

-O. i6

-0.20

-0.24-15 -10 -5

0.08

I
i i I I I

0 5 10t-r'
(a)

I

20

Analytic representations for generalized spheroidal
wave functions have been used to evaluate the important
low-frequency components of the radiative Green's func-
tion that propagates small perturbations to the
Schwarzschild geometry. Quasinormal mode decomposi-
tions have been demonstrated for several important classes
of astrophysical problems, and a new type of radiation ef-
fect discovered in the form of radiating decay tails. This
study is among the first in which a direct comparison has
been made between independent means of propagating
source functions, and indicates that the analytic represen-
tation can yield useful and accurate results for problems,
such as that of in-falling bodies, or any problem involving
the Kerr geometry, where direct numerical integration of
the wave equation is difficult.

8 0.04

o.oo

~~ -0.08

-0.124
+

-0.16

-0.20

—0.24-15 -10 -5 0 5 10t-r~
(b)

i r

15 20 25

FIG. 10. Comparison of quasinormal ringing (dashed curve)
with the total response {solid curve) for the 1=2 radial in-fall
problem. The solid curve was obtained from the Fourier coeffi-
cients tabulated by Petrich, Shapiro, and %asserman (Ref. 44)
and from those authors' Eq. (42). Specifically,
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(~) diverge as ~ as ~—+O so that the smallest us-
able lower end point was g=1&10 . Integration was done by
NAg subroutine 00)&NF. (a) shows the response from the first
quasinormal mode; (b) shows the response from the first six.

APPENDIX A: SOME COMPUTATIONAL DETAILS

The response of black-hole geometries to small pertur-
bations is dominated at all but late times by quasinormal
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ringing. Although one result of this paper is the demon-
stration that some small amount of the stress-energy asso-
ciated with the perturbation will be carried off through
the branch-cut mechanism of the radiative decay tail,
most of this energy may be expected to be radiated away
through the quasinormal modes. This radiative form is
seen explicitly in expression (27) for the quasinormal
mode contribution Ig to the radiative Green s function 6:
G&(r„r

~

r'„t')
g I

Pq(r, )Pq(r', )e '
=2 Re

q 1 2sqaq A0„1 (sq )

and may be generated by downward recursion from suit-
ably large n. Note the a„, p„, and y„are real when s is
real, so that a„(s)=a„(s). Computational aspects of
three-term recurrence relations are discussed by Gaut-
schi.

The coefficients are normalized so that ao=1. Care
must be taken since the largest of the a„ is not ao, but
rather aq, which may be several orders of magnitude
larger than ao. A short upward recursion from ao to aq
is frequently necessary to accurately generate ai through
aq 1. The quasinormal frequency sq (or sq) is the qth
root (or its complex conjugate) of the continued-fraction
equation

(A 1)

As a formal expression, (Al) is comfortably elegant. It is
of no computational utility, however, unless one can com-
pute the quasinormal frequencies sq, the quasinormal
mode functions gq{r), and the derivatives aq of the ampli-
tude A;„(s).

1. Quasinormal frequencies, quasinormal modes,
and the function f, {r ~,s)

(s )( 1 r —1)N

gq(r, )=(1 r') '"— (A2)

The expansion coefficients a„ form the minimal solution
to the rex:urrence relation:

+0 1+pOa0

&nan+1+ pean+ Ynan —1='0~

where the recurrence coefficients a„,p„, and y„are given
by

a„=n +(2s+2)n+2s+1,

p„=—[2n +{Ss+2)n+Ss +4s+I(1+1)

—m'+1],

y„=n +4sn+4s —m

(A4)

Accurate values for the underdamped Schwarzschild
gravitational quasinormal frequencies, for which

~
Re(sq)

~
&

~
Im(sq) (, were first obtained by Chandrase-

kar and Detweiler. ' Corresponding values for under-
damped scalar and electromagnetic frequencies were given
by Cunningham, Price, and Moncrief. ' The present
method of calculation, which gives values for the over-
damped as well as the underdamped frequencies, is out-
lined as follows (see paper I for details}.

The quasinormal mode functions gq(r, ) are generated
from expression (26},

a&y2
(A5)

3

The function g, (r,s) can be generated from Eq. (17) us-

ing expansion coefficients a„(s) generated from the re-
currence relation (A3). If s is not a quasinormal frequen-
cy s~ or s~, then the a„are dominant and must be gen-
erated by forward recursion starting from ao= l. When s
is a quasinormal frequency the a„are minimal and should
be generated by dovvnmard recursion.

