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%e review the conditions for consistent propagation of closed strings in background fields and

discuss the connection between confofmal invariance and the vanishing of the renormalization-

group P functions for the generalized cr model on a curved world sheet. The P functions with up to
four derivative terms are found to be compatible with graviton and dilaton equations of motion pro-

vided the former are computed in a nonminimal subtraction scheme. Finally, vertex operators in

background fields are discussed and it is shown that the anomalous dimension operator is given by

the first variation of the P function to all orders in a'.

I. INTRODUCTION

The covariant functional-integral approach to string
theory introduced by Polyakov' generalizes naturally to
arbitrary (curved) backgrounds, and leads to the investiga-
tion of two-dimensional o models. The relationship be-

tween the latter and the string has been used by several au-
thors 5 to discuss the effective low-energy field equa-
tions generated by the string, for its massless modes. In
this paper we will follow closely the work of Callan, Mar-
tinec, Perry, and Friedan, to investigate some of the
theoretical questions associated with this approach to
string theory.

The interpretation of the two-dimensional (2D) general-
ized tr model with D —o fields as a string depends on the
existence of a Virasoro algebra. The latter is generated by
moments of the 2D energy-momentum (EM) tensor so
that in the first place we must require the quantum o
model be well defined on a curved world sheet, thus per-
mitting the definition of the EM tensor. However (as we
shall discuss in detail in Sec. IV) we need (nonconstant)
counterterms proportional to vgA' ' and thus it is
necessary to add the dilaton term 4v g R' ' to the model.
In the second place as pointed out by Callan, Martinec,
Perry, and Friedan, the Virasoro algebra exists provided
that the "P functions, " associated with the couplings of
the generalized tJ model and occurring in formula [Eq.
(2.2)] for the trace of the two-dimensional energy-
momentum tensor, vanish. The detailed argument for this
(which has not so far been published in the hterature) is
given in Sec. II. The connection between these "P func-
tions" and the renormalization-group P functions (for the
case of the cr model on a curvtxl world sheet) has also not
been clarified before and we will explore this in Sec. III.

The most important observation in the work of Callan,
Martinec, Perry, and Friedan is the relationship between
ihe conditions for consistent siring propagation and the
equations of motion for the background fields. In that
work this connection was established only to lowest order
in a'. In Sec. IV we investigate the validity of this con-
nection to the next order in o." and find that it can be es-
tablished provided the P functions are computed in a
nonminimal subtraction scheme. Of course this is again a

phenomenological observation [to 0(tz' )] and we are un-
able to offer a proof of this relationship to all orders in a'.
Another important observation was the existence of a
Bianchi-type identity for P functions which was shown to
hold to the lowest order. In Sec. V we show that if the P
functions are derivable from an effective action then this
identity is a simple consequence of D-dimensional general
covariance. Finally in Sec. VI we discuss, following the
work of Callan and Gan, the construction of vertex
operators in a curved background and show that to all or-
ders in a' the anomalous dimension operator acting on the
fluctuations around the background configuration is given
by the first variations of the P functions corresponding to
these excitation modes. This means that not only the
background configuration but also the field configuration
defined by background plus fluctuations, gives rise to a
two-dimensional conformal field theory.

II. P FUNCTIONS AND CONSISTENT
STRING PROPAGATION

The action for the generalized tr model is

I=, f dzz[ —,'egg ~8~"Btix"G„„(x)

+ tz'v g R ' '4(x) + ]

(2.1)

In the above we have coupled the "external" metric
field G&„(x) and the dilaton 4(x) and the ellipsis
represents all other fields which can be coupled in a 2D
repararnetrization-invariant and D-dimensional generally
covariant manner. x"=x"(z) (p=O, . . . , D —1) defines
the embedding of the world sheet in the external manifold
X, and ga& is the metric on the world sheet with 8' ' its
curvature. Note that the dilaton coupling explicitly
breaks the classical Weyl invariance of the first term
(under gatt~e &gott) and is therefore introduced at 0 (a').
Henceforth until Sec. VI we will ignore ail terms
represented by the ellipsis in (2.1).

