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Quantum dynamics in a time-dependent variational approximation
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The time-dependent variational method, which in many-body theory leads to the Hartree-Fock
approximation, is here tested in quantum-mechanical models inspired by the physics of the infla-

tionary universe. Some remarks about field-theoretic applications are also made.

I. INTRODUCTION

Recently, as a result of new scenarios for the evolution
of the early Universe'2 which involve quantum degrees of
freedom, i.e., scalar fields, there has been revived interest
in quantum dynamics in real time. Understanding quan-
tum mechanics of the scalar field in the new infiationary
universe is vital for a correct determination of the infia-
tionary epoch's lifetime. At present, an exact calculation
of the field-theoretic quantum dynamics involves too
many degrees of freedom to be reduced to a simple nu-
merical computation, although attempts to find algo-
rithms for that calculation are being studied. One obvious
way to reduce the number of degrees of freedom is to use
a variational method for determining approximate wave
functionals in the Schrodinger picture. A related method
in the Heisenberg picture is to obtain the second Legendre
transform of the generating functional, and to keep the
lowest order in the coupling-constant 2-particle-
irreducible graph. Under certain circumstances, these
fiuctuation truncations are controllable approximations
related to 1/N expansion, etc. In general, however, one
does not have intuition about the domain of validity of
such approximations. It is just this question that led us to
this detailed study of quantum dynamics in double-well
potentials as a prototype of the related field-theory prob-
lem. One of the nice features of the variational approxi-
mation is that the quantum theory is replaced by classical
Lagrangian or Hamiltonian dynamics for the variational
parameters q(t)=(g} and RG(t)—= (Q ) —(Q} . Also,
we are able to study in this approximation how well the
static effective potential determines the dynamics of q(t)

II. GENERAL FORMALISM

figurations make the Hamiltonian stationary: BHlBP =0
and c}HtBQ =O.

In quantum physics, the time-independent variational
principle is also familiar. One demands that the expecta-
tion value of the Hamiltonian in a normalized state be
stationary: 5(f

~

H
~
f) =O, (g ~ g) =1. This provides

a well-known derivation of the time-independent
Schrodinger equation.

For time-dependent quantum systems, following Dirac,
one considers time-dependent states

~
f, t) and requires

that the time-integrated diagonal matrix element of
i Kid, H, —

(2.2)

be stationary against variation of
~ P, t}. Supplemented

by appropriate boundary conditions, this provides a
derivation of the time-dependent Schrodinger equation.

The quantity I is an effective action for a given system
described by

~ P, t) and variation of I is the quantum
analogue of Hamilton's principle. When a specific ansatz
is made for the state

~
P, t ), the time-dependent Hartree-

Fock approximation emerges and this approach is widely
used by quantum chemists and nuclear physicists.

In this paper we shall discuss one-dimensional
quantum-mechanical systems with H =( I i2rn)P + V(Q).
We are interested in the time evolution of a given initial
Gaussian wave function in a time-dependent variational
approximation. The effective action involves the diagonal
matrix element of inc}, H in a trial —wave function,
which we take to be the most general Gaussian:

(Q
~ y, t &,=Xexp — (g q)'S+ 'p(g ——q)—

2A A'

r= Jl.dt= J(Pg H)d»— (2.1)

be stationary. For time-independent systems, static con-

The time-dependent variational principle, posited by
Dirac, is an unconventional and novel approach for
studying time-dependent quantum systems. In this sec-
tion we shall review the subject following the work of
Jackiw and Kerman.

In classical physics, there are two variational principles.
For time-dependent systems, Hamilton's least-action prin-
ciple demands that the action

(2.3)

Following Jackiw and Kerman, we parametrize the real
and imaginary part of 8 as

8(t) = —,
' G '(t) —2iII(t) . (2.4)

The normalization factor X is then (2mAG) ' . The real
quantities p(t), q(t), G(t), and II(t) are the variational
parameters and we demand that their variations vanish at
t =+ac. The meaning of these parameters is seen from
the equations
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(Q&i ——q(t), i A— =pq+fglIG .~ ~

~

dt y
(2.5d)

(2.5b)

(2.5c)

From Eq. (2.5d), we notice that H(t) plays the role of the
momentum canonically conjugate to 6(t). For potentials
V(Q) which are quartic in Q, the explicit form of I v is

I v(q, p, G, H)= I dtIpq —H, i(q,p)+A'[HG ——,'GV' '(q) ——,'G ' —2H 6] fi ,'—6 V—' '(q)I, (2.6)

where H, i(q,p)=(1/2m)p + V(q) and V'"'(q)—:8"V(q)/
Bq". The four variational equations are then

