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%'e explore the classical dynamics of strings with rigidity, i.e., with terms added to the string ac-
tion which depend on the extrinsic curvature of the world sheet. %e study classical solutions of the
string equations of motion using both analytical and numerical methods, and we determine the lead-

ing Regge trajectories J(E2) for a set of classical rotating string configurations. %e observe that for
open strings the dominant classical solutions are identical to those for the conventional Nambu

string, and correspondingly give linear trajectories. However, for closed strings we find new solu-

tions that include finite-energy, static configurations, and that give trajectories which are nonlinear

as the lowest-energy solution is approached, but become linear asymptotically as J(E')~ ao.

I. INTRODUCTION

Polyakov' has recently emphasized the interesting pos-
sibility of adding a rigidity term to the action of the rela-
tivistic string. Such a term represents the extrinsic curva-
ture of the string's world sheet as embedded in higher-
dimensional spacetime, and produces interactions contain-
ing quartic derivatives. Indeed, such terms may appear in
effective actions of strings as a result of integrating out
fermions in functional integrals. 2 Polyakov also noted that
the coupling corresponding to the inverse rigidity is
asymptotically free, although these renormalization ef-
fects had previously been investigated in other contexts.
For example, it was known that lipid membranes with
small surface tension have their effective rigidity reduced
at long distances (long-wavelength ripples) due to thermal
fiuctuations in the fiuid in which the membranes are im-
mersed.

As discussed by us in an earlier Letter, interactions
which are sensitive to the extrinsic properties of the
world-sheet embedding in spacetime dramatically alter the
spin content of the string, especially for closed-string con-
figurations. In addition, such terms should have a signifi-
cant bearing on the compactification of extra spatial di-
mensions, if indeed this is induced uniquely by string
dynamics. Also, besides controlling a crumpled phase*'
of strings, ' these interactions are expected to suppress
longitudinal kink/fold modes. Finally, it is not clear
what happens to general covariance in the embedding
spacetime in models containing such extrinsic-curvature
terms, since it seems possible to remove the graviton from
the zero-mass excitation spectrum. (Iz„„,.«„might be
used as the independent parameter, instead of the rigidi-
ty. ) Of course, from the point of view of hadronic phys-
ics, this may be a desirable feature for Pomeron

phenomenology.
In this paper we present the details of our nonperturba-

tive, classical study of the dynamical effects of extrinsic
curvature terms by exploring the solutions of the string
equations of motion when nontrivial rigidity is present.
(A reader might like to contemplate a rubber band as an
intuitive, albeit limited, mechanical analog. ) As will be-
come clear, our study is in several ways analogous to the
construction of classical monopole solutions in non-
Abelian gauge theories.

If we define classical Regge trajectories, as is cus-
tomary, to be the angular momentum (J) versus energy
squared (E ) relationship for solutions of the classical
equations of motion, then there are linear leading trajec-
tories for the open rigid string. The corresponding
lowest-energy solution is the usual straight-line, pinwheel
motion familiar from the conventional, pliable, Nambu
string. Extrinsic curvature vanishes for this motion.
However, for the closed string, there is another motion
which supplants, for low angular momentum, the stan-
dard folded-over pinwheel rotation of the Nambu string.
This new motion is the rotation of an oblate closed loop,
which reduces to a circle in the static limit, with finite en-
ergy at zero angular momentum. For nonzero angular
momentum, the rotation rate for this string configuration
first increases, reaches a maximum, and then decreases
again as the energy and angular momentum increase
monotonically. The result is a J(E ) trajectory which is
approximately a hyperbola for J y 0. For very high angu-
lar momentum, the string configuration elongates consid-
erably as the rotation rate decreases. As the rotation rate
now goes to zero, there is an approach to a second limit-
ing configuration of two infinite, parallel straight lines,
with infinite energy.

The outline of this paper is as follows. In Sec. II we re-
view the area and rigidity terms in the action for the
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string and discuss some of their symmetries and geometri-
cal properties. In Sec. III we go over the variational
analysis of higher-derivative theories, specifically to ob-
tain the equations of motion and the energy-momentum
density for the rigid string. %e discuss how the rigid-
string model shares with the Narnbu theory the property
of general coordinate invariance on the world sheet, and
we show explicitly that the model has a vanishing
energy-momentum density before gauge fixing is used to
break both world-sheet reparametrization and spacetime
Lorentz invariance.

In Sec. IV we begin our study of the solutions of the
classical equations of motion for the rigid string. We es-
tablish a lemma to the effect that all nonsingitlar classical
solutions for the Nambu string (which has vanishing ri-
gidity) are solutions for the rigid-string equations as well,
and that these solutions also carry the same energy and
angular momentum as in the Nambu case. %e then re-
view the conventional pinwheel motion of the open string
which is indeed a configuration for both the Nambu and
rigid strings, as suggested by our lemma. %e discuss how
closed string configurations for the Nambu model are
simply folded-over elaborations of the basic pinwheel
motion. These configurations are sufficiently singular at
the folds, however, that the rigid string does not admit the
same closed-string motions as the Nambu model. %e
then describe the basic closed rigid string configurations.
These are rotating planar hoops, with nonsingular planar
curvature. %e construct the static, nonrotating solution
exactly (a circular hoop), and perturbatively analyze the
effects of small rotation rates (small J) .

In Sec. V we carry our investigation of the closed-string
solutions a little farther analytically. We change variables
to the point that we obtain a simple action, and a numeri-
cally tractable, nonlinear, second-order differential equa-
tion. The equations are shown to be of the Painleve type.
However, we can construct exact analytic solutions only
for special limiting cases. In Sec. VI we then present a
numerical analysis of the closed-string equations, which
allows us to extend the previous small-J perturbative re-
sults to arbitrary angular momentum and energy. %e
find numerical solutions by using boundary-value
methods, and also by extremizing an effective action con-
sidered as a function of initial data. Both methods agree
within numerical uncertainties. We define numerically
the angular momentum and energy, and hence compute
classical Regge trajectories for the closed rigid strings.
These are approxim. ated by a hyperbolic relation between
E and J.