Let us choose (complex) conformal coordinates on the
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world sheet which is taken to have a Euclidean metric:

ds =e 1'dzdz, g = —,'e2~, g =g, ,=O. (2.2)

Covariant derivatives on totally symmetric complex ten-
sors of rank n are given by

V =g a, =g V„V,=(g )"a,g ". (2.3)

Under traceless variations 5g, 5g [=—(g ) 5g-„-] we

have

scale. The renormalizability of (2.1) implies that I com-
puted in perturbation theory as a functional of G&„,4, is
finite in the limit n~2.

The variational derivatives of I with respect to the
metric then define a (finite) energy-momentum tensor in
(renormalized) perturbation theory:

1 6I = J [dg] ~ e-'
g 5g g 6g

5V'= —,'5g V', +—V, (5g ),
2

(2Aa)
(2.7a)

5V, = ——,'5g V*+—V'(5g ),
2

5R' '=V'V'5g —V' V 5g

(2Ab)

The quantum effective action for the e model (2.1) is
given by

T= (e)zl i/ 5 gz xz

(8 )» ((8 )») is the expectation value of the energy-
momentum tensor (trace) operator in the background
y(z). The diffeomorphism invariance of I gives

I [y g]= f [dkl& "'lipi (2.5) V'T~+V, T — V,y "(z)=0 .
5y "(z)

(2.8)

where it is understood that the integrand is defined by the
background-field expansion with g the quantum field and
y(z) the classical field which is usually taken to obey the
classical equation of motion. Thus x"=y"+P'
+ —,'Pg I",i,(y)+ . The instruction on the right in

(2.5) tells us to compute only connected one-particle-
irreducible (1PI) graphs.

Let us define the renormalized metric and dilaton fields
by

Consider this equation at a point z where V',y"=0 [alter-
natively, choose y(z) to be a solution of 51 /5y=O], and
take the variational derivative 5/5g at a point w. From
the first term we have using (2.7a) and (2.3) the expression

"V( ~88~~)»+(8~~)»Vg5 (z, w) ——,
' V~(e~~)»5i(z, w),

where

5 (z,w)= 5 (z —w)

g 6
n 2 R 11Mv TZPv

Gp„=p Gp„+ 2+ 2+ '''
n —2 (n —2)2

(2.6a)
is the invariant 5 function.

On covariance and dimensional grounds we may write

8 =p (x)vgR' '+p„„(x)V,x"V,-x" . (2.9)
plf —2 +R +

n —2 (n —2)~
(2.6b)

where the counterterms T; are power series in a' and are
functionals of G„"„and 4 . p is the renormalization

I

[Note that if we had kept the additional terms represented
by the ellipsis in (2.1) there would be corresponding terms
in (2.9).] Substituting this expression we have, from the
second term of (2.8),

V, (p (x)[ V5 (z,—w)]+ ,
' p„„(x)V,x"—V,x'5 (z,w))»+V, ((p„,V,x"V'x "+p ~gR' I),e

Let us now take the flat-world-sheet limit p~O. Using
the relation

—8, =5 (z —w)
1 1

7T Z —N

we find that the necessary and sufficient condition for the
validity of the relations

(e..&, (v.e..&,

4(z —w) (z —w) 2(z —w)

+finite,

(8 8 ) =finite

[which are equivalent to the Virasoro algebra (the second

of the above conditions, which is equivalent to
[L„,L„]=0, is obtained by deriving (2.9) with respect to
g~~, L„+ (L„) being the Virasoro generators for right
(left) movers), see Ref. 10) is that p"'"=0 and p@——c nuin-
ber.

The above discussion clarifies two points. The first is
that in order to derive the Virasoro algebra (as an operator
statement) one has to consider nonconstant background
y"(z). Second and more importantly we see the role of
world-sheet curvature. In order to construct a Virasoro
algebra from (2.1) one has to take variations 5/5g
(which takes the metric out of the conformal class) and
hence the model must be well defined on a curved world
sheet. As we shall see in the next section this entails the
presence of (nonconstant) counterterms proportional to
v gR' ' and hence necessitates the addition of the dilaton
coupling &gR' '4.
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I =r[6„"„,@,g p,y"] . (3.1)

As discussed in Eqs. (2.6a) and (2.6b) we use dimensional
regularization 2~n =2+a. Under a conformal variation
5g~p 25p——g~p we have

5(~gg~p)=(n —2)v gg p5p

III. COUNTERTERMS, RENORMALIZATION-GROUP
EQUATIONS, AND CONFORMAI. INVARIANCE

In this section we discuss the connection between the
conformal "P functions" introduced in (2.9) and the
renormalization-group P functions. As we shall see this
relationship is not quite as straightforward as in the case
of ordinary renormalizable theories. Consider (2.6) with
I taken as a functional of 6&„,4", the background field
yI', and the two-metric g:

where

D.a~~=v.a~~+r~.a~ a~ .