6I y =O~j= —p,
5p m

5I y

rr
==0~6=4GH,

(2.7a)

(2.7b)

' =0-p= —V'"(q) ——,'eGV"'(q), (2.7c)

harv

=O~H
56

=—6 —2H ——V' '(q) ——V' (q)6 . (2.7d)

and is a constant of motion. Also, by eliminating p and
II, we obtain the effective potential V,ff(q 6):

V,tt(q, G) = V(q)+irt[ —,GV' '(q)+ —,6 ']

+e'-,' 6'v'"(q) . (2.9)

We call the above "time-dependent Hartree-Fock" (HF)
equations, because using the Gaussian wave function leads
to the approximation in which all n-point expectation
values are expressed in terms of one- and two-point func-
tions.

From Eq. (2.6), the effective Hamiltonian, the energy of
the system, in this approximation is given by

a„,=z =H„(q,p)+e(-,' Gv"'+ -,
' 6-'+2H'6)

(2.8)

the minimum at /=0 becomes unstable or metastable and
stable minima occur at some large values of P=+cr
Thus, as the Universe cools, the scalar field P stays near
/=0, and then eventually begins to roll down the hill
slowly, toward the true minima. Although the beginning
of this phase transition is quantum mechanical, the late-
time behavior of the evolution is assumed to be governed
by the classical equations of motion.

Recently, Guth and one of us have carried out a de-
tailed analysis to clarify the quantum theory of the "slow
rollover" transition. An approximate, but exactly soluble
linearized model was considered, both in one-dimensional
quantum mechanics and in quantum field theory of a sin-

gle scalar field. Among other things, an important result
of this analysis is that the large-time behavior of a system
in an unstable potential is accurately described by "classi-
cal physics. " The one-dimensional quantum-mechanical
toy model in which a particle is moving in the upside-
down harmonic-oscillator potential,

V(Q)= ——,kQ, k &0, (3.1)

f( Q, t) = (2m.GA') ' exp — tan(a i cot )Q-
2b

(3.2)

was found to be particularly useful to demonstrate this re-
sult.

At t =0, a particle is described by a Gaussian wave
function centered at Q =0. The evolution is then
governed by the Schrodinger equation which is exactly
soluble, and f(Q, t) is precisely of the form given in Eqs.
(2.3) and (2.4). Clearly, for q(0)=p(0)=0, p(t)=q(t)=0
for all t, and

Extension of the time-dependent variational principle to
quantum field theory in the functional Schrodinger pic-
ture is straightforward. We shall discuss this in Appendix
A.

In this paper we shall apply Eqs. (2.7)—(2.9) to various
quantum-mechanical problems to test the validity of the
time-dependent HF approximation.

Therefore,

2A sin 2a
cos2a+ cosh2cot

fi sinh2cotH(t)=
cos2a +cosh2cot

(3.3)

III. QUANTUM RQLL

The key feature of the new inflationary universe model2
is a phase transition of a special type, often called a "slow
rollover" transition. This name arises because the transi-
tion involves a scalar field (() which evolves slowly down a
gentle hill in its potential diagram. In the very early
Universe when the temperature was high, the potential
has its minimum at /=0. As the temperature decreases,

(Q & e2rot.
I b

4 sin2a
(3.4)

where b =A/v'nk is a natural quantum-mechanical
length scale of the problem and a is a real constant which
is related to the width of the initial wave packet.

For large times, the above wave function has the fol-
lowing information.

(i) The probability distribution for Q is given by
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i.e., (Q )'~ obeys a classical equation of motion with its
smallest value when a=n/4. , i.e., when the initial width is
given by

length scale b may be defined as

, k=—
I

V"'(0)I =-,'W'.2= 1

mk
' (3.12)

$260—=6(0)=
24

(3.5)

ih— = —6 '(t)+2II(t) Qf

=[&mk Q+O(e "')]g . (3.6)

This is due to the uncertainty principle.
(ii) Applications of momentum operator to P, at large

times, yields

We shall choose our initial width of the Gaussian to be
' 1/2

3

2'6=—b=20 (3.13)

which in the upside-down harmonic oscillator leads to the
smallest (Q ) as we already have seen. This is necessary
so that a "slow rollover" occurs before the particle reaches
the potential minimum.

First, we discuss the general behavior of 6 (t) in the HF
approximation, where G (t) can be found exactly. Conser-
vation of energy gives, from Eqs. (2.7b) and (2.8),

Note that v'mk Q is the classical momentum

P,i v'2m —[E—V(Q)] which would be attained by a clas-
sical particle at Q which rolled from rest at Q =0 with
total energy E =0.

