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A classification of ten-dimensional closed-fermionic-string models with world-sheet superconfor-
mal invariance, modular invariance, and physical states with proper space-time statistics is present-

ed. This classification is based on an analysis of the spin structures of the Neveu-Schwarz-Ramond

fermions and the fermionic variables used in representing the internal-symmetry space.

I. INTRODUCTION

One of the most remarkable features of superstring
theories is their near uniqueness; only a very few models
appear to be mathematically consistent. Indeed at one
time superstrings garnered little interest because it was be-
lieved that any such theories with pretensions of being
physically realistic unified models must contain gauge and
gravitational anomalies. ' The. discovery by Green and
Schwarz of at least one exception to this rule, the SO(32)
type-I model, opened the floodgates of string research —in
particular, the search for other consistent theories. This
search met with one notable success. A clever hybrid con-
struction of closed-string theories by Gross, Harvey, Mar-
tinec, and Rohm3 led to two heterotic string models, with
the gauge groups Spin(32)/Zz or Es)& Es apparently
uniquely singled out by the requirement of modular in-
variance of one-loop amplitudes.

A consistent fermionic string theory should be invariant
under reparametrizations, superconformal transforma-
tions, and two-dimensional (world-sheet) Lorentz and su-
persymmetry transformations. In general these sym-
metries are spoiled by anomalies at the quantum level.
The absence of such anomalies impose stringent con-
straints on string-model building; for example, the vanish-

ing of conformal and superconformal anomalies requires
the space-time dimension to be 10 and, if the string
possesses an internal gauge symmetry described by fer-
mionic fields, the number of such internal fermion fields
must be 32. Modular transformations are discrete
reparametrizations (or equivalently global Lorentz
transformations) and so modular invariance is included in
the requirements listed above. In calculating modular in-
variant loop amplitudes, the integration over moduli
(which describe inequivalent surfaces) should be restricted
to the fundamental domain of the modular group. This
restriction is the key to the ultraviolet finiteness of string
theory so that modular invariance is indeed a necessary
requirement of any sensible closed-string theory.

Recently several groups have realized that using a
fermionic representation for the internal-symmetry group
of a closed string and considering sometimes intricate

correlations of the spin structures appearing in one-loop
amplitudes, new models may be constructed which are
also one-loop modular invariant. Some of these, in partic-
ular, a tachyon-free model with gauge group
SO(16)XSO(16), ' are possible unified theories; others,
however, must be discarded because they have statistics
inappropriate for a physical theory; i.e., either the space-
time fermions and bosons have the same statistics, or dif-
ferent sectors of the excitations in the internal space ap-
pear with opposite statistics and so cannot be sensibly in-
terpreted as giving rise to an internal-symmetry group. In
the present work we systematically consider the possibili-
ties for such constructions with periodic or antiperiodic
boundary conditions for the fermion fields, finding
closed-fermionic-string spin structures which give modu-
lar invariant one-loop amplitudes and a projection onto
the subspace of physical states which have the appropriate
spacetime statistics for a physically sensible theory; i.e.,
Fermi-Dirac statistics for space-time fermions and Bose-
Einstein statistics for space-time bosons and internal-
symmetry degrees of freedom. The work of Seiberg and
%itten clearly suggests that these requirements, one-loop
modular invariance, and proper space-time statistics, are
enough to ensure modular invariance of multiloop ampli-
tudes. Our results are summarized in Table I, which we
believe probably represents a complete list of possible ten-
dimensional closed-fermionic-string models for which the
fermionic fields representing the internal-symmetry space
are noninteracting and satisfy either periodic or an-
tiperiodic boundary conditions. The gauge group identifi-
cation for the tachyonic models is tentative, since we have
not checked the complete spectra and/or constructed the
corresponding vertex operators. Each of the models also
has a graviton multiplet (or supermultiplet if space-time
supersymmetry is present) which is not included in Table
I. The first 12 models are known (see, in particular, the
elegant work of Dixon and Harvey in which some of
these models were discovered by modifying the bosonic
Frenkel-Kac construction of the internal-symmetry
group), while the final model is new. Unlike the known
models with internal-symmetry groups, this new model
has a gauge group of rank 8 rather than 16. A more de-
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TABLE I. Ten-dimensional modular-invariant closed-fermionic-string theories with proper space-time statistics. The references
are GS, Green and Schwarz (Ref. 12).„S%,Seiberg and %'itten (Ref. 4); GHMR, Gross, Harvey, Martinec, and Rohm (Ref. 3};DH,
Dixon and Harvey (Ref. 5); AGMV, Alvarez-Gaume, Ginsparg, Moore, and Vafa (Ref. 6).

Identification

Type IIA
Type IIB
Type A
Type 8
SO(32)

heterotic
Es XEs

heterotic
O(16)x O(16)
SO(32)
O(16)XEs
O(8) x O(24)
(E,xSU, )'
U(16}
Es

Number
of

gauge
bosons

240
496
368
304
272
256
248

Number of
massless

fermions'

512
0

256
384
448
480
496

Number of
tachyons

0
32
16
8

2
1

Space-
time

SUSY

Yes
Yes
No
No

Yes

Yes

No
No
No
No
No
No
No

Chiral

No
Yes
No
No

Yes

Yes

Yes
No
Yes
Yes
Yes
Yes
No

Reference

GS
GS
SW
S%'

DH, AGMV
DH, SW
DH, S%

DH
DH
DH

'Not counting those in the graviton (super)multiplet.

tailed examination of the spectra and properties of these
models will be considered elsewhere.

This paper is organized as follows. In Sec. II we collect
some general results concerning modular invariance and
spin structure which provide the starting point for the dis-
cussion fallowing. In Sec. III we find modular invariant,
physically sensible spin structures and consider the spec-
tra of these allowed models in Sec. IV. Section V con-
cludes with some overall discussions af our work. Appen-
dix A contains a theorem key to the argument in Sec. III,
and Appendix 8 includes some details extending and clar-
ifying the main discussion.