(3.2)

(3.3)

From (3.2) we see that the trace anomaly has a short-
distance quantum piece as well as a classical piece coming
from the explicit breaking of conformal invariance, due to
the ~gR4 term in (2.1). In fact using the equation of
motion

Vgg pD a~~=V gR"'V~C(x)

inside the functional integral we have, from (3.2),

5(~gR' ')=(n —2)vgR5P —2(n —1)v gg PV Vp5P

so that we obtain, from (2.1),

=(n —2)L — ~gg P
5p(z) 4~

x (a~~a~~„V„++a„CD.ap ~)(z),

= f [d ] ', j —,'&gg pa~"apx"[( —2)6„„—4a'( —1)V„V„e]
5p 4m''

+a'v g R ' '[(n —2)4 —2a'(n —I )(V4) ] I . (3.4a)

The short-distance contribution can be reexpressed using renormalization-group methods. We observe from (2.6) that
the first term on the right-hand side of (3.2) can be rewritten as aI/ap(z) where 5p(z) is a local variation of the renor-
malization scale. Hence we have for the conformal variation of the effective action

where

5r ar ar
=51(z) ="ap(.)+ ap(. )

' (3.4b)

aI I 1

ap
—:f [dx]e, t v gg pa~ "apx "[ 2a'( n —1—)V V„Ci]+a'v g R ' '[ 2a'(n —I—)( V@) ] I .4m' p v (3.4c)

Now since the effective action is independent of the re
normalization scale we have f [dy] 2V„V„4(y) +(V4) =0 .

5I , sr
56„„y

(3.8)

d I aI G 51 5I

where

The left-hand side is precisely [1/2(n —1)]aI /ap [see
Eqs. (2.S), (2.1), and (3.4c)]. Hence from (3.4b), (3.8), and
(3.S) we have

z = f [dy~p
IiV ap

f [d ]
a4"[y(z)]

3p

, (3.6 )
56'„[y(z) ]

(3.6b)
5@ [y(z)]

G 61
cl PPv 56 g (3.9)

In the above [dy] is defined to be an invariant measure.
Consider now the diffeomorphism

5y"=V"4(y), 56„,=V„V„4, 54= V"4V„4 . (3.7)

Since dimensional regularization preserves the D-
dimensional general covariance of the theory, we have
(choosing y~ to be a solution of 5I /5y" =0)

where the p functions are the renormalization-group p
By rewriting (3.8) in terms of 6„„,@n we see

that one may add a term proportional to 2V„V„@[(V@)z]
to p&„[p@]. One may of course consider more general
diffeomorphisms 5y" =U&56„"„=2V~„U„~, 5p" UliV @&—
with U" and arbitrary vector field on X. This would mean
that the P functions admit the transformations
P&„+P& +2V~&U„~ and g—~g +U&V&4 We will mak. e
use of this in the next section.
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IV. P FUNCTIONS AND STRING EFFECTn E
ACTION TO O(a'~}

To leading order in o," the following results have been
obtained for the p functions:

(2a') 'P„„=—R„„2V—qV„4,

a' 'P =—+27 4—2(V@)
2

(4.2)

In the above we have put a=26 and have included the
contribution of the reparametrization ghosts to cancel the
free field theory conformal anomaly. A.iso in the above
and in what follows we will omit the superscript R on re-
normalized fields.

Callan, Martinec, Perry, and Friedan showed that
Hnear combinations of these functions are variational
derivatives of an action I which is in fact the low-energy
effective action for the closed string. The vanishing of
the P functions was thus shown (to leading order) to be

equivalent to a set of equations of motion for the back-
ground fields G&„,4. Let us now check this to the next
ordeI' ln Q! .

%'e have to work out the higher-order contributions to
pz„and p for the bosonic o model (2.1). The a' expan-
sion is in effect a low-energy expansion and we will be in-
terested in the four derivative terms in the field G&„and
4 in the effective action for these background fields. We
thus need to find the two-loop contribution to P„„and the
three-loop contribution to p . For this calculation we
need the normal coordinate expansion of the action I and
the one- and two-loop counterterms up to terms which are
sixth order in the quantum fields. Fortunately for the
three-loop calculation of p, we need only terms which
are independent of y"(z).