2- Thc ingoing and outgoing functions
(r,s) and tP„{r,s)

The amplitudes A;„(s) and A,„,(s) are calculated by
matching the solutions that are ingoing and outgoing as
r~oo, respectively, P„(r,s) and g„(r,s), to the event

horizon solution g, (r,s). Accurate determination of the

derivative aq requires precise values of A;„(s) in the im-
mediate neighborhood of the quasinormal frequencies.
Detweiler describes a numerical solution for A;„(s) near
the fundamental resonance s, . His method, however, in-
terpolates the zero si of A;„(s) from nearby values of A;„
on the imaginary s axis, where the values of the functions

can be obtained with reasonable accu-

racy through numerical integration of the homogeneous
form of Eq. (8). This approach might be accurate enough
to give a, to a few decimal places. Accurate numerical
integration of y+ and y for complex s is difficult and is
discussed by Press and Teukolsky. Although it is con-
ceivable that Press and Teukolsky's integration technique
might be capable of extending Detmeiler's method to oth-
er underdamped resonances, it is unlikely that any numer-
ical integration method will readily give values of A;„(s)
at overdamped frequencies with sufficient accuracy to al-
low a reliable calculation of the relevant aq. Without reli-
able values for these o.

&
it will not be possible to determine

the convergence and completeness properties of the quasi-
normal mode expansion (Al).

The present calculation of A;„and A«, uses the analyt-
ic definition for the functions g and g„given by Eqs.
(18) and (19):
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(r,s) =(2is)-+'e -+(1 —r ')' (19), and the expansion coefficients br are the solution,
minimal as L ~+ ao, of the three-term recurrence relation

x Q bL [GL +„(ri,p)+iFL ~„(ri,p)] . (A6)
&Lbl. +i+A bl..+)'I.br-.i=o. (A7)

The normalization phases P+ and P are given by Eq. The recursion coefficients al, PL, and yL are given by

PSRL+ ) 2 2
CEL =— [(L+v+1)(L+v+2) (L+v—+2)(2s+1)—m +(s+1) ],2L +2v+3
Pi (L +——v)(L +v+1)+3s —1(1+1)+isgL[(L+v)(L +v+1)—m +s ),

isRL
yL = — [(L+v){L+v—1)+(L+.v —l)(2s+1)—m +(s+1) ],2L +2v —1

(AS)

'9

(L +v)(L +v+1)

[(L + )2+~2]1/2

L+v

(A9)

+—r3'o

The recurrence is always ended at L =0, with bo =1. The
phase parameter v is that solution of the implicit
continued-fraction equation

near the real p axis. The choice of the r value at which
the system (All) was solved for A;„was determined by
this condition, and the requirement that

~

1 —r '
~

& I
[otherwise series (26) will not converge]. The amplitude
A;„(s) is zero when s is a quasinormal frequency s~. The
derivatives

aq — A(„(s)
ds $=$

q

were found by Lagrangian interpolation from values of
A;„(s) near s =sz. Values for the az are listed in Table I.
The number of significant digits listed is the number of
places to which A;„was zero, and to which the Cauchy-
Riemann analyticity condition was satisfied by the deriva-
tive.

(A10)

+23 3

that goes to l as s~O. It is frequently difficult to find
solutions for v when

~

s
~

is large, and the highest-order
mode for which I have thus far been able to accurately
calculate a~ is for q=7. Despite this shortcoming„ the
computer program that generates the solutions y+ and

y is quite general, and will eventually be published.
Further details of the algorithm are discussed in paper II.

4. A note on integration

The problem of integrating source terms q (r,s) over the
ingoing wave function 11, (r,s) is a general one that arises

when evaluating the branch-cut integrals %s of Sec. III
and the Fourier coefficients Ai'"'(co) of Sec. V, in addition
to computing the excitation coefficients C& that are the
major concern of the present work. Very low frequencies
pose a particular problem. The contour techniques used

U aXIS

3. The amplitudes A;,(s}and A~, (s},
and the derivative aq

The amplitudes A;„and A,„, are defined, as functions
of s, to be solutions of

q, (r,s) =W;„P„(r,s)+&..A„(r,s),
{A1 1)

y, „(r,s)=W;„P„,(r,s)+&...4.
The computer program that generates the Coulomb wave
functions used in expansion (A6) gives most accurate re-
sults for values of p=isr that lie in the fourth quadrant

time ve
f8SPQAS
at r'

U=UO

V = Vo

V=V)
r* = -v

V BXIS

FIG. 11. Spacetirne diagram of the characteristic-value prob-
lem in characteristic ( u, U) coordinates.
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for computing the Cq are, however, readily generalizable.
Consider the problem of computing the Fourier coeffi-
cient Ato"'(s) as a general function of the frequency

At'"'(s)= —(2n ) ' f g, (r,s)q(r, s)(r —1) 'r dr .