Finally, in Sec. VII we examine the consequences of the
resulting nonlinear trajectory structure and speculate on
the physical significance of our results. However, we
leave open the fundamental question of quantization. A
thoroughgoing incorporation of quantum mechanics is the
major outstanding problem for this class of string
theories.

In an appendix we discuss in passing the (global) space-
time supersymmetric extensions of the model investigated
in the paper, and we comment on a first-order formula-
tion. The problem of finding a ~ (local) world-sheet su-
persymmetry is not solved, however.

II. EXTRINSIC CURVATURE
AND THE RIGID-STRING ACTION

Recall the conventional Nambu-Goto "area law" action
in second-order formalism:

I, = —To f d gv' g,—g,b =a,—X"abX„, (2.1)

where To is the tension, P (a,b =0, 1) are the world-sheet
parameters, and X& (p=0, . . . , D —1) are the spacetime
string coordinates. The corresponding equation of motion
is the covariant wave equation

a, = To&—gClX—"=0,' sa.x„= (2.2)

a, (v' —g g'"a X&)=g' D,D X", (2.3)

the last step following from D,Dbxi'=(a, ab —I',ba, )xi'
and the well-known identity a, (&—g g' )
=—v' —g g"I"~. Since the action Ii depends only onac

the metric g,b of the world sheet, it is sensitive only to the
intrinsic geometry of the sheet, and is impervious to the
extrinsic curvature which characterizes the embedding of
the sheet in spacetime. Thus, II does not distinguish be-
twmn flat and corrugated sheets, for example.

However, one may also contemplate' strings with in-
teraction terms which depend on the gradients of the
tangents to the world sheet (i.e., the derivatives of the
"vielbein" a,X") through the second fundamental form:

K,'b ——n„'a,abX" .

Here n„' are the D —2 unit normals to the sheet:

n„'n~"=5v, n„'a,X"=0, i =1, . . . , D —2.

(2.4)

(2 5)

In general, the Gauss-Weingarten formulas give the com-
plete gradients of the vielbein,

a.a,X&=I".„a,X&+Sr.',n'&, (2.6)

=ag abX aux~ (2.7)

The gradients of the normals also split into two types of
components,

(2.8)

as may be easily checked by differentiating (2.5). Finally,
rewriting the Gauss-%eingarten formulas as

immediately allows us to reexpress the covariant wave
equation (2.3) as

(2.10)

including the components tangent to the sheet. These
components follow from using the form of the induced
metric, as given in (2.1), in the definition of the Christof-
fel symbol to obtain

(a.g~+abg. , -a.g.b)»=I ".bg—.,
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%e now use this last relation to give two alternate
forms for the new extrinsic curvature-dependent term to
be appended to the string action:

I,=S, f d'g& —g(aX~)'

=So d —g g A (2.1 1)

The coupling So is called the "rigidity, " or "stiffness, "
since it tends to prevent curving of the world sheet in the
enveloping spacetime.

Note that the other bilinear which could be formed
from K,b is not independent when integrated over the
world sheet, since by Gauss's equation it is related to the
above bilinear in (2.11) and the intrinsic sheet curvature:

(K~ ) Kb—K~ =2+ detK'=R . (2.12)

By the Gauss-Bonnet theorem, the integral of &—g R is
4' times the Euler characteristic of the sheet, i.e., the to-
pological invariant [2—No. of boundaries —2X(No. of
handles)].

A reader may wish to visualize these concepts in ordi-
nary Euclidean space by a sheet of paper, whose intrinsic
curvature vanishes. The paper's extrinsic curvature also
vanishes when it lies flat, but not when it is rolled up into
a right cylinder of radius r (Fig. 1). Essentially, the ex-
trinsic curvature represents the sum of the inverses of the
two principal radii of curvature, while the intrinsic curva
ture represents the product of these inverses. Hence, the
latter vanishes when either of the radii becomes infinite.

The action for the model of interest is the sum of I!
and I2:

III= —So f d'P —g
1

Ro

FIG. 1. Extrinsic curvature of a rolled sheet of paper: z
points along the axis of symmetry, and n=r. In cylindrical
coordinates g =1, g„,=1, gqq ——r, and all components of E,b
vanish except for Egg ———r, whence I%", = —1/r. This is the ex-
trinsic curvature. The Euclidean version of (2.11) thus reduces
to I2 = —Sp dz d 8 r 1 /r

Ro:So/To (—2.13)

where we have factored So from the expression and de-
fined a radius Ro. This is correct dimensionally (e.g., So
is dimensionless, To is not) as follows from considering
the scaling properties of I, and I2. By construction, of
course, Iq is world-sheet reparametrization invariant.
However, more to the point, I I and I2 are each separately
invariant under scaling of the sheet parameters g, but only
II is invariant under Xi'~AX".

After substituting B,X"8 X„bfor g,b, we may regard
the theory defined by (2.13) as a two-dimensional field
theory in flat space with higher derivative couplings and
with the D-dimensional spacetime serving as the interna1-
symmetry space. ' Given the obvious SO(D)/SO(2)
X SO(D —2) symmetry posscsscd by thc IIlodcl, it ls
natural to identify it with a Grassmannian cr model.

However, the latter would require 2(D —2) degrees of
freedom, while (2.13) exhibits D, so D —4 fields would
need to be constrained away in order to validate this iden-
tification.

III. VARIATIONS OF W, CONSERVATION LAW' S,
AND THE ENERGY-MOMENTUM DENSITY

To establish the classical equations of motion and con-
servation laws, we briefly review general variations of
multiderivative actions suck as Iz. As usual,
5III ——f d (5W, where the variation of the Lagrangian

2

density is

5W =(5X")5W/5Xi'+ (8,5XI')5W/5(d, X") + (&,db5X" )5~/5(&, BbX")

=(5X")[5W/5X" 8,5W/5(d, X")+d—,db5W/5(d, dbX")]

+a.[(5X~)5W/5(5.X~)—(5X~)a,5W/5(a. a„X~)+5,(5X~)5W/5(a. a„X~)]. (3.1)



In this expression, off-diagonal pairs of indices are under-
stood to occur only once in the sum over a and b.
Demanding that 5M=0 gives the equations of motion
[first brackets in (3.1}] and the proper boundary condi-
tions [second brackets in (3.1)]. Also from (3.1), by posit-
ing specific variations 5X" which leave the Lagrangian
density invariant, we obtain the higher derivative form of
Noether's on-sheH conservation theorem: B,J'=0, where

—X'

&—g XX'
X.X'

—X

&—g =[(x x )' —x'x']'"
=( —X X' )' i+O((X X') ) .