(iii) The commutator [Q, P) is negligible if

v'mk Q &)R, i.e. , Q ))b

E= + G'(t)+ —G'—(t) —6(t)
86(t) 8 8 12

6 '(t)
86 t

+ Veff(0 6 (t) )= Veff(0, 60 ) ~

The turning points of 6 (t) are determined by

(3.14)

since

QPQ=&mk Q2$+O(e "'),
PQQ=&mk Q g ifnP+O(e—2~') .

(3.7b}

Veff(0 6(t)) Veff(O, GO)

[36 (t) —2a'][2a'A 6'(t) —3]
48a 6(t)

Q(t) = Ce"', (3.9)

where the random constant C is given by a Gaussian dis-
tribution.

In this section we shall study in the HF approximation
the quantum-mechanical behavior of a particle moving in
a more realistic potential of the form

V(Q)= (Q —a )
24

(3.10)

As before, initially the particle is at the origin;

q(0)=P(0)=0 and, therefore, p(t}=q(t)=0 for all t.
We find, by comparison with the exact (numerical) solu-

tion, that the variational HF approximation accurately de-

scribes the process. Furthermore, we find that the late
time behavior of the evolution is approximately classical
if a dimensionless coupling constant, properly defined for
this problem, is very small.

Our trial wave function for this problem is

fi (Q, t}=(2mG} '~ exp[ ——,'Q [—,
' 6 '(t)

—2iII(t)] j . (3.11)

(We have set A= 1.) A natural quantum-mechanical

Note however that the wave function is definitely not
sharply peaked about any particular classical trajectory.
Rather the system is described by a classical probability
distribution,

(3.8)

for large times. The function f obeys a classical evolution
equation and the classical trajectories described by f can
be parametrized as

We find that the maximum value of 6 is given by

=2 2
6m =-,a, (3.16)

so that ~G never gets to the minima at Q =+a, reflect-
ing the failure of this approximation near the bottom of
the two wells. However, as we shall see by direct cornpar-
ison to the exact solution, the HF approximation is excel-
lent for all 6 ~6 . It is clear that what is needed to
describe the motion near Q =+a, is a trial wave function
with two Gaussians.

We can obtain a closed expression for t (6) for 6 ~ G~:

t (G) =f dG'I 86'[F. —V,ff(0,6')] I
0

G
d6' 6 —6' 6' —60 6'+ 60

$2
R =— ((1~

0 V'm X a' (3.18)

Equation (3.18) iinplies that for given m and a, A, must be
large. One may define a dimensionless coupling constant
for this problem in terms of the mass and of the

(3.17)

This is an elliptic integral of the first kind.
Now we shall turn to our main interest, the large time

behavior of the system. Unlike the upside-down
harmonic-oscillator case whose potential always stays un-
stable, here "large" time is rather limited; it is some inter-
mediate time before ((Q ) )'~ arrives near the minimum.
In fact, in the HF approximation, "large time" is when
6(t) & —',a'.

From Eqs. (3.7a) and (3.7b) we expect that the classical
behavior may appear for (Q ) »b . This requires that
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quantum-mechanical scale b as

v'mk, a' (3.19)

Then, A,'«1 is equivalent to 8 «1. The small value of
A,

' and R also implies that, in the harmonic approxima-
tion, the number of states N in the two wells at Q =+a is
large, indicating that classical behavior may be expected.
In the harmonic approximation, X is given by

8

v{Q) ~ ~Q2 52)224

~ * 384; X ~ 0.06
o EXACT
~ CLASS)CAL

N ——= (3.20)
2 4 2R

For our numerical calculation we have chosen m =1,
a =5, and two values of A, ; A, =3.84 and A, =0.0123.

For small dimensionless coupling constant, iL'=0.06,
which corresponds to A, =3.84, we find the following.

(i) In Fig. 1 we compare ((Q ) )'~ in the exact solution
to its HF approximation VG(t}. We find excellent agree-
ment until v G reaches its premature turning point at
a( —, )' . Despite this, a reasonable result for the oscilla-

tion time is obtained in the HF approximation. (The ex-
act solution is obtained numerically in the Heisenberg pic-
ture. )

(ii) Classical behavior of (Q ) in the late time: Since a
classical particle with Q(0) =P(0)=0, and therefore
E =(I,/24)a, will stay at Q =0, we did our computer ex-
periment by placing the classical particle at Q(0}=+GO
and compared the classical trajectory Q,~(t) with the exact
((Q ) )' calculated in the Heisenberg picture. In Fig. 2
we find that for 1.5 & Q,i &4 (the first oscillation) the two
are quite the same except for a shift of the origin. We
have already seen in Fig. 1 that the HF approximation is
excellent until V 6 reaches ( —', a )'~i =4.2, and this implies

that the classical behavior of V G also appears in the HF
approximation.