II. MODULAR INVARIANCE
AND SPIN STRUCTURE

The possibilities for closed-fermionic-string theories are
severely limited by the symmetries required for their con-
sistency. This is perhaps best exemplified by the heterotic
string action which, while it can be rewritten in many
forms, is essentially unique and in some sense the most
general such action that one can consider. Employing the
Neveu-Schwarz-Ramond (NSR) formalism' for the
space-time fermions, as we will throughout the present
work, the covariant first quantized action is '"

P

S(e,q, X,X,X)= fd'ge ,'g "a X"a„X"—+'X"y a X" +—'q„„y y"X"„a—„X" 'y „e +——'X—y a XJ

(2.1)

In this covariant formalism the zweibein e' and the
metric tensor g „=e'e,„appear in the above form to
guarantee reparametrization invariance, which is required
to eliminate the timelike modes of the string coordinate
X". In similar fashion the elimination of the timelike fer-
mionic modes necessitates two-dimensional local super-
syinmetry which in turn requires the gravitino f. In the
sector of right moving fields (Xg,k~a, l(„x ) we must have

p = 1,2, . . . , D = 10 in order for the superconformal
anomaly to vanish. In the bosonic left-moving sector, the
vanishing of the conformal anomaly requires 26 dimen-
sions; here 16 of these dimensions are compactified to
produce an internal-symmetry group given in a fermionic
representation by the XL, J=1, . . . , 32. If both right-
and left-inoving sectors are NSR strings the resulting

theory is a type-II superstring; if both right- and left-
moving sectors are bosonic, one has a pure bosonic theory
with an internal-symmetry group. Apart from these
modifications (and the possibilities for world-sheet fer-
mion interactions or nontrivial background fields), (2.1)
appears to uniquely specify possible closed-string theories.
This is not the case, however, because we have yet to
specify the boundary conditions on the fermions, i.e., the
spin structures. At this level the only constraint that (2.1)
places on these is that, due to the form of the interactions
[specifically the third term in (2.1)] the right-moving
gravitino and the ten right-moving fermions, A~a, must
have the same spin structure. A priori the 32 yL are not
so limited, but by exam. ining yet another sym. metry,
modular invariance of one-loop amplitudes, we will find
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that all of the spin structures must be intricately related.
To calculate a string one-loop amplitude we must sum

over world sheets with the topology of a torus. In the
conformal gauge all dependence on the world-sheet metric
of the torus is contained in the complex modular parame-
ter ~ which parametrizes inequivalent tori. A consistent
string theory- should not depend on how we choose to
parametrize its world sheet. At the one-loop level this re-
quires that amplitudes be invariant under the modular
group which consists of discrete reparametrizations (or
equivalently global Lorentz transformations) and is gen-
erated by the transformations

'r~ (2.2a)

7~v+1 . (2.2b)

Z0 +Z00 0

ZP~Z 1 7

1 0

Z 1~ZQ j
0 1

for r~r+ I,

Z1 im/12Z1
1 -~ 1

Z 0 im/12Z0
0 1 7

Z 1 i+/12Z 1
0

Z 0 i m/12 —i m/4Z0
0 o

(2.3a)

(2.3b)

Essentially (2.2a) interchanges the o and r directions on
the torus, while (2.2b) corresponds to cutting the torus at
some constant t slice, twi. sting one end through 2m, and
reconnecting. The path integrals of the bosonic and fer-
mionic degrees of freedom on the torus must give func-
tions of v which are invariant under (2.2). The bosonic in-

tegration is already modular invariant if the Regge inter-
cept is the usual one chosen to ensure unitarity; our con-
cern here is with the ferrnionic sector. The fermion path
integral depends on what spin structures we choose for the
two noncontractable loops (with winding number one) on
the torus, i.e., whether the fermions are chosen to have
periodic or antiperiodic boundary conditions when
traversing ihe o or t directions on the torus. More com-
plicated boundary conditions, e.g., some phase other than
+ I, will be considered in a future paper. ' Under modu-
lar transformations, functions of different spin structures
may be mapped into each other; thus a modular-
invariant path integral must, in general, include a sum
over spin structures.

To be explicit, let us introduce a notation which will

prove useful later on. Zb is the contribution to the vacu-
um loop path integral from integrating out a single left-
moving fermionic degree of freixlom. The superscript in-
dicates the spin structure in the cr direction on the torus,
a=0 (1) for antiperiodic (periodic) boundary conditions
corresponding to Neveu-Schwarz (Ram ond) sectors.
Similarly the subscript 6 indicates the spin structure in
the t direction. The phases of these partition functions
may be chosen such that under inodular transformations
they become, for r~ —I/r,

Z1~Z11 1

Nx —XI ——0 (mod24) .

Actually (2.4) follows rigorously from (2.3) only if none of
the fermions have spin structure (i). This is because Z i in
fact vanishes for a vacuum loop due to the presence of a
fermion zero mode; thus if one or more fermions have
spin structure (i) then the product of fermion deter-
minants will vanish and modular invariance at this level is
trivially satisfied [the transformations for Zi in (2.3) are
hence merely symbolic]. Even so we can make some
demands on the allowed spin structure in these sectors by
considering the factorization of multiple-loop scattering
amplitudes where Z1 need not vanish yet the entire ampli-
tude must still be modular invariant. In addition, we will
see in Sec. III and Appendix A that proper space-time
statistics requires the presence of six:tors of the theory
where no fermions have spin structure (', ); thus (2.4) will
hold. Since the number of fermions must be the same for
all spin structures (2.4) is true in all sectors; it follows
that, for a consistent theory, the transformation for Z',
given in (2.3b) should hold even for the appropriate
scattering amplitudes. The known consistency of the
NSR model' ' shows that this is in fact the case at least
for fermions in groups of eight with the same spin struc-
ture.