(3.9)

(3.10)

J'=(5x")5&/5(a, x") (5—x")a 5&/5(a, a x")
+ab(5X"}5M/5(a, ai,x") . (3.2)

For example, when 5X" is an infinitesimal spacetime rota-
tion, the corresponding conserved charge, J:f dg'J—, is
the spacetime angular momentum of the string.

Similarly, demanding translational invariance on the
world sheet, i.e.,

a, w =(a,x~}5w/5X~+(a, a.x~)5w/5(a. x»
+(a,a.a,x~)5w/5(a. a,x», (3.3)

leads to the on-shell energy-momentum conservation law:
8,8'b ——0, where the canonical energy-momentum tensor
1S

It is now straightforward to use these and expand the La-

grangian density for the rigid string to first order in X X'.
Multiplying by v' —g for later convenience, we obtain

v' —g Wg ——Tox X' +So[&p+W&+O((x X') }],
(3.11)

where

X' " X XII 2 2X XII
X2 X

21," X+ X X+,,X X-
X'

e, = —5', w+(a, x~)5w/5(a. x~)

—(a,x~)a, 5w/5(a, a.x~)

1

X& 2

~ X'XX-+ . X
X

~ ~

~X (3.12)

b
——0.

This may be seen by explicit calculation as follows.
First, without violating the conclusions, we may choose

a class of world-sheet coordinates which satisfy the condi-
tion

(3.5)

X X'=0, (3.6)

+a,a,x~5'/5(a, a.x~ } . (3.4)

Thus, E =f dg'8 0 is the conserved energy. (This partic-
ular result will be used in determining the classical Regge
trajectories for the completely gauge-fixed action in the
later sections. )

Actually, for the string theory defined by (2.13), the
energy-momentum tensor 8'& is degenerate, as in the case
of the Nambu string. If we apply (3 4) to the Lagrangian
in the form (2.13) which is completely covariant (i.e., be-
fore we fix a gauge which breaks world-sheet reparametri-
zation invariance and spacetime Lorentz invariance) we
f1iud

Wi ——(X X') 6X X"X' X
X' X

2X XX' X"

X X'

4X '.X"

2X XX' X 4X' X+
X4 X

2X X"X'.X"
X'

(3.13)

Xq5& —g /5X~ ——Xq5v' —g /5X~ ——0 .

These are true whether we use (3.6) or not. We therefore
need to consider only the contributions from &0 and Wi,
which simplify if we make use of (3.6). Note that

The Nambu term in (3.10) gives no contribution to the
canonical energy-momentum tensor, since

Xq5v' —g /5X» ——Xq5v' —g /5xq ——v' —g

(3.14)

x„=ax„/ag',x„'=ax„/ag'. (3.7)

Such a condition is Lorentz invariant in the embedding
spacetime. Now, to compute the energy-momentum den-
sity, we must expand the Lagrangian density in (2.13)
keeping terms to first order in X.X, since (3.4) involves
first variations. For this, we require v —g and v' —g g'

0

to order X-X'-

5(v' —g Wo i)/5xq ——0,
and that

(3.15}

X„5(v'—g &0 i)/5' =0=X„5(v—g Wo i)/5xq

X„5(&—g Wo i)/5X„=0=X„'5(&—g Wo i)/5X„",
(3.16)

X XX'
Xi' XI2

(3.8) where the condition (3.6) is imposed after evaluating vari-

ations. We incorporate these results into (3.4) to obtain
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&—g 8 0——50[ —2&—g WO+2X„5(&—g &0)/5X„

+Xq5(v' —g Wo)/5X„], (3.17)

&—g 8'i ——So[—2&—g Wo+2Xq5(& —g Wo)/5X„"

+Xq5(v' —g Wo)/5Xp] .

Because of the choice in (3.6), W& does not contribute to
the diagonal components of 8'&. Evaluating (3.17) now
reveals complete cancellation of terms:

8 0
——8'i ——0. (3.18)

&—g 8', =So[2X„'5(v'—g Wo)/5X„

+Xq5(v' —g (&0+Wi) )/5Xq] .

For the off-diagonal elements, the Z& term does contri-

bute, but only when the X X' condition is varied in

5(V —g Wi)/5X& aild 5(V —g Wt)/5X&. Agalll, a
straightforward evaluation of (3.19) reveals complete can-
cellation of terms. Hence

We stress that equations of motion were not used to ob-
tain these results.

Next, consider the off-diagonal components of 8'b
Again incorporating (3.14)—(3.16) into (3.4), we have

&—g 8'O=So[2X~5(& —g Wo)/5X„"

+Xq5(v' —g (&0+Wi))/5Xq],
(3.19)

calculation of 8't„ this was not necessary. The reader
may verify that 8'b ——0 when no conditions are imposed
on X@ and Xp.

IV. CLASSICAL STRING CONFIGURATIONS

%'e now consider classical motions of the rigid string.
First, we establish a useful lemma. Since I2 is quadratic
in C3X", solutions of the covariant wave equations for the
Nambu action, I&, receive no modifications from I2, in-
cluding boundary conditions. To be more precise, we
should include the caveat that singular points in the
metric [for example, points where det(g, b)=0] should be
examined with due care, since additional derivatives of
g,b and ClY" are required in the wave equation resulting
from IR

Lemma: All nonsingular classical solutions for the
Nambu action are also solutions for Ia, with the same
values for conserved quantities.

This lemma will serve, at the very least, as a guide in
searching for solutions of the rigid-string equations using
known results from the case of the Nambu string.