(iii) The classical behavior in Eq. (2.6) which is found in
the upside-down harmonic oscillator is tested: %e now
find that

V(Q) = —(Q' - 5')'
24

X = 3.84: X =0.06
o EXACT

a HARTREE- FOCK
6- gp l'

e a

FIG. 1. Comparison of the exact quantum roll with the HF
approximation for A, =3.84; A,'=0.06.

00
0

).0 3.0

FIG. 2. Comparison of the exact quantum roll with a classi-
cal approximation for A, =3.84; A, '=0.06.

. ~il'V l—G '+2II Qgv-211Qgi (3.21)

and the ratio 2IIQ/p, ~(Q), where
P

p,)(Q)=v'2[E —V(Q)] = a' — Q'
12 2

differs from unity by at most 20% for 1.5& v G &4 in
the HF approximation.

(iv) The question whether the commutator [Q,P] is
negligible is studied both in the HF approximation and in
the exact calculation: In the HF approximation,

( QP)HF ———+2GII
2

(3.22)

f(Q,P, t) =
~
l(,(Q, t) t'l(P P„), —(3.23)

also in our variational time-dependent HF picture.
For a large dimensionless coupling constant, k'=1.06

(or A, =0.01) we find that classical behavior does not ap-
pear in the HF approximation nor in the exact simulation:
In the HF approximation GII & 1 in Eq. {3.22), for all t,
with its maximum value 0.71 at i/G =3.3. In the exact
simulation, the real part of (QP ) never exceeds 2. Hence,
the real part of {,QP) never becomes much larger than
one in both cases and therefore the commutator [Q,P]
never becomes negligible. Figure 3 shows that the classi-
cal trajectory Q(0) =+GO and E ={A,/24}a, never fol-
lows the exact behavior ((Q ) )'~ . A comparison of the

and we find that GII~5 for 1.75&v'6 &4. In the exact
calculation the real part of (QP),„«,~ 5 for even larger
range, i.e., 1.2&((Q ))' &5.9. Hence, from the above
results, we see that for a small dimensionless coupling
constant, A,'« I (or A, & 1) the late-time behavior of the
system is approximately described by classical physics.
As in the upside-down harmonic oscillator, our trial wave
function l{z is not sharply peaked at any one classical tra-
jectory. Therefore, the system is approximately described
by a classical probability distribution function,
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FIG. 5. Comparison of the exact (Q) with q(t) in the HF

approximation for an anharmonic oscillator.

FIG. 3. Comparison of the exact quantum roll with a classi-
cal approximation for X=0.01; A, '= 1.06.

HF v G and the exact ( ( Q ) )
' is shown in Fig. 4: the

HF approximation follows extremely closely the true
quantum behavior up until its premature turning point.
After that, v G oscillates with too small oscillation fre-

quency because it has a shorter distance to travel than the
exact ((Q ) )'r . As mentioned earlier, this failure is due
to the fact that the trial wave function is a single Gauss-
ian.

IV. MOTION OF AN ANHARMONIC OSCILLATOR
AND QUANTUM TUNNELING IN A

DOUBLE-Vf ELL POTENTIAL

As further tests of the validity of the time-dependent
HF approximation we have studied motion of an anhar-
monic oscillator and quantum tunneling in a double-well
potential.

we start with an initial Gaussian wave packet centered at
Q =a, not at the origin, in a potential

v(Q)= g24
(4.1)

Our trial function is given by Eqs. (2.3) and (24) with

q (0)= 1, p (0)=0, G (0)= —, , and II(0)= —,
'

as initial data.
In Fig. 5 we present a comparison of (Q) in the HF

approximation with the exact numerical integration of the
Heisenberg equations. ' We find that during the first half
of the oscillation cycle the two results are indistinguish-
able. Over many cycles, HF is reasonable good; it gives
roughly the correct oscillation time although the detailed
changes in the amplitude are different from the exact
behavior.

For simplicity, we choose a =1 and A, =2. The initial
width of the Gaussian is again chosen as

(4.2)

A. Anharmonic oscillator

4(Q&)

V(Q) * MQ -5s)
24

X ~ 0.01; X ~ (.06
o EXACT

REE - FOCK

2.0

)0

To see how well the HF method works in simple anhar-
monic oscillators, we studied the behavior of (Q) when

B. Quantum tunneling

For potentials with two wells, two quite different
behaviors are possible for an initial Gaussian wave packet
located in one of the wells. " We may think that each well

gives rise, in the harmonic approximation, to its own ener-

gy spectrum. Suppose the initial Gaussian localized in the
left well is an approximate ground state. When its energy
is almost degenerate with a level in the right well, an ap-
preciable amount of probability leaks to the right well; we
call this "on resonance. " In this case, tunneling occurs
and (Q) oscillates between the two wells. On the other
hand, if the Gaussian's energy is not degenerate with any
of the right we11 states, only a small amount of probability
leaks through, and this is called "off resonance. " Tunnel-

ing does not occur and (g) oscillates between its initial
value Qo and a value slightly larger than go. We study
this phenomenon in our time-dependent variational HF
approximation.