Earlier we alluded to three general possibilities for
closed-string theories; we can check that all of these satis-
fy (2.4). For type-II and purely bosonic models, '2 where
the number of left- and right-moving fermionic modes is
the same, this is trivially satisfied. For heterotic-type
theories in the light-cone gauge, the gravitino and two fer-
mionic modes drop out leaving 8 right-moving fermions
which, with the 32 left-moving fermions, also satisfies
(2.4). The methods we will present in Sec. III work equal-

ly well for all three types of models; however, we will re-
strict ourselves to the last case with 8 right-moving and
32 left-moving fermionic modes. The possibilities for
type-II theories have been exhausted elsewhere and we
merely include the results in Table I. As for the purely
bosonic models with internal-symmetry groups we simply
mention in passing that from our analysis it is clear that
all of these models are tachyonic. In general (leaving
aside the possibilities for nontrivial background fields,
etc.) the string in D =4n +2 space-time dimensions will

have 8(6—n) left-moving fermions and an equal number
of right-moving fermions in the internal-symmetry space.

In Sec. III we will determine the spin structures con-
sistent with (2.3); for now we limit ourselves to deriving
one general constraint which follows from (2.3) and (2.4).
Applying (2.3b) twice gives (dropping the overall factor
which cancels between left- and right-moving sectors)

Z1~Z1 7 Z0 - Z0 7

ZO~Z07 Z 1 -" Z 1
1 1 0 „ i~/4, 0 (2 5)

Right-moving fermionic degrees of freedom give results
which are the complex conjugates of those in (2.3); notice
that as a necessary prerequisite for modular invariance the
overall factor of e' ~' in (2.3b) must cancel between the
left- and right-moving degrees of freedom, giving a con-
straint on the total number of fermionic modes:
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Thus modular invariance requires that in any given con-
tribution to the path integral the number of fermions
with spin structure (p) and (~) [denote these by I (p) and
I'(, ), respcetively] must satisfy,

0 0
I 0 +I

1
——0 (mod8) . (2.6a)

Hi H—a =2'll g nd„dn+8

n

Np ——NNs ——g b„b„,
r =1/2

~ ae
1 +d ( 1)X n=l n n

(2.10b)

(2.11a)

(2.11b)

Using (2.3) this can be extended to

0 1
I 0 +I 0

——0 (mod8),

1 0
I 0 +I

1
——0 (mod8) .

(2.6b)

(2.6c)

If in some sector I (i)=0 (mod8) then (2.6) taken with
(2.4) implies that (recall that the 8 right-handed fermions
must already have the same spin structure)

0 1 0I' 0, I 0, I'
1

——0 (mod8)

1
if I

1
——0 (mod8) . (2.7)

In Sec. III we will in fact restrict ourselves to this case:

0 ' 0 1 1
I O'I l'I O'I"

1
——0(od8)

n n

(2.8)

Zo =Pl', Tr[e '( —1) '], (2.9)

Hp ——H~s ——2n g rb„b„—
r=1/2

' 48
(2.10a)

The remaining possibility permitted by (2.6), that of spin
structures identified in groups of four, will be considered
elsewhere. "

One final piece of formalism will prove necessary for
the discussion of Sec. III. We represent the results of fer-
mion path integrals in Hamiltonian form as a sum over
states, 4 "

and P& is chosen so that (2.3) holds. For our purposes we
need only that (Pb)'=( —1)'+ '. The Neveu-Schwarz
and Ramond Hamiltonians in (2.10) are for single fer-
mionic degrees of freedom. All we need to know about
the bosonic contributions for the present work is that for
the combined eight bosonic degrees of freedom the contri-
bution to the normal-ordering constant is ——,'. Strictly
speaking, Eq. (2.lib) is correct only when we consider
products of an even number of fermions, i.e.,

g,."
&

( —1) ', for a single fermion it is simply a formal
expression whose precise meaning is explained in Appen-
dix B. The + in (2.11b) corresponds to left or right
chirality in the Ramond sector and may be absorbed into
the representation chosen for d p.

III. CLASSIFICATION OF SPIN STRUCTURES

The most general possible contribution to the one-loop
string path integral from the fermionic degrees of free-
dom is a sum of products of fermion determinants with
arbitrary coefficients over all possible combinations of
spin structures:

0 I 32 0 1 32
sobs ' 'b32 soli '' bn '

Ia, b)

(3.1)

Here we use a natural generalization of the notation intro-
aOa I a 32duced in the preceding section; Zs, i, ,

. . . s„ is a product of
the fermion determinant from the right-moving modes

a0
with spin structure (s') and the 32 fermion determinants

0
a,.

from the left-moving modes with spin structures (s').
Often we will employ an obvious vector notation, e.g., Zb.
The sum in (3.1) runs over all combinations of a; and bj
equal to 0 or 1. Explicitly we have

32

j=1
(3.2)

The components of N, are the appropriate fermion num-

ber operators; for the right-moving sector H, and X,
are the eight fermion analogs of the single fermion Hamil-
tonian and number operators of (2.10) and (2.11):

N, , p ——g b„'b,',

d~'d'
( 1)

no= +dyl2. . . d8( 1)Xni dn dn

(3.4a)

(3.4b)

H.. .=2~ g grbt'b, ' ——
r=1/2 i =1

r n

H.. .=2~ g g ndt'd„'+
a=1 i=1

(3.3a)

(3.3b)

r

0
Cb=O unless I

b
——0 (mod8)

for any particular choice of a,b HZ2.