(A12)

The integral usually converges on the real r axis when
s = —im is purely imaginary, but the convergence is not
absolute. However, the convergence can be made absolute
if g'+'(r, s) is decomposed into ingoing and outgoing com-
ponents after some mediocre value r =r „and the two re-
sulting integrals finished with Im( r)~+ oo. Assume
cu =is & 0. Then

1'
I —l ot)

At'"'(s) =—(2n )
' f P„(r,s)q(r, s)(r —1) 'r dr (2m'—) '~ A;„(s) f g„(r,s)q(r, s)(r —1) 'r dr

1

—(2m) 'r A,„,(s) Q„(r,s)q(r —1) 'rdr .
fi +

(A13)

As we have seen, the decomposition g, =A;„g„
+ A,„,P can be done quite accurately, and the form of
(A13} was used in the investigations of the small s
behavior of the branch-cut integrals. Use of integration
contour C, of Fig. 8 will frequently be necessary for the
first integral when the integrand diverges as r ~1.

8 %(r„t) %(—r„t) V(r,—)%(r, , t) = —Q(r„t),

(81)

APPENDIX 8: GREEN'S-FUNCTION
PROPAGATION OF CHARACTERISTIC DATA

We desire an expression relating the response %(r„t}
due to data specified on the null rays t —r, =uo and
t +r, =Up. The problem is diagramed in Fig. 11. For the
moment ignore the t=0 hypersurface, and assume we
wish to integrate the response function %(u, v) in the en-
tire rectangular region indicated, given the value of 4 and
its derivatives on the u =uo and U =uo boundary charac-
teristics. The derivation of the desired expression is simi-
lar to that for the response from initial data, Eq. (4),
which is discussed by Morse and Feshbach. We start
with Eqs. (1) and (2):

4 „„(u',v')+ —,
' V(v' —u')%(u', v') = —,Q(u', v'),

6 „,(u, v
~

u', v')+ —,
' V(u' —v')6(u, v

~

u', v')

(83)

=5(u —u' —v+v')5(u —u'+v —v') . (84)

Multiply the first of these by 6, the second by 4, subtract
the two, and integrate the difference:

—V(r, )6(r„t
~

r'„t')= —5(r„r', )5(t t') .— —

(82)

In terms of the characteristic coordinates u'=t' —r', and
v'= t'+ r'„ these equations can be written

f, f, [6(u, v
~

u', v')4 „„(u',v'}—6 „„(u,v
~

u', v')%(u', v')]du'dv'

=-,' f„, „ f, G(u, ,v i
u', v')Q(u', v')du'dv'

—f, f, %(u', v')5[(u —u') —(v —v')]5[(u —u')+(v —v')]du'dv' . (85)

The double integral on the left-hand side of the equation may be expressed as a sum of differentials, and the 5 functions
on the right-hand side integrated out:

K f, f, I[6(u, v
~
u, v )% g(u, v )] „—[6 g (u, v

~

u, v )%(u, v )] „]du dv

+(1—~) f"f,I[6(u,, v iu', v')e „(u',v')] „—[6 „(u,v
i
u', v')q(u', v')] „)du'dv'

= —, f, f, 6(u, v
~

u', v')Q(u', v'}du'dv' ——,
' %(u, v) . (86)

Here x is a constant that may take any complex value, although 0, —,', and 1 will probably prove the most useful. The
values u'= 00 and U'= Oo correspond to t = ~, and causality requires that the contribution at these end points vanish.
Equation (86) is then rearranged to yield
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%(u,u)=2«6(u, u
~

u', uo)% „(u',vo)du — 6 „(u,u
l
uo, u')4(uo u )du

"o Uo

+2(1—«) 6(u, u duo, u')4 „(uo,u')du' — 6 „(u,u iu', uo)%(u', uo)du'
"o

+-,' f f 6(u, u
i
u', u')g(u', u')du'du'. (87)

This expression should be compared with Eq. (4). The factor —, appears in the last integral because of the form the 5
functions take in the ( u, u) definition of 6, Eq. (84). An expression for the response function +(r„t) for the mixed Cau-

chy and characteristic data problem, where the triangular region bounded by the u = uo and u =uo axis and the t=0 hy-

persurface is to be excluded from the lower left corner of Fig. 11, is obtained by superposition of Eqs. (87) and (4):
r

%(r„t)=2«6(u, u
~

u uo)4u (u, '~uo)du — 6,U'(u~u
~

uotu )alt(uo~u )dv
Q)

+2(1—«) 6(u~v
I
"o v')+, u (uo v')du' — 6,u'(u~u

I
u'»o)+(u'~vo)du'

Ui Q )

+ 6 r„t r„t' %, r„t' —0 r„t' 6, r„t r, , t'—Ql

+ f f 6 (r„t
~

r'„t')Q (r ~, t')dr', dt' . (88)

Further integrations by parts will sometimes be useful.
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