First, we consider a potential of the form

FIG. 4. Comparison of the exact quantum roll with the HF
approximation for A, =0.01; A, '= 1.06. V(g) = g'(Q —ti)',2

24
(4.3)
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where the two wells at Q =0 and Q =o are symmetric.
Our initial wave function is chosen such that it is a
ground state of the left well in the harmonic approxima-
tion:

V(Q) = —0 {0-2)X
24

P(g, t =0)= exp( ——,co&Q ), (4.4)

.60—

off (q3

.50—

where F00
—=

~

V' '(0)
~

=(I,/12)a. Again, we take our tri-
al wave function as in Eqs. (2.3} and (2.4), with q(0)=0,
p(0)=0, G(0)= 2 roz ', and Il(0)=0. Since the potential
has two symmetric wells, we expect "on resonance" tun-
neling, process to occur. (A rough picture of this is
described in Appendix B.) However, as we shall see, we
find that the HF approximation cannot describe these
tunneling processes.

One can explain this using the static effective potential.
As we show later in this section, motion of (Q) in the
HF approximation is roughly that of q(t) governed by the
classical dynamics of a potential V,rr(q) obtained by elim-
inating G in V,(r(q, G) via (BV,rr/BG)(q, G)=0. From
Eq. (2.9),

.40—

2.30-
AV

Vegf (q)

2.I0-

V{0) *
2

0'{0-2)X
24

X= z.o

V ff(q) = q'(q —a) + —,
'

G (q) V"'(q) ).90-

+—G'(q)+ —,
' G '(q),

where G (q) is the solution of

uG'+ 4 V'"(q)G'=1 .

(4.5)

(4.6)

.5 )0
q

V{Q) * —0 {0-2)X
24

f.5 20

The behavior of Veff(q) as A, changes from 1.92 to 123, for
a fixed value a =2, is given in Figs. 6(a}—6(d). We see
that V ff(q) changes as if there were a phase transition.
(Such a behavior was also found by Chang' in his study
of A,(() field theory in two space-time dimension in the HF
approximation. ) For small values of iL, V,rr(q) is a
single-well potential, but as A, increases there appears an
energy barrier. We find that due to this energy barrier,
classical dynamics of q(t) in V,rf(q) in the HF approxi-
mation cannot describe tunneling processes.

In order to be more precise, consider the conserved en-
ergy of the system whcee initial wave function is given by
Eqs. (4.4). From Eq. (2.8), we have

3.30-

3.(0,-

2.90-

2.T0 "

2.50-

Ve)f {q3

X * X ~ 84.8

.5 ~0

')t'{0) ' —0 {0-2)24

i

i.5 2.0

3E = TQ)0+
Sa

(4.7)

3.TO-

The second term in Eq. (4.7} is the HF correction to the
harmonic approximation.

Our numerical study for a =2, shows the following:
For A. =1.92, the energy of the system is larger than the
energy bamer of the V(g) in Eq. (4.3): E=0.49 whereas
V(Q =1)=0.08. There is no bound state in the two po-
tential wells and we expect (g ) oscillates betwee~ Q =0
and Q=2 without tunnehng. In Fig. 6(a), V,rf(q) is a
single-well potential centered at q =1 and therefore q(t)
oscillates between q =0 and q =2. As shown in Fig. 7(a),
thc HF Rppl oximation agrees %veil %'ith thc exact answer.

Vega (q)

2.90 '-5 0 .5 t.0 &.5 2.0
q

FKJ. 6. A sequence of the HF effective potentials V,ff(q} for
V(Q)=(A/24)Q (g —2) as A, varies: (a) A, =1.92; (b) A. =48; (c)
A=84 8 (d) A. = I23
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For A, =48, we still have E=2.17& V (Q =1)=2. Fig-
ure 6(b) shows that V,tt(q} is still a single-well potential.
The HF result is good for t ~ 2, as shown in Fig. 7(b).

For A. =}(,,=84.8, we have E=2.7S & V(Q =1)=3.S3,
and our initial state is bounded in the left weB. We expect
in this case "on resonance*' tunneling to occur. However,
we see in Fig. 6(c} that for A, =X„V,tt(q) has an energy
barrier V,tt E.——Classical dynamics of q(t) barely de-
scribes the quantum tunneling. In Fig. 7(c) the HF ap-
proximation is already far from the exact answer.