Following the treatment of the Nambu string, we shall,
for convenience, work in the timelike orthogonal gauge,
exploiting world-sheet reparametrization invariance to
choose coordinates not only satisfying (3.6) but also

X =g (4.1)

Then (3.6) becomes

8 )
——L9'p ——O. (3.20)

X.X'=0
„

where

(4.2)

To summarize, all the components of the canonical
energy-momentum tensor vanish before we completely
break reparametrization invariance and spacetime Lorentz
invariance through more specific choices of the world-
sheet coordinates. (The canonical form of 8'b does not
vanish after more specific coordinate choices are made:
cf. Sec. IV, where the temporal gauge g =X is used. )

Although we used the condition in (3.6) to expedite the

X"=(X,X), X:—BX/Bg, X'—=BX/Bg' .

In this gauge, the sheet metric in (3.8) reduces to

1 —XX
—X' X'

while the action becomes

(4.3)

(4.4)

Ia ———50 I d g i

X'
i
(1—X )'i

~o2
X X"

. (1—X )
X' [—X' X+(1—X')X' X"/X']'

X' (1—X

[—X X"+X' X X/(1 —X )]
X'(1—X )

(4.5)

%e now consider only those simple string motions
which are uniform "rigid body" rotations about a fixed
axis, Q, with angular frequency co, since in general these
minimize E for a given J. Henceforth we make this an-
satz for our solutions.

For such an ansatz, we have

(4.6)

X =co X —(ai.X), X.X=X.X=X' X'=0 (4.7)

etc. In fact, any inner product involving derivatives of
the spatial components X will vanish if an odd number of
time derivatives appears, just as in the specific cases ap-
pearing in (4.7). Thus we achieve consistency with our
gauge-fixing conditions, since the terms in parentheses
vanish in W&, (3.13). We therefore only need to kmp the
Nambu and the Wo terms in determining the equations of
motion for the ansatz. [Note that the last terms in
parentheses in Wo, (3.12)—or equivalently, the last brack-
eted terms in (4.5)—also vanish. ]
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If we use (4.6) to simplify the surviving terms in (4.5),
we find that the ansatz action reduces to an expression
linear in the time, r = f d g,

o~J = + To f d g'
~

X'
~

[o~'X' —(rD.X)']

X[1—co X +(co.X) ] (4.14)

Ig ——tL, (4.8) E =+To f dg'
i

X'
i [1—oi'X'+(ro X)'] (4.15)

where I. is the Lagrangian

I. = —So f dg'~X
~
[1—~'X'+(~ X)']'&'

1 —N X+N XN X
Ro [1—o~ X +(o) X) ] X'

1

X'
co X X —6) XN'X
[1—o~ X +(c0 X) ]

'2
X'.X"

+
X

(4.9)

——,X (5W/5X ')'+ X 5W/5X

+ —'X' 5&/5X '] . (4. 10)

Now, when the shape of the string lies in a plane, and
when the axis of rotation is also in this same plane, the
above expression for the magnitude of the angular
momentum reduces to

J=dL/do) . (4.11)

In addition, for such a rotating configuration, the energy
reduces to the Legendre transform of the Lagrangian:

E =coJ —I. . (4.12)

The angular momentum also simplifies considerably for
such uniform motions since 5X=X/oi. For such varia-
tions, the Noether current in (3.2) gives the angular
momentum as

coJ=f dg [X 5W/5X —X (5W/5X)'

From these integral expressions, the Legendre transform
in (4.12) is easily checked.

The actual values for the physical quantities in
(4.13)—(4.15) may be obtained using an explicit, simple
form for the pinwheel solution:

X=g' e, —1/co & g' & 1/co, (4.16)

with eJ.m and e=roXe. The ends of the string therefore
move at the speed of light, and both E and J decrease
monotonically as co is increased. The I2 term in IR does
not modify anything in this case, even at the end points of
the string. Upon evaluation of the above integrals using
the pinwheel solution, the Lagrangian, energy, and angu-
lar momentum are given as usual by

L = —irTo/2ct3& E =7TTo/co,

J=irTo/2' =E /2irTo .
(4.17)

Thus, classical Regge trajectories for these open string
configurations are linear with slope (2~To )

For the closed string case, however, the folded-over
straight-line configuration (which extremizes the Nambu
action and gives a Regge trajectory with half the slope of
the open-string case) is not a solution. The above lemma
is obviated in this case by the creased ends of the
straight-line segments where the metric is singular. If the
ends are rounded out slightly (we thank Eric Braaten for
his help in establishing the following argument), with a
radius e, the rigidity term I2 contributes O(1/e) to the
total action. To see this, write the infinitesimal rounding
in the form

This follows from inspection of (3.4), now applied to the
gauge-fixed action (4.5), which represents a manifestly
time-translationally invariant system. The reader should
contrast this nontrivial energy to the vanishing energy-
momentum tensor (3.18) of the nonfixed action, as dis-
cussed in Sec. III. It is easy to see, e.g., by merely exam-
ining the Nambu action, that the formal 8'b ——0 result of
Se:. III is a consequence of making variations with
respect to the unphysical parameter X .

It is now straightforward to verify that the classical
open-string solution of the Nambu action, the rotating
straight-line "pinwheel*' motion, is also a solution of the
equations of motion resulting from (4.5), and also satisfies
the same boundary conditions (5M/5X'=0) at the ends
of the string. Our lemma holds in this case, without qual-
ifications.

For the pinwheel motion, the Lagrangian, angular
rnornentum, and energy have the same integral expres-
sions as for the Nambu string. Recall that those expres-
sions are

X=—[e(1—e )' cos(g'')+roesin(g')] .
Ei)

(4.18)

Then it can be shown that near the sharply folded ends
the contribution to the Lagrangian goes like
e f do o /(o +e ) . Consequently, e is not a sup-
pressed perturbation, and this configuration for the closed
string with rigidity is not a classical solution as e~O.