(3.5)

The factor of —,
' in (3.2) causes no problems since from

(2.8)
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Cb =Ci+a+b (3.61)

for invariance under (2.31},where 1 is the 33-dimensional
vector with all components equal to one, and in such ma-
nipulations the subscripts and superscripts are elements of
Z2

For (3.1) to be interpreted as a sum of e" over string
states the Cb must be chosen so that in each physical sec-
tor we obtain a sensible projection operator, i.e.,

32

g (
1)(1/8) Xi =i (a(+bi)+b'aCa a 0 1 (3 7)

For a given collection of fermion nuinbers (n) a stringi'
state either appears in the sum of e ' contributing to Z
(yjn= 1) or it does not (il', =0). The sign accompanying
the term in the sum is determined by requiring the states
to have physically sensible statistics. In particular, in

writing (3.7) we must define n to be the eigenvalue of N
(mod 2) except for the zeroth component no, which

differs from the eigenvalue of No by 1; thus, the phase
factor in (3.7) differs from that in (3.2) by a factor of
( —1) which ensures the desired statistics. Space-time
bosons (Neveu-Schwarz sector, ao ——0) contribute to loop
amphtudes with a positive sign while space-time fermions
(Ramond sector, ao ——1) have the opposite statistics, con-
tributing with a negative sign. On the other hand, for the
left-moving degrees of freedom the states in the two sec-
tors a; = 0 or 1 contribute to the loop amplitude with the
same sign, i.e., have the same statistics, as is appropriate
for an internal-symmetry group.

Our present goal is to solve (3.7) subject to the condi-
tion (3.6). A general solution to (3.7) is easy enough to ob-
tain; multiplying through by ( —1) '" and summing over
all n; = 0, 1 one finds

( / ) (a;+8;)

n

It remains to determine for which choices of yl', (3.6)
holds. Consider first the pure Neveu-Schwarz sector,
a =0. Equation (3.8) becomes (dropping the primes on 1)

~32

(
I)('/8) Xi=(&iCO 2—u y( 1)b n 0 (3.9)

InI

From (3.61) we know, in particular, that Co ——Ci which
implies that

g [1—( —1) '='"']~'.=0.
fnI

In other words, g„vanishes unless

The phase in (3.2) is chosen so that under modular
transformations the different Zb transform into each oth-
er without picking up any additional phases. For Z to be
modular invariant it is necessary and sufficient that the
coefficients of terms in (3.1) related by modular transfor-
mations be identified. In our notation this condition is
[cf. (2.3}]

(3.6a)

for invariance under (2.3a)

32

g n;=0 (mod2) .
i=0

(3.11)

From (3.6a) we require Cb ——Co which with (3.8) implies

g( —1) '"yI =gyI, &0 for all 1.
InI InI

(3.12)

Equations (3.5), (3.11), and (3.12) determine the allowed
choices for yI, . Equation (3.9) then determines those
choices for b which give nonvanishing Cb. It turns out
that these choices for 1 form a vector space over the field
Z2 (this is shown explicitly in Appendix A). Knowing
this we can reconsider our equations, restricting b to an
r-dimensional vector space, with basis vectors VI,

b=P)V'+ +P„V"=P.V . (3.13}

Here and throughout the following discussion, boldface
greek letters denote r-dimensional vectors and boldface
roman letters 33-dimensional vectors. The only exception
is V which is an r X 33 matrix so that V' and V; are 33-
and r-dimensional vectors, respectively ( I = 1, . . . , r;
i =0, . . . , 32).

Given (3.13), Eqs. (3.12), (3.7), and (3.6) guarantee that
g'„„Cb,C", are zero unless

a=a V, b=P V; a),P)&Z2 .

With these restrictions, Eq. (3.7) becoines

(3.14)

,()/8)g; ((a+p) v, +pyCa. y a. y
Cp v='g& =0 or 1

IPl

y"=V nEZ2,
(3.15)

and the analog of (3.8) is

~ 32

Now
~

Co'
~

=2 ' from Eq. (A12) in Appendix A, so
that for each a one and only one of the yly'" is nonzero.
With this in mind (3.16}becomes

( 1)( /8)X;=)(a+»'v(Ca & 2
—r( 1)Py(a)p. v (3.17)

where y now depends on a.
Before enforcing modular invariance to restrict y(a),

let us determine which choices of basis vectors V' are con-
sistent with our requirements. From (3.17) it is clear that
CI):v is nonzero for any choice of (z and P, so (3.5) places
a severe constraint on all but the zeroth component of the
basis vectors V'. Let t U J be a basis for the 32-
dimensional subspace obtained by eliminating the zeroth
component from the vector space spanned by I V'). We
must require that any vector in the subspace have 0 (mod
8} nonzero components and furthermore any two vectors
must share a multiple of 8 nonzero components. We may
now easily catalog all of the allowed choices for I U I.
Since all of the 32 fermions in the internal-symmetry
space are equivalent we need not consider bases that differ
only by reordering of the components. From the analysis
of Appendix A we know that each basis must contain the
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vector with all components equal to one, U'=1; thus this
is the only possible one-dimensional basis. For two-

- dimensional subspaces we have two choices; we can add a
vector with 8 components equal to 1 (U; =1 for i & 8; =0
for i & 8) or one with 16 nonzero components (U; = 1 for
i &16; =0 for i & 16). The vector with 24 nonzero com-
ponents is contained in the first subspace (U'+U ). For
three-diinensional subspaees we ean have two "8-vectors"
with no ones in common or two "16-vectors" with eight
ones in common. Any allowed sub-basis with an 8- and
16-vector is univalent to a sub-basis with two nonover-

lapping 8-vectors. Following such considerations one can
easily find the nine distinct bases listed in Table II. Any
collection of more than three 8-vectors or five 16-vectors
with allowed overlaps are not independent. For the
higher-dimensional bases one must consider mutual over-
laps between three or more vectors, but a careful check
shows that only those subspaces spanned by the vectors in
Table II meet our requirements.