For k y k„when the initial state is more deeply bound-

ed in the left well, the energy barrier in V,tt(q) is larger

V(0) = —,„0'(0-2)'

) = i.92

than E [Fig. 6(d)j and the HF approximation cannot
describe the tunneling phenomena; it gives only small os-
cillations inside the left well and q never enters the right
well.

Next, we consider a case in which an initial Gaussian
wave packet is in the left well of a potential
V(Q)=(}(,/24)Q (Q —S)(Q —9) where two wells are not
symmetric. ' For such potentials, we expect off-resonance
phenomenon, i.e., no tunneling.

HF behavior is given in Fig. 8, for A, = ». It is quite
accurate for almost an entire oscillation which occurs in
the left well. After that time, some probability which
leaked into the right well destroys the accuracy of a single
Gaussian picture.

Finally, we have studied the interesting question of how
well the static effective potential describes the HF dynam-
ics. Within the HF approximation, the equation for p is
given by Eq. (2.7c):

o EXACT
r HARTREE - FOCK p(t) = —V"'(q) ——,

'
G (t) V'"(q), (4.8)

0.8

where G(t) has its own dynamical equations, Eqs. (2.7b)
and (2.7d). On the other hand, an approximate procedure,
which is often used, ehminates G from V,tt(q, G) by solv-
ing (8V,tt/BG)(q, G) =0, to give the static potential
V ff(q) = V ff(q, G (q)) and one posits the equation

00(
0 l2

d V,tt(q)p(t)=— (4.9)

V(0) ' ~~Q (Q-2)

o EXACT
r HARTREE- fOCK

0.0
0

V(0) 2t, 0'(0-2)'

2.0- rr o,
0/ 'gt 'o

r)6" / r o 0

IQ
0.4 .

g j
~ CV o

I i 0 a I

2 4 6 8 IQ 12

In Fig. 9(a), we compare Eqs. (4.8) and (4.9) in the case of
V(Q)=(A/24)Q (Q —2) for A, =48, where the HF ap-
proximation works reasonably well. %e see that the
scatter of points of p are in a reasonably narrow band
about —d V,tt/dq. What is even more remarkable is that,
as shown in Fig. 9(b}, although the exact behavior of (Q )
differs considerably from the HF q(t), the time average of
p,»«(t) still follows the curve —dVeff/dq, although now
the scatter is much wider. Thus, the effective potential
Veff(q) is a reasonable guide to the motion of ( Q ) .

V. CONCLUSION

The time-dependent variational HF approximation pro-
vides insight because it exhibits a simple physical picture
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FIG. 7. Comparison of the exact (Q) and q(t) in the HF
approximation for various A, : (a) X=1.92. The corresponding
V ff{q) is shown in Fig. 6(a). (b) 1,=48. The corresponding
V,fq{q) is shown in Fig. 6(b). (c) X=84.4. The corresponding
Vlf(g) 18 shown In Flg. 6(c).
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FIG. 8. Comparison of the exact (Q) and q(t) in the HF
approximation for V(Q)=(}j./24)Q'(Q —5)(Q —9); A, = 27.
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V(O) ~ „0 (Q-2)

~CL
I

8,0-

of the time evolution of a system in terms of a moving
Gaussian with a time-dependent width and it is equivalent
to the classical dynamics of two anharmonic oscillators q
and G. The intuition we gain from this Schrodinger pic-
ture is far superior to the one from Green's functions and
fluctuation expansions.

The variational HF approximation is a good approxi-
mation to the exact quantum dynamics whenever a single

moving Gaussian has enough degrees of freedom to mim-
ic the more complicated evolution of the exact wave func-
tion. We have found that the picture of a single expand-
ing Gaussian is quite reasonable for the quantum-roll
problem until ~G reaches near the bottom of the poten-
tial wells, and that the picture of a moving Gaussian is a
good description of an anharmonic-oscillator problem.

However, whenever probability is expected to be local-
ized at two different places at the same time, a single
Gaussian is inadequate and the HF approximation fails.

For example, in the case of the quantum roll, we found
that the single Gaussian does not work near the bottom of
the two wells, producing premature turning points for G.
We have also found that the single Gaussian picture does
not work in general for the on-resonance tunneling pro-
cesses.

We expect that a variational calculation using a trial
wave function with two or more Gaussian wave packets
will have enough flexibility to model the quantum roll
near the potential wells and the resonance tunneling pro-
cesses (see Appendix B). It will be interesting to see if
there is a simple Lagrangian description of the behavior
of more complicated trial wave functions with two more
more Gaussian wave packets.