The actual, planar, classical solution for the rotating
closed string with rigidity is easy to visualize since it has a
nonrelativistic limit, unlike the Nambu string. It resem-
bles an ellipse, as in Fig. 2, with the axis of rotation along
the "semiminor axis." In this oblate hooplike configura-
tion, the rigidity and centripetal acceleration balance the
string tension.

%'e may repararnetrize the solution by working in the
plane of the hoop, defining r to be the distance from the
center of the hoop, and 0 to be the angle from the
"semimajor axis" (cf. Fig. 2). That is, we write

X=(r(8)cos8, r(8)sin8) .

L = —To f dg'
~

X'
~
[1—co X +(ai X) ]+' (4.13)

Using this parametrization, the Lagrangian for the hoop
ansatz reduces to
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r

z i iiz 2 2 28)&zz 1 co r os8(rco 8+dr/d8si 8)
Rp [r +(dr/d8) ]' (1 —m r cos 8)

(4.20)

where a is the conventionally defined curvature for a pla-
nar curve:

~(8)=Rp I 1+~'Rp'[ 1+—,
' cos(28)]+0(~') I . (4.24)

1 — arctan(r dr /d8)

[r +(dr/d8) ]' (4.21)

Thus, a slow rotation stretches both the semimajor and
semiminor axes. Substituting this result into L, and
evaluating the angular momentum and energy using (4.11)
and (4.12), we obtain

In this form it is easy to determine the static co =0 solu-
tion for the hoop using siinple topological/geometrical ar-
guments. In the static limit we write

L(co=0)= —Sp I d8[r +(dr/d8) ]'

L = 4nN—Sp/Rp[1 —, ci) R—p +0(co )] )

coJ =6nNSpR. pro +0(p) ),
E =4nNSp/Rp[1+ ,'ci) R—p +0(co )] .

(4.25)

'2
2K 1

X g + g (4.22)
This of course is what one would expect for a nonrela-
tivistic rigid body rotation. The resulting Regge trajec-
tories are nonlinear for small p~ (Fig. 3):

Egg 4n NSp/R p
——4wNQS p Tp——. (4.23)

These results come as no surprise to anyone familiar with
a rubber band, except perhaps for the feature that the
length of this string is labile.

For the nonstatic co&0 case, we do not have similar
topological/geometrical arguments to obtain the classical
solution. As a preliminary step, we may perform a small
pi perturbative analysis by first substituting an expansion
for r(8) in terms of even harmonics, and then adjusting
the coefficients to extremize L. The result is

The first term on the right-hand side (RHS), linear in ~,
gives a topological invariant (Hopf's circulation theorem
for closed planar curves ), which is clear from the explicit
form for a in (4.21). This term counts the number of
times, N, the tangent to the curve rotates through 2nas.
the closed string is circumambulated.

The second term on the RHS of (4.22) is obviously ex-
tremized ( =0) when ~ = 1/R p, a constant. Geometrically,
of course, this means the static hoop forms a circle of ra-
dius r =Ro, For such a circle, wound X times with
string, (4.22) immediately gives the action and energy
since E = L(pi=0) in—the static case:

J =[—,'Rp (E —16~ N Sp'rp)]' +0(co ) . (4.26)

V. CLASSIFICATION OF THE EQUATIONS
OF MOTION

We next study the rotating simple hoop configuration
(N =1) for larger rotation rates. Eventually, we will
resort to numerical methods to complete such a treatment
(cf. Sec. VI). Before numerical analysis, however, we will
perform a few analytical transformations of the equations
which will not only aid the later numerical work, but will
also serve to classify our second-order nonlinear differen-
tial equations. (We thank Tom McCarty for discussions
and calculations related to the material of this section. )

First, it is convenient to change variables to a modified
angle variable which i's just the curvature integrated over
the arc length of the curve.

s ((9j
8 arctan(r —'dr—/d8) = ds a(s),

0

ds =d 8[r + (dr /d 8) ]'i

The infinite slope, dJ/dE at J=0, for this trajectory
should be contrasted with the vanishing slope obtained for
the "dumbbell" configuration of the massive string.

/

/'

/

/
/

i i ' i

16rr S„T,
2

FIG. 2. Parametrization of the axially symmetric hoop con-
figurations.

FIG. 3. The leading and sister Regge trajectories of the rotat-
ing hoop configuration for small J. Arrows indicate increasing

The dashed diagonal trajectory is that of the conventional
Nambu closed string.
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This angle is a natural independent variable to describe
the planar string configuration. One way to see this is to
reconstruct the positions of points on the planar string
curve in terms of initial data and integrals of the planar
curvature. Let us first switch to dependent variables
which are rectangular coordinates giving the position of a

point on the string:

x (8)—= r(8)sin8, y (8)= r (8)cos8 . (5.2)

For these variables, the above-mentioned reconstruction of
the curve leads to

and

dx (0)/d8x(8 =x 0)+ ds Icos dszK(sz )

I [dx(0)/d8] +[dy(0)/d8] I'

dy (0)/d 8
dsi sin dszK(sz)

t[dx(0)/d8]'+[dy(0)/d8] I'

dy (0)/d 8y(8}—y(0}+ ds icos dszK(sz}
t[dx(0)/d8] +[dy(0)/d8] I'

dx (0)/d8+ ds islil dszK(sz )
[[dx(0)/d8] +[dy(0)/d8] ]

n 0 . o

(5 3)

(5.4)

The naturalness of the angle y is apparent. Note from the
definition in (5.1) that when the planar curvature is con-
stant, as for the static circular hoop of the last section, the
angle y is equal to 8.

For the oblate hoop configuration pictured in Fig. 2,
with the string making a single winding of the curve, the
points 8=0, n./2, Ir, 3n./2, and 2Ir coincide with p=O,
Ir/2, m, 3n/2, an. d 2Ir, respectively. This follows from the
assumed symmetry of the curve and the Hopf circulation
theorem. Of course, when the hoop is not a circle (i.e.,
K+const), points in between these special values for 8 and
q& have 8&y.