The allowed 33-dimensional basis vectors, VI, are ob-
tained by adding a zeroth component to the U vectors
with value 0 and/or 1. From the analysis of Appendix A
it is clear that V'=1 must always appear. Two distinct
cases now arise: either the vector space includes the vec-
tor with components V; =5; 0 in which case all vectors in
the space can have their zeroth component equal to both 0
and 1 (i.e., the zeroth component and the 32-dimensional
vectors completely factor) or it does not, in which case the
basis vectors V (I&1} coincide with the U' with the
zeroth component added with value either 0 or 1 (if both
appeared, the sum of the two vectors would be V ).

Now we return to Eq. (3.17). Knowing from the above
discussion that any two vectors in the vector space
spanned by U have overlap=O (mod 8} we can rewrite
(3.17) as

ga v 2
—r( 1$r)a)+)a+P) p

P V
(3.18)

32

p= —,
' g V; (mod2) .

All that remains to be done is to determine which choices
of y(a) are consistent with modular invariance, which, in
the present notation, is the demand that [cf. (3.6))

a. V P V
CPV CaV ~

Cav Ca V
P V= {a+p).V+Vl '

(3.19a)

(3.19b)

Applying (3.19a) to (3.18) gives

p y(a)=a. y(p) . (3.20)

This equation must hold for all values of a) and P, for
example, choosing P =5)~ (3.20) becomes

y)(a) =a y(P) ——1) . (3.21)

In other words, y) is a linear function of the a)'s and
(3.18) may be written

(3.22)

where k)~ take values in Zi and are independent of ai
and p). Now (3.19a) simply requires that

(3.23)

Equation (3.19b) applied to (3.22) gives

This reduces to

k))+kiI+p) ——0 (mod2), (3.25)

where we have used the fact that a) ——ai, V'=1, and

p, =0. Inserting (3.22) and (3.2) into (3.1) gives finally

chalk)~

a~++ k))a)+a p+p, =O (mod2) for all a .
I, m I

(3.24}

( 1)X)ii(~ Vo+Xm k)mam+Xr ~/~i )a'vZ=2 " X ( —1) 'Tr exp ir g Ha.v irHa v, — .
a, j=1

(3.26)

For each given choice of the set of basis vectors V' and
each given set [k) I that is consistent with (3.23) and
(3.25), we have a fermionic string model. Its spectrum is
generated by the various choices of a), p), and n; that are
allowed by the constraints.

IV. CLASSIFICATION OP
CLOSED-FERMIONIC-STRING MODELS

Equation (3.26) along with (3.23), (3.25), and Table II
represent a complete catalog of physically interpretable,
closed-fermionic-string spin structures satisfying (2.8). In
ttus section we will demonstrate how to extract from this
information the possibilities for string models, in particu-
lar, their spectrum of physical states. A given spin struc-
ture serves to project out a particular collection of string

states. Explicitly, Eq. (3.26) implies that in the sector
with Hamiltonian g oHa. v the phy. sical spectrum in-

cludes those states whose fermion numbers nk satisfy

I I)+gk)~a~++ V/n; =0 (mod2) . (4.1)

The (mass) of a given state depends on its fermion num-
bers, and on the (mass) of the ground state of the physi-
cal sector (represented by a V} which is given by a sum of
normal-ordering constants [cf. (2.10)]. Figure 1 gives the
ground-state (mass) levels for each sector we need to con-
sider, with each R or W representing eight fermions in a
Ramond or Neveu-Schwarz sector. In addition to satisfy-
ing (4.1) a physical state must have the same mass in both
its right- and left-moving modes as a consequence of in-
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Basis

TABLE II. Allowed subspace bases. All basis vector components not equal to one vanish.

Basis vectors U

U' (U =1; i =1, . . . , 32)
O', U (U; =1; i =1, . . . , 16)
O' U U (U =1 i=1 8 17

O', U, U, U, U, (U;=1; i=4n+1, 4n
O', U, O', U, O', U (U;=1; i=odd)
O', U (U;=1; i =1, . . . , 8)
U', U, U (U,'=1; i =9, . . . , 16)
U', Ui, U', V (U;=1; i =17, . . . , 24)

, 24)
, 12, 17, . . . , 20, 25, . . . , 28)

+2; n=O, . . . , 7)

k» ——Oor 1,
k12 k21 1+k22

Equation (4.1) becomes

(4.2)

1+kiiai+(1+kq2)a2 ——no+N8+N24 (mod2),

VO+k22(+2++1 ++1 Ns+ Vo 0

8 32

Ns=g n;, N24=+ n; .

Notice that in this case the spin structures for the first 8
left-moving fermions are always identified, as are the spin
structures for the last 24; the physical states will naturally

RIGHT
MQVER5

LEFT
MQVER5

RRRR

RRRN

RRNN

FIG. 1. Ground-state (mass) level structure for left- and
right-moving modes. R, Ramond (periodic); X, Neveu-Schwarz
(antiperiodic).

variance of the theory under shifts in the world-sheet pa-
rameter a. This is enforced by the integration of (3.26)
(multiplied by the corresponding contribution of the bo-
sonic fields to the path integral) over ~ in the fundamental
domain; the result vanishes unless the right (mass) and
left (mass) are equal.

A priori each possible combination of choices of V from
Table II and k satisfying (3.23) and (3.25) represents a po-
tential new string model. In practice, however, we have
found that out of this large number of models only a few
are physically distinct; a given gauge group can have
many different fermionic representations.

Let us consider a particular example, basis 7 from
Table II, and determine the spectrum of tachyons and
gauge bosons for the models it represents. First consider
the case where the basis of 33-dimensional vectors does
not contain Vo. Then (3.23) and (3.25) give

be grouped in representations of SO(8)~ X SO(8)L
X SO(24)L.