In addition to the test of the HF approximation we
have shown the validity of the assumption, which is cru-
cial in the new inflationary Universe, that the late-time
behavior of the quantum roll can be described by "classi-
cal physics. *' Also, we have shown that, within the HF
approximation the dynamics of q(t) = (Q ) is described
reasonably well by the static effective potential
V,tt(q, 6 (q) ).
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R.O R.5 APPENDIX A: TIME-DEPENDENT VARIATIONAL
METHOD FOR FIELD THEORY

v(Q& ~ +Q (Q-z)

We shall describe the time-dependent Hartree-Fock ap-
proximation in the functional Schrodinger picture for
field theory. An abstract quantum-mechanical state

~
P(t) ) is replaced by a wave functional 4'(P, t), which is a

functional of a c-number field P(x) at a fixed time:

~CL
I

Y

X ~ 48
~
p(t)) +(((,t) . (Al)

2.0—
Q

The action of the operator P(x) on
~
g(t)) is realized by

multiplying %(P, t) by P(x):
CF

CF P(x)
~
P(t)) P(x)4(P, t) . (A2)

N

~(CL

-5 0.5 l.o

&-()& exact

P
l

2.0
m.(x)

~

g(t))~ —iirt V(p, t) .6
5$(x)

(A3)

The action of the canonical momentum rr(x) is realized by
functional differentiation

FIG. 9. (a) Comparison of —j(t) and —p(t)=dV, g/dq in

the HF approximation. (h) Comparison of the exact ( p(t))—
and —p(f ) =d V,ff/dq in the HF approximation.

Then, the functional Schrodinger equation for a system is
given by
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(~'" =He(y, t)
BE

=f d x —— + —,(VP)2
2 Q(x)

theory which has infinite degrees of freedom.
%hen we consider the problem of how a given initial

state evolves with time, the effective action is given by

+V(P) P(g, t) .

Now, we shall generalize the one-dimensional
quantum-mechanical variational method to quantum field

and is stationary against an arbitrary variation of P.
For the time-dependent HF approximation, we take a

Gaussian trial wave function which is the generalization
of Eq. (2.3):

'I

4(P, t)i ——N exp — f [P(x)—P(x, t)] (x,y, t) —i—X(x,y, t) [P(y) —P(y, t}]+—f &(x,t)[P(x)—&f(x, t)]
x, y 4'

where N is the normalization state. The meaning of this wave function can be found by the following:

&y(x) &i,=j(x,t),
—i A =it(x, t),5

x y

&P(x)P(y) &,=P(x, t)P(y, t)+WG(x, y, t),

ih =—f &(x, t)P(x, t)+iri f X(x,y, t)G(y, x, t) .
~

~

~

Bt v x x, y

(A6)

(A7a)

(A7b)

(A7c)

(A7d)

+i is Gaussian centered at p with width given by G. The conjugate momentum of p is & and X plays a role of the con-
jugate momentum of G. The variational parameters are p, &, 6, and X.

The effective action in the trial state is then given by

I i ——f dt f [&P —,'& ——,'(V—P) —V(P)]

+Pi f (XG)—2 f XGX —f [—,'6 '(x, x, t) ——,V'„6(x,y, t)
~ „„+—,

' V' '(P)6(x, x, t)]

—6-,' V"'(j)f 6'(x, x, t) (AS}

Notice that the first integral is the familiar classical action. The variational equations are then

=0~&(x,t) =V'P(x, t) V' "(P)———6 (x,x, t) V"'(P),
5$(x, t)

I =0~&(x,t) =P(x, t),
5&(x, t)

5F =0 X(x,y, t)+2 X(x,z, t)X(z, y, t)
5G(x, y, t)

= —,
' 6 (x,y, t)+[—,V„——, V' '(P) ——,'iriV' '($)6(x,x, t)]5 (x—y),

(A9a)

=0~6(x,y, t) =2 [6(x,z)X(z,y, t)+X(x,z, t)6(z, y, t)]
5X(x~y~t)

' ' z
(A9d)

We shall now consider the quantum evolution of an initial
Gaussian wave packet, in specific example where the po-
tential is

2

p
4

(A 10)

Our initial data are given by P(x,O) =&(x,O) =0,

0

2X '(k, t)+ X(k, t) = —,6 '(k, t) ——,I, (A 1 la)

6=46(k, t)X(k, t), (Al lb)

I

X(x,y, O) =Xo(x,y), and 6 (x,y, O) =Go(x, y). Then,
translation invariance leads to simple HF equations in
momentum space. 6 and X are functions of (x—y) and
from Eqs. (A9c} and (A9d), we have
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where

k2 2+3/ Q g t)(2')'

For our tunneling problem we choose

%(x,t =0)=+(x)=4+(x}+4 (x)

so approximately
and the tilde indicates Fourier transforms.