Also, for the configuration of Fig. 2, we have
dx (0)/d8=0, dy(0)/d8& 0, x (0) & 0, x (Ir/2) =0,
y(0)=0, and y(m/2)&0. Inserting these values in (5.3)
and (5.4) leads to some simplifications:

S(8) Sl
x(8)=x(0)— dsisin f dszK(sz)0 0

(5.5)
s(8) sl

y(8)= f ds, cos J dszK(s, )

That is to say, for the configuration in Fig. 2,
dx /ds = —sing&, dy /ds =cosy. Since (5.1) implies
dy/ds =K, as well, we have

ds =dg'
i

X' f, (5.9)

as well as (5.8) to eliminate all derivatives of x and y, we
obtain a simple form for the Lagrangian which has expli-
cit dependence on x, u, and x, but no explicit dependence
on y. The absence of explicit y dependence is a conse-
quence of translational invariance along the ro axis of.Fig.
2. The result for L is

As we shall see below, this last change of variables leads
to equations of motion with explicit algebraic singulari-
ties. Further, note that u =1 (g=O) corresponds to a
point on the hoop which lies on the semimajor axis, as in
Fig. 2, while u =0 (y=m/2) corresponds to a point on
the semiminor (ro) axis.

It is important to realize that (5.3) and (5.4) [or (5.5)
and (5.6)] have no dynamical content. They are only
geometrical descriptions of planar curves in terms of the
arc length and local curvature. To impose the dynamics
of the rigid-string system, we need an additional equation,
e.g., one which independently determines the local curva-
ture, ~.

Such an additional equation coines, of course, from the
Euler-Lagrange equations of motion. If we rewrite L, in
(4.9), in terms of x and y, and use

—1 dx i 1 dy
sing dy co~ dye

This suggests a further variable change. Let

Q =cos+,

(5.6)

(5.7)
1 1

X 2+gO2

'2
Q7 QX

1 —co x2 2 (5.10}

dQ = —K(1 —u }
dS

3' = —K u(1 —u )
2 —)/2

cL

(5.8)

where we have explicitly assumed a fourfold symmetry
for the solution, i.e., invariance under u ~—u, x~ —x,
as shown in Fig. 2.

The classical dynamics of the rigid string for the special
case of rotating planar hoops is now obtained by varying
x in I., recognizing that K=(dx /du) ', as in (5.8). This
gives a second-order, nonlinear equation for x (u):
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Gf CO QXK—
1 —mx

L

0 1 1 2 6) Mx

1 —u & Rp 1 —mx2
—

2
—'+ 22

2

(5.1 1)

W"= + W' +f(z)W'1 1

28 8' —1

+a(z)(1 —W)'( W' —1)/W+b (z)(1—W'),

Alternatively, we may view u (x) as the dependent vari-
able, and x as the independent variable in (5.11). Upon
doing so, and multiplying both sides of (5.11) by
v=du/dx, the differential equation may be identified as

being of Painleve type. To see this, we absorb co into the
independent variable (assuming co&0), and rewrite the
equation as

where

f(z)=z/(1 —z ),
r

a(z)= —f(z) +1 2 1

N Rp

(5.15)

(5.16)

6 GQ

dz dz 1 —z 2

0 1

1 —Q Q) Rp2 2 2

1 —z 2
(5.12)

where z =calx.
Equations of the form

u"=A (z, u)u' +8(z,u)u'+C(z, u), (5.13)

(5.14)

Then (5.12) becomes

were investigated early in this century by Picard, Painleve,
Gambier, and others, in a search for nonlinear equations
whose branch points and essential singularities were fixed,
i.e., did not move as the initial data were changed. There
are 50 canonical forms for equations with this property.
To put (5.12) in a form close to one in this canonical list,
let

2z2

The coefficient of W' in (5.15) is now in one of the
standard canonical forms. Unfortunately, the a (z } and
b(z) terms are not, and what is more, they cannot be
brought to canonical form by changing either dependent
or independent variables. The a(z) and b(z) terms are
close to a canonical form (i.e., case Xl., p. 341, Ref. 9)
which admits an analytic solution through a reduction to
a p»r of Ricatti equations. So far, however, we have not
found this proximity to a known equation to be useful.
Perhaps it would be a useful starting point for an approxi
mation scheme where certain terms in the equation are
neglected. For example, in the limit (PRO} '~0, a(z) is
of a form so that (5.15) can be solved. W(z)+-'
=tanh[K+ln(1 —z )/gj are two particular solutions in
the limit. These particular solutions nicely illustrate a
general feature of (5.15) before neglecting any terms. The
equation is mapped into itself under W~ W . Physical-
ly, this corresponds to a translation along the co axis of
the solution pictured in Fig. 2, by an amount such that
the lowest point of the figure is moved up to the highest
point.

%'e close this section by noting that the angular
momentum for the rotating hoop ansatz is given by (4.11},
or explicitly in terms of ~, x, and u by

1 1
Sp d

(1—u )(1 —co x )

I /2
1 'X
K

2
CO QX

2 + K-
Rp 1 —co x

4@X CO QX+ 2 2 2 2
1 —cox 1 —coax

(5.17)

Similarly, the energy for the ansatz is simply related to I.
and Jas in (4.12).

VI. NUMERICAL RESULTS AND METHODS

%e have numerically solved the differential equation
for x(u}, (5.11), treating co as a parameter, and have
thereby obtained the properties of the rotating planar
hoops for the rigid string as functions of co. From our
data for x (u), we numerically integrated (5.10) to obtain
the action L (cu). %'e also integrated (5.17) to obtain the
angular momentum J(co) and then combined the results
for L and J to find the energy of the solution E(co}using
the Legendre transform, (4.12). This allowed the numeri-

cal determination of the classical Regge trajectory for the
rotating hoop ansatz.