Consider first the NR(NNNN)L sector (using the nota-
tion of Fig. 1). The only way to build this sector from our
vector space is to take o.'& ——a2 ——0 so that a V is the 33-
dimensional zero vector. Any tachyon present must have

no ——0, N, +N2~ ——l. Equation (4.3) then tells us that the
tachyons in this sector fall into two possible representa-
tions of SO(8)ii XSO(8)L X SO(24)1 depending on the
value of Vo, (1,1,24„) or (1,8„,1) for Vo ——0 or 1, respec-
tively. The massless states in this sector have no ——1,
N, +Nz4 ——2. From (4.3) the gauge bosons in this sector
for both Vo ——0 and 1 are in the representation
(8„,28, 1)+(8„,1,276) since we can have two fermions in
either the first 8 or the last 24 modes of the internal space,
but not split between the two. The only other bosonic
states with (mass) less than or equal to zero fall into the
NR(RNNN)r sector. If Vo ——1 then the vector space does
not contain this sector and the only nonpositive mass
states are those given above. If Vo ——0 then a, =0, a2 ——1

are the necessary choice (giving a V with 8 ones among
the 32 left inovers, the other components vanishing). Ta-
chyons are present if no=Ni4=0 is allowed. Ns can be
either 0 or 1. Since the first 8 left-moving fermions fall
into a Ramond sector this just determines which of the
two eight-dimensional SO(8) spinor representations the
ground state transforms as. From (4.3) one indeed finds
tachyons, in the representation (1,8„1). N24 no 1 satis-—— ——
fies (4.3) for ai ——0, a2 ——1 so one finds massless bosons in
the representation (8„,8„24„). Taken together with the
results from the pure Neveu-Schwarz sector we find for
VO=O that the gauge bosons fill out the adjoint represen-
tation of SO(32) while the tachyons form an SO(32) vec-
tor. Vo ——1 gives the SO(8) X SO(24) tachyonic model. In
similar fashion one can obtain the massless fermionic
states of these models by examining the Rii(NNNN)L and
Rz (RNNN)1 sectors (onl~ the latter appears in the
present case and only for Vo ——1).

Adding V to the vector space considered above we can,
in a completely analogous manner, find the physical spec-
trum of another set of models. Here we obtain the same
vector space for either choice of Vo, but one still finds
two different models distinguished now by the value of
ko2. For koq ——1 we again find the tachyonic
SO(8) X SO(24) model, though built with a quite different
spin structure from the case considered above. If ko2 ——0
the model is the tachyon-free SO(32) heterotic string.
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Bases 8 and 9 in Table II require somewhat more effort
to analyze, but the manipulations are completely straight-
forward. Cases 1 through 6, those bases built from "16-
vectors, " are easier to work out. In these cases all p~ ——0
and the value of Vo, 1) 1, may be chosen to be zero, since
V =V'+V also appears in the vector space and has all

I

the symmetry properties of V but with Vo ——1. Given
this, Eqs. (3.23) and (3.25) become

k)) ——0 or 1,
kii ——kii ——ka .

In turn (4.1) reduces to

Si, +sio+gki a =+ V,'n, (mod2).

(4.4)

(4.5)

qh ( h —1)+ (2q —1)(2'" ' '
) i2~ i'=240+ 2 ~ (4.6)

The spectra of these models can be considered in detail
just as outlined in the example above; here we restrict our-
selves to counting the number of tachyons and gauge bo-
sons. It is not difficult to consider bases 1 through 6
simultaneously. For this purpose define p to be the num-
ber of basis 16-vectors for the given case. Then h =2
is the "block size" in which all the spin structures must be
identified, and q =16/h is the number of such blocks in a
group of 16. Consider first the case where V is not in-
cluded in the vector space. The only sector in which ta-
chyons can appear for these models is NR(NNNN)L (all
ui ——0), no ——0 and g, , n; =1 [Nx(RNNN)L cannot be
obtained with 16-vectors]. With these restrictions, Eq.
(4.5) implies that the only n; which can be nonzero are
those such that V;=0 for all l =2, . . . ,@+1. The num-
ber of these, and hence the number of tachyons, is easily
seen to be h.

For the massless gauge bosons we must examine two
sectors, Nit(NNNN)r and NR(RRNN)L, all others give
only massive states or do not appear from our vector
space. In the former case we need all ai —0, no = 1, and

in; =2. To satisfy (4.5) two n;(i&0) can be nonzero

only if they appear in the same block, thus the total num-
ber of gauge bosons in this sector is qh (h —1).

Any nonvanishing combination of ai, 1+1, along with
ai ——0 gives spin structure in the N„(RRNN)J sector.
Since all such choices are equivalent we may count the
number of gauge bosons for the case ai =5i i and multiply
by the number of coinbinations, (2q —1), to obtain the to-
tal number of gauge bosons. For massless bosons we need
no 1 and +,. ,7n; =0. T——he first 16 fermions are broken
into q blocks of size h, each in the Ramond sector. The
total fermion number in each block determines the chirali-
ty of the ground-state spinor representation in that block.
To get the number of gauge bosons we must multiply a
factor of the dimension of the spinor representation
(2'" ' ') for each of the q blocks by the number of fer-
mion number combinations allowed by (4.5). Now (4.5)
places p constraints on the total of q fermion numbers
(one for each block) leaving 2~ i' allowed combinations;
thus the number of gauge bosons for a2 ——1 is
(2'"~ ' ')~2~ ~. Putting our results together, the total
number of gauge bosons for each model is

which gives, in order p =0, I, . . . , 5, the last six entries
of Table I. Strictly speaking for case 6, where h is one
and the dimension of the spinor representation given
above is 1/~2, one should be more careful and directly
consider the algebra of the Ramond zero modes, but one
finds that (4.6) is in fact the correct result (this is shown
in Appendix B).