The above equations are as simple as one-dimensional
quantum-mechanical equations except that they require
renormalization. When we use the de Sitter background
metric, they describe the dynamics involved in the "slow
rollover" phase transition in the new inflationary universe,
which occurs after the Universe supercools to a tempera-
ture much below the critical temperature when the effects
of temperature are negligible. However, realistic initial
values for 6 and X require information how the scalar
fields behaves when the Universe cools from high tem-
peratures.

APPENDIX 8: TWO-STATE MODEL

For V(x)=(k/24)x (x —a), we have a variational tri-
al function which is the sum of two Gaussians:

+=a/(x)+ pg(x —a),

' 1/4

'p(x, t) ='Il+(x)e + +4(x)e
+ ([P(x)+g(x —a)j

where

+e ' '[Q(x) —g(x —a)]), (87)

As a consequence

2(AC 8)
(1—C )

(88)

+ (x, t)4(x, t) = —,
' [g (x)(1+cosbEt)

+P (x —a )( 1 —coshEt) ]

= —,
'

[t( (x)+$2(x —a)]

+ ,
' [g (—x) t/i (x— a)]co—sbEt . (89)

The time to tunnel is when (b,E/2) T =m /2 or

t((x) = N

Upon definin

2
e

—GPX /2

We also have

(810)

A =f P(x)HQ(x)dx =f g(x a)HQ(x —a)dx, —

& =f P(x)HQ(x a)dx =f—g(x a)HQ(x)dx—,

C =f P(x)P{x —a)dx,

(82)

(x) =a sin
. 26Et

2

(x )= +a'sin'1 2. 25Et
2N 2

(Bl la)

(8 1 lb)

it follows that

('0 ~H
~

0') (a +p )A+2apB
'+P'+2 PC

(83)

If we choose for co the harmonic-oscillator approxima-
tion co =coo ——V' '(0)= V' '(a)=A,a /12, then stationary
states are obtained by minimizing with respect to a and p:

BE aE ~+a
c)a c)P

' 1+C
=O~a=+P, E+ ——

This variational calculation gives an approximate deter-
mination of the energy of the ground state 4+(x) and
first excited state 4 (x). Observe that 4(x) is just a
linear combination of 4+(x) and 4 (x).

Consider the unnormalized approximate eigenfunctions

co A. 1 a
4 32 2 48

A,a co a A,a+
4 32~~ 384 8 96co

C= — a /42

If we choose co=coo, then co =A,a /12 and we obtain

33=—+
Sa

—8 Vo /fin) ~ 3

8 Q

(812)

(813)

4+(x)= , [g(x)+P(x —a)]—,

(++ iH i%+)=E (q i@ ),
(x)= —,[P(x)—P(x —a )j,

(e ~H~+ )=E (e ~e ).
(85)

—8 Vo /ficoC=e
where Vo is the height of the barrier

(814)

We have approximately

4+(x, t) =4+(x)e +

(x, t) =+ (x)e

We notice that A is just the Hartree-Fock energy (4.7} of
the initial Gaussian wave packet. 8 and C are just the
"instanton" corrections to the energy (84). When cu is
fixed at ~, we have
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2(3Vo+3fui)/8) sv g~
—16VO /fico

e
1 e

(815)

The oscillation time T predicted by this equation for the

cases studied in this paper is of the correct order of mag-
nitude.

One can improve on this approximation by allowing co

also to be a variational parameter. One then uses for m,

instead of m0, the solution of

=0~(384co+ —32a Aco+ —96k. )

+X+[48a to~ —384a co+ +(768—a A)co+ +12a Ato —16a Ato —192]

+I+~(384a to +384to + 16a Ato —96k) =0, (816)

a 03+2

X+ =exp

670 1 +

we obtain

Xa4

384k
V(a/2) a ~o

firg)0 32k

If there are many states in the well then

(817)
1 0 ~2

So when we can ignore e we have
' 1/2

4l
CO+ =

12
(818)

(actually, N should be replaced by X ——,'). This suggests
an expansion in I/N and e . For large N one neglects
the exponential and solves

12m —ka cg —3K=0 .

Setting

The two-state model gives a reasonable approximation
for the tunneling time but gives a very smooth x (t) which
does not have the structure of the exact answer for the
cases studied. %e expect a time-dependent two-Gaussian
model to work even better for the resonant tunneling cal-
culation than this fixed position and width two-Gaussian
model.
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