The results for the trajectory are shown in Fig. 4. For a
given co, there are two classical solutions. %'e illustrate
this in Fig. 5 by graphing the two planar configurations
for co=0.25. One branch of solutions (that which con-
tains the inner hoop in Fig. 5) of (5.11) originates with the
static circular hoop, and develops for small co as described
above in (4.24) and (4.25). Both E(co) and J(co) increase
monotonically for this branch up to a critical value m,
( 3.5+To, for So = 1). At this critical value co, the ener-

gy, considered as a function of J, has an inAection point
(since co=dE/dJ and d E/dJ =0). This is shown in
Fig. 6, again for So =1. The trajectory E(J) continues to
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The Leeidin. g Regge Trajectory

ER

FIG. 4. The leading {%=1)Regge trajectory for Sp=l
{solid line) and for So ——0 (dashed line). Arrows indicate increas-

ing co.

higher E and J values through the second branch of solu-
tions to (5.11), allowing co to decrease back to zero.

The branch of solutions giving the upper segment of the
trajectory (that which contains the outer hoop in Fig. 5)
behaves in many ways similar to the motions of the pli-
able, Nambu string. As co~0, the length of the hoop
along the semimsajor axis, x(u =1), grows as 1/co. The
trajectory seems to become linear in the same limit. Un-

ate =0.25000

FIG. 6. Energy versus angular momentum for the rotating
hoop configuration {SO=To=1). The dot marks the inflection
point d2E/dJ =0, corresponding to co, .

like the Nambu closed string, however, the ends of this
configuration are not sharp folds. The elastic energy
stored in these ends displaces the trajectory to the right of
the Nambu straight-line trajectory, as evident in Fig. 4.

As energy and angular momentum are pumped into the
system, both minor axis and major axis of the configura-
tion grow, although their ratio goes to zero. Along with
this growth in size, the edges of the hoop farthest from
the axis of rotation move with growing speed. This
growth continues smoothly from the lower branch part of
the trajectory into the upper branch, except that on the
upper branch the growth of the edge speed lags the
growth of the major-axis length. The critical frequency
co, represents the maximum frequency attained by the an-
satz solution. (For higher frequencies, there may in prin-
ciple exist another type of solution, but we have not found
it. ) We suspect that the lack of a solution for co&co,
represents an instability of the planar solution against
warping of the plane, but we have not confirmed this.
(Similar instabilities, associated with a loss of symmetry
for the actual rotating solution, are well known in rotat-
ing, self-gravitating fiuids. )

An analytic expression which approximates the trajec-
tory fairly well is given by a hyperbola:

E (J),pp„„——To[10m So+vrJ

+(9n J 12m SOJ+36m—S )' ]

(6.1)

FIG. 5. Hoop profiles for the two classical solutions of the
equations of motion, for m =0.250, So——To ——1. Reflection sym-
metry about the x and y axes is understood.

The greatest disagreement between this expression, and
the actual (numerical) values occurs near the critical value

For example, when So = 1 =To, and m =0.35 (which
is very slightly below co, ), the two solution branches
(denoted +) compare with the above expression as follows:
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E+ ——262, J+ ——14.5, E,pp, „——274,

E =254, J = 13.8, E, ,0„=266.

This gives a relative error (E E— )/E =4/
both cases.

approx

%e now discuss the methods by which the above nu-

merical properties of the rotating hoop configuration were
obtained. Two techniques were used to search for solu-
tions of the equation (5.11).

In the first of these we treated the equation as a
boundary value problem. Starting with x(u =0)=0 we
us a "garden hose" method. We chose an initial value
or dx(0)/du =II(0) ' [recall (5.8)]. We then used the
unge-Kutta method to numerically integrate to the most

rapidly moving point on the hoop, at u =1. At that point
we required the boundary condition that diI/du remain fi-
nite at u =1. This required that the numerator on the
RHS of (5.11) vanish, giving a relation between ~(u =1)
and x u =1):

2
'2

1 ci) x(u =1)
Ro 1 —co x (u =1)

If th e initial curvature was such that this condition was
satisfied, we accepted the numerical data as a solution,
and hence we had determined x (u) and II(u) on the inter-
val u C[0,1j. Given a.(u), we then determined y(u), up
to an irrelevant translation along the ro axis. The rest of
the configuration was given in terms of the data on this
interval using the assumed fourfold symmetry evident in

1g. 2.
The practical implementation of this boundary value

method is illustrated in Fig. 7. %e have plotted

(a=0.25, 0.30, 0.35, 0.40)

as a unction of the initial curvature ~(0) 0 1 h
do we have an acceptable numerical solution. The

existence of two solutions, i.e., two allowed initial values
for a., is revealed by the parabolic shape of V, which has
two zeros for sufficiently small co. As co increases h
er V lieser, ies entirely above the axis, and there are no configu-

con ition o finiterations which satisfy the boundary d' ' f
K Q.

Our second numerical technique for finding classical
solutions of (5.11) consisted again of taking x(0)=0,
choosing a starting curvature, and integrating the second-
order differential equation from u =0 t =1
Runge-Kutta methods. Rather than directly checking a
boundary condition at u =1, however, this time we sim-

p y calculated I. in (5.10), using Simpson's rule for nu-
merical integration. This gave us an effective Lagrangian
as a function of the starting curvature II(u =0) with
x u =0 =0. We then found the extrema of this effective
Lagrangian, again numerically. The situation is illustrat-
ed in Fig. 8, where we have plotted the effective Lagrang-
ian as a unction of the initial curvature fo th

Q
—. There are two extrema, for any co & co„for which

value the extrema coalesce at an infiection o' t F
ig er values of co, the slope of the effective Lagrangian

never vanishes, indicating again that there are no solu-
tions.

Insofar as we have checked, the two techniques which
we have used agree within numerical uncertainties. How-
ever, the latter variational method appears to be better.

We finally note that as the rigidity So is decreased,
tending to the limit of the pliable string (So ——0), the E
intercept of the trajectory moves toward the origin. The
critical point on the trajectory also moves toward the ori-

0.006 I 1 I I
I

I I I I

I
I I I I I
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I I I

I

I I I I
I

I 1
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0.008

0.000

—0.002

I ! I I l I I I ! l I I I I I I I ! I

0 0.2 0.4 0.6 0.8
~(0'}

FIG. 7. The boundary condition function

1 (l)
' (&)

Ro 1 —co x (1)

'2

versus the initial curvature x(0), for four values of m. (Lower

u =0.25; lower, co =0.30; upper
~=0.35; upper , e =0.40.) Classical solutions corre-

spond to zeros of V.