Massless space-time fermions in these models arise only
from the Rz(RRNN)L sector. The counting of these
states is essentially the same as the counting of gauge bo-
sons in this sector given above. The only effective differ-
ence is that no may be either 0 or 1 so that the number of
massless fermions (beyond those in the graviton multiplet)
is twice the result given above,

2 —1)(2(h/2) —1)q2q —P+1 29 —P(2 1) (4.7)

Adding V to the vector spaces considered above gives
from (4.5) an additional equation:

no =1+gkoiQi (4.8)

For a~ ——0 this gives no ——I; i.e., there are no tachyons al-
lowed in the physical spectra of these theories. Upon ex-
amination one finds two distinct possibilities in these
cases depending on whether all of the koi vanish or some
are nonzero. In either case the counting for massless
states in the Nx(NNNN)L sector proceeds exactly as be-
fore. The difference arises in the number of allowed com-
binations of values of ai which give the Nx(RRNN)r sec-
tor. If koi ——0 for all 1 then the number of such combina-
tions is twice that found above so that the total number of
gauge bosons is

qh (h —1)+(2q —1)(2'" ' ') 2 +', (4.9a)

which turns out to be 496 for all five cases. If any of the
kM are nonzero then regardless of the particular choice of
kN, there are (2q —2) combinations of ai which produce
the NR (RRNN)L sector and so a total of

qh (h —1)+(2q —2)(2'" ' ')~2~ (4.9b)

gauge bosons. Remarkably this gives a value of 240 for
all the cases at hand, producing many copies of the
SO(16)X SO(16) model. ' Note as well that bases 1

through 6 in Table II are sufficient to generate all of the
models in Table I (aside from the type-II superstrings).
Bases 7, 8, and 9 generate only a subset, not including the
last three models.

V. DISCUSSION AND REMARKS

To maintain manifest covariance in the path-integral
formulation of closed-fermionic strings, it is convenient to
use the NSR formalism for the space-time fermions and
to express the internal-symmetry group in terms of
world-sheet fermionic variables. Invariance under world-
sheet superdiffeomorphisms, which include both re-
parametrization and local supersymmetry invariance, is
necessary to remove the timelike components of the string
superfield X". The measures needed in the definition of
the functional integrals, in general, break world-sheet su-
perconformal and Lorentz invariances. This is the origin
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of superconformal and Lorentz anomahes. The absence
of such anomalies impose stringent constraints on the
physically acceptable models. Superconformal invariance
requires the space-time dimension to be &=10, and the
number of Majorana-Weyl fermions in the internal-
symmetry space (for models with gauge symmetry} to be
32. The absence of global Lorentz anomalies imphes that
string models must be modular invariant. 9 In fact, modu-
lar invariance is the key ingredient to the ultraviolet fi-
niteness property of string theories. With superdiffeomor-
phism, superconformal, and Lorentz invariances, all po-
tential sources of anomalies are removed. Hence the re-

sulting string inodels should be completely anomaly-free.
In particular, space-time gravitational and gauge
anomalies are expected to be absent in these string models.

To obtain a sensible fermionic-string model, the space-
time fermions must have Fermi-Dirac statistics while all
internal-symmetry degrees of freedom and space-time bo-
sons must have Bose-Einstein statistics. This condition
plus one-loop modular invariance impose stringent con-
straints on physically interesting string models. As point-
ed out by Seiberg and Witten and others, these conditions
may also be sufficient to guarantee multiloop modular in-
variance. In this case our classification of ten-
dimensional closed-fermionic-string models is complete
provided we only consider periodic or antiperiodic boun-

dary conditions for the fermionic fields, (2.8) is satisfied,
and the world-sheet fermions in the internal symmetry
space remain noninteracting. While we have not yet ex-
hausted the possibilities for more complicated boundary
conditions for the fermionic fields, our results so far sug-
gest that Table I probably includes all models. 'i

Some of the models in our classification do not have
space-time supersymmetry and some have tachyons. The
absence of space-time supersymmetry implies that a
nonzero cosmological constant A will be present at the
quantum level, as, for example, has been explicitly calcu-
lated for the SO(16)X SO(16) model where A is finite and
positive. ' This clearly indicates that the dilaton tadpole
is not zero. The presence of tachyons, as well as the pres-
ence of nonzero dilaton one-point functions, are clear
signs of vacuum instability at either the classical or quan-
tum level. Since strings that are stable and remain in
D = 10 are physically undesirable, one may go so far as to
consider the presence of tachyons an/droa dilaton tadpole
as virtues rather than fatal flaws. It will be most interest-
ing to analyze the nonsupersymmetric string models to see
if there exist compactifications that result in effectively
a=4, %=1 supersymmetric models with realistic gauge
groups and fermion contents.

Dixon and Harvey have given a simple, elegant classi-
fication of fermionic string models based on the bosonic
formulation of the internal-symmetry space. Their ap-
proach, which classifies inequivalent shift vectors on the
group lattice, generates all the models except the Es
model. This is not surprising since in our analysis ail of
the models with the exception of the Es one have spin
structures of pairs of fermions identified so that the fer-
mionie variables can be easily bosonized. The Es model
involves only single fermions and so does not readily
emerge from a bosonic formulation. Dixon and Harvey

observe, however, that there is one other possible set of
models involving the outer automorphism of EsEs,
which exchanges the two Es's. The Es model generated
by the spin-structure method may belong to this set. It
will be interesting to understand the relation between
these two different but complementary approaches.

Finally it should be pointed out that new closed-
fermionic-string models in fewer than ten dimensions may
be constructed by an extension of the method described in
this paper. It should be obvious to the reader that our
analysis is a generalization of the method of Gliozzi,
Scherk, and Olive. ' A further generalization allows us to
construct, among other models, N =1 supersymmetric
chiral string models in four space-time dimensions. The
results will be presented elsewhere. "
¹teadded. Lance Dixon and Jeffrey Harvey informed

us that they have also constructed the Es model from
their approach. We thank them for useful discussions.
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Here we demonstrate that in order to satisf~ Eqs. (3.9),
(3.11), and (3.12} the values of b for which Cs is nonzero
must form a linear vector space over the field Zi.