-12

I I I I I I I I I I I I i i I I I I I I I I I I I I I

0 0.2 0.4 0.6 0.8 1

r(0)
FIG. 8. T ebe e& ective Lagrangian L~q as a function of the in-

itial curvature ~(0) for four values of co. (Lower
m=0. 25; lower, co=0.30; upper, m=0. 35;
upper , ~=0.40.) Classical solutions correspond to
extrema of I.~.
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gin, so that only the upper solution branch survives. This
yields the diagonal, straight-line trajectory which charac-
terizes the Nambu string. In fact, for fixed string tension
To, the critical rotation rate is inversely proportional to
So, while the angular momentum and energy squared for
the critically rotating hoop are proportional to So.

~, So ——const&-0. 350,

J, /So ——const, =14.1,
E, /So ——const&-258 .

(6.5)

These properties follow from a simple rescaling of the
variables in the equations of motion, as in (5.12), and in
the expressions for E and J. This behavior is consistent
with the approach to the Nambu string in the limit
SO~0, since E =0=J corresponds to co = oo [cf. (4.17)].

The approximate numerical values given in (6.5) are ex-
tracted from our data. To obtain these numbers, we ap-
proximated E and J for the upper and lower solution
branches near the critical rotation rate using the empiri-
cally successful formulas

E+ E, +c oust' ——X[1—(co/co, ) ]'

J+ ——J,+const5X [I—(co/co, ) ]'
(6.6)

The best fit to our data, for To ——1=SO, gave ro, =0 350, .
I, 14.1, E,=16.1, const4-5. 75, and const5-16. 4.

VII. DISCUSSION AND CONCLUSIONS

For the closed sector, the classical trajectories of the
rigid string are nonlinear and are dominated at low ener-
gies (short strings) by the novel hoop configurations dis-
cussed above. At higher energies (long strings), the
relevant configurations exhibit more conventional Regge
behavior, although classically they lack the sharply folded
ends of the Nambu string due to the rigidity which
discourages bending of the string. Therefore, the rigidity
interactions are expected to suppress the longitudinal
kink/fold modes of the conventional Nambu string.

Ultimately, this system must be quantized. At present
we do not see how to carry this out beyond the usual
methods of fluctuation about classical solutions, as
developed in the context of soliton physics. (Related is-
sues involve the classical stability of N ~ 1 static hoops. )

Upon quantization, we expect a shift in the vacuum ener-
gy and some modifications of the low-energy spectrum.
However, since the lowest energy state of the classical
closed string is an adjustable parameter [as in (4.23)], we
expect at least for some range of rigidity that there will be
no massless states for the quantized rigid string. This
raises several questions, which we cannot answer, concern-
ing general covariance and gravitation in the embedding
spacetime. Related issues concerning the compactifica-
tion dynamics of such strings are easy to speculate upon.

Finally, the analytic continuation of the nonlinear tra-
jectories to negative I and E

„
together with the resolu-

tions of the intercepts of the sister trajectories [described
classically in (4.23)], may have interesting implications in
hadronic applications of string theory. It would also be
interesting to see what relationship, if any, the nonlinear

trajectories presented here have with those described in
the earlier literature (e.g., see Ref. 10). Work on these is-
sues is in progress.
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APPENDIX: GLOBALLY SUPERSYMMETRIC
GENERALIZATIONS

It is not difficult to extend the action (2.13) to one with
manifest, global, D-dimensional spacetime supersymmetry
by using superspace techniques. Such a supersymmetriza-
tion of the Nambu-Goto term Ii was achieved by Green
and Schwarz. " However, their extension had the addi-
tional important property of invariance under a local i~.

world-sheet supersymmetry, which was achieved through
the inclusion of specific relative amounts of superspace
torsion terms in the action. 2 Here we indicate how to ex-
tend the rigidity term I2 to its globally supersymmetric
generalization, but we do not find the requisite mixture of
terms necessary for local world-sheet supersymmetry.
The reader is thus advised that the model in its present
form will contain more physical fermionic degrees of free-
dom than the Green-Schwarz superstring.

The X =1 supervielbein in D-dimensional spacetime is

V, =(B,X"—i(91 "B,e,B,H )—:(V,",V, ) . (A 1)

The bosonic equation of motion of the % =1 covariant
superstring generalization of the Nambu term (conven-
tions are those of Curtright, Mezincescu, and Zachos in
Ref. 12) is

8"=d, (& gg' VI,
' )+—id' V,—I'"Vb ——0, (A3)

~here the second term, &d' B,HI""Be8, represents the su-
perspace torsion. Given the usual projector,P'—:(g' —e' /& —g )/2, the equation of motion may be
rewritten as

a&=28.(v' gr"Vt;) =0 . —

Consequently, the manifestly globally supersymmetric ex-
tension containing (2.11) in its bosonic reduction is

In terms of the first component, the world-sheet metric is

(A2)



34 CLASSICAL DYNAMICS OF STRINGS %ITH RIGIDITY 3823

I2 ——8"8„/&—g . (A5)

ln addition to I2, a number of further terms may be
constructed„whose bosonic limit vanishes, similar to the
case of the Green-Schwarz superspace torsion term.
Perhaps a combination of such terms may restore the lo-
cal world-sheet supersymmetry of the Green-Schwarz
superstring, which is broken by I2 . So far, however,
such a combination has not been found. [What about a
first-order formulation? One may, of course, contemplate
a first-order formulation which incorporates an indepen-

dent metric g,b in the Nambu term, as usual, whereas the
rigidity term is left as above, oblivious to the independent
metric. In such a formulation, the equations of variation
of g,b yield the conventional expression determining the
metric in terms of the X's and lead to the above second-
order formalism. Furthermore, the full action trivially
possesses the standard Weyl invariance (scaling g,b while
the X's are left unchanged). Note further that g,b varia-
tions in such a formulation would isolate the vanishing
energy-momentum tensor of the Nambu action, but not
the full action including rigidity. j
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