First note that if only one of the il, is one then (3.12)
implies that b n=0 for all b, i.e., n=0. Similarly if only
iI„, and i), are nonzero then one of them again must be

0 0

0
n2

iso and Eq. (3.9) becomes

8
32

( 1) ~i=1 iCO 1 ( 1)
'

i

In other words,

Cb ——0 unless b ni ——0 (mod2) .

(Al)

We have a linear equation for the allowed b over the field
Z2.

Now if some number M of the i)„, are equal to one then

(3.12) becomes

M bg ( —1) '&0 for all 1.
/=1

(A3)

In general only some number s of the exponents in (A3)
will be linearly independent functions of the b; (mod2);
designate these as B~, j = 1, . . . ,s. %'e wish to show that
the left-hand side of (A3) (which we will call F, ) must be
of the form

r,(a„.. . ,a, )= ff [1+(—1) i]. (A4)
j=1

If this is the case then Ci, will be nonvanishing if and only
if b satisfies

Bi 82 ——. . ——8, =——0 (mod2) . (A5)

This is our desired result, the allowed b being the vector

The authors would like to thank P. Ginsparg for useful
discussions. This work was supported by the National
Science Foundation.

APPENDIX A
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space of solutions of the system (A5} of s-independent
linear homogeneous equations on Z2.

Our proof of (A4) proceeds by induction. From (Al) it
is clear that (A4) holds for s =1. Assume that it holds
for s =N —1. For s =N (A3) can be written

( —1) G(1,B2, . . . ,B~ i))0
for all BJ, j=2, . . . ,N . (AS)

For this to be true for B~=0 or 1 we must have

G(1,B2, . . . , Bpg i)=0
for all BJ, j=2, . . . , N —1 . (A9)

But we can always write

G=G (B02, . . . , Bi» i)+( —1) 'Gi(B2, . . . , Bw i),
(A10)

so that (A9} implies Go ——Gi or

G =[1+(—1} ']Go(Bz»N
There was, however, nothing special about 81 so we must
in fact have 6=F~ i so that the left-hand side of (A6)
becomes I'~, the desired result.

Finally we note two other results assumed in Sec. III
which follow immediately from the present analysis.
First from (3.11) if i)n is nonzero then n has an even num-
ber of nonzero components so that the vector b with all
components equal to one is always present in the vector
space of allowed solutions of (A5). Second it follows from
(3.9) and (A4) that

I Co I

=
I &b I

=2 " (A12)

G(Bi, . . . , B~ i)+( —1) G(Bi, . . . , BN i)) 0

for all BJ=0 or 1 . (A6)

Comparing (A6} for B~——0 and 1 we see that G satisfies

G(B„.. . , B~ i) &0 for all BJ, j= 1, . . . , N —1, (A7)

So G is the solution to (A3) for S =N —1 which by as-
sumption takes the form Fz i. Now if B& ——1 then F~
vanishes for every choice of Bi, j=2, . . . ,E —1, and
(A6) gives

~2 V9 V10 716 (83)

The spinor representation of SO(8) X SO(8) is (8„8,)
which has 64 states. For p =3, we have

~3 y1 V2V3Y43 9Y103 11V12

Comparing with (82), we see that

~3= 'V13 2'Y33 4=a =+ 1

Comparing with (82) and (83), we find that

Vs/6V73 8 3 9Y10V11Y12 Y133 143 15V16

(84)

(86)

Since the dimension of the spinor representation of SO(4)
is 2, the number of states is 2(2 ) =32 where the first fac-
tor comes from the two choices of a. For p =4, we have

~4= X1r2zsrer9X10X13r 14= &

We can freely choose

r1r2=&

3V53Y6 c

3'A'10= d

where b, c, d =+1. Then (81) to (87) give

y'3Z4=a&

p7'Vs =aC,

y11y12 ——ad,

X13r14=&d

&15'Y1e=abed .

(89)

Since the spinor representation of SO(2) is 1, the number
of states is given by (choices of a, b, c, and d) 2 =16. Fi-
nally we come to the p =5 case, where

the notation of (2.11)]. This means the I (p =1)=1states
are physical. The dimension of the spinor representation
of SO(16) is 128, which is the number of states for the

p = 1 case. For p =2,

I 2=X1X2 ' r8=1

Equations (81) and (82) together imply

if b is in the vector space of solutions of (A5) (and van-
ishes otherwise). I 5 V1 Y3 Y5 Y7 Y9V11713715 (810)

r, =r(p=l)=y, y . y (81)

APPENDIX 8

Here we derive the factor (2'"i ' ')»(2» i')=2s i' (for

p =1,2, . . . , 5) that appears in Eq. (4.6) and in the pro-
cess clarify our use of formal expressions such as (2.11b}.
For the purpose of constructing the internal-symmetry
group with fermionic variables, we use the reducibility
property of the Ramond sector by employing %'eyl projec-
tions of the 32 internal Majorana-Weyl fermions. For the
basis vector U, the Weyl projection is —,

' (1+I ), where

Iy2 —iy2 rsI =0 (811)

[y y. y. y. „r,]=0 (812)

for /=0, 1,2, 3. For example, let us consider the eigen-
states of yiy2,

In contrast with the earlier cases, y2; iy2; (i =1,2, . . . , 8)
from the p =4 case anticommutes with I 5.

Here y; is the zero mode of the Ramond fermion X;[do in yiy21+&=+ I+& (813)
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rl) zl 51+&=—1 eirzI+&=+1 sI+&,
that is

(B14)

Then (1/W2)( [+&+
~

—&) is an eigenstate of I z with
eigenvalue 1. In genera1

1—(
~
b,ab, c,ac, d, ad, bcd, abed &+

~
b,—ab—, —c, —ac, —d, ad,—bc—d, ab—cd &)

2
(B15)

is an eigenstate of 1 q. A simple counting gives —,(2 ) = g states. Therefore the ( 1 iv 2) dimensional spinor representation
can be interpreted as this projection of one component eigenstates of yz;, yz; to an eigenstate of I 5.
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