The quantum field P is the tangent vector to X at y"
(chosen to be classical solution) in the direction of the geo-
desic joining y" to x". It is convenient to define the di-
mensionless fields by the replacement @~V'4na'P. We
then have the following expansion:

f d"z(-,'v gg pa~~a@ "G„„+av gR"'e)+-,' f d"zv gg.pD.g~DppG„„4+a'

"z —, gg ~ ~" "
Rpg~ +a' gR' ' —2VpV4 " "

+v'4~a f d"z[v gg p( ,'a~~-a@"g'ppR„...„+ ', a~~-Dppg'pR„„. „)+avg R"'@pe"-,' V'„V„V,C ]

+4~a "z gg P
214 dP "k ' Rpk..„s+R .pR~.5.

+ ,' B~&DpPg"—PPR„„,+ , D PDpP—( PR„i. „]

+a MgR'"PPg'P —,', V„V„V,V.C ]

+(4~a')' f dz[ ~v gg pD pDppg ppg (Ri i.o~ s+ 9R(~iRg~s~)] . (4.3)

In the above all background fields and their derivatives
are evaluated at the point y on S. %e have only kept
terms which are relevant for the calculation of two-loop
counterterms in G„„and three-loop counterterms in 4.
In computing P@ one has to expand

v gg P=5 p hp —,'h~y5 p+—. . —=5 p+h p,
with h~p treated as a weak external field.

The counterterm action to 0(a') computed from (4.3)
lsll

which will give rise to the diagram in Fig. 1.
This diagram is of crucial importance. It is precisely

this which gives the leading-order counterterm to the dila-
ton couphng. The contribution to T~ comin from (4.3)
is zero as observed by Fradkin and Tseytlin. Including
also the dilaton contribution we thus have, after making
use of the ambiguity in the counterterm T&„[i.e., replac-
ing R„„~R„„+27&V„4 in (4.4) and adding the
corresponding term to Ti —see Sec. III],

I,', = — f d "zV g g Pd~ "dpx "R„„(x) .
n —2 4m

(4.4)

In order to compute the two- and three-loop graphs we
need to expand this up to quartic terms in g. We will not
write all the terms but it should be remarked that this ex-
pansion contains a vertex

counterterm vertex, ' derlvgt)ve
1 I f Vgg PD gDpg~R;~(y(z))d"z (4.5)

FIG. 1. Diagram contributing to T~ .



3764 S. P. DE AI.&IS

T, "'=—R+2a V'++2(VC )'.
2

(4.6)

The two-loop counterterm T&&„' has also been calculat-
ed by Friedan" and the result is

I2
6(z] iLcrg

2
(4.7)

In order to compute the quartic derivative terms in g
a three-loop calculation is necessary and thus apart from
interaction terms coming from the expansion of these
there are also terms coming from the counterterms T)„'„',
T2„'„' (i.e., the two-loop double-pole term) T) ' '.

It is easy to see that no Ricci scalar squared terms can
arise in P~,. In fact no such terms can contribute to any
of the counterterms. This follows from the structure of
the normal-coordinate expansions. Counterterms involv-

ing R» are indeed present but leave g unaffected since
they are not simple pole terms. (This is a scheme-
dependent statement valid in the same scheme as that
used to compute P„„.) This follows from an examination
of all diagrams generated by (4.3) and the one- and two-

loop counterterms and observing that there are no corn-
binations of double poles which would give simple poles.
Thus the only (pure gravity) contribution to g in this or-
der is a R»i term which comes from a diagram similar
to Fig. 1 together with contribution (the direct calculation

of these terms may be difficult because of problems asso-
ciated with infrared singularities' ) from vertices in (4.3).
Thus we may write

a' AT ' '= —R R"' +O(V@) .1
2 2 Pvi.cr (4.8)

Now let us try to find an action which yields the P
functions obtained from these counterterms,

(2a—') '13„„=Rq„+2VqV„4+ R„—),~,R„P 0'f' Y

+O(V 4R, V 4), (4.9a)

a' 'g =—+2V 4 2(VC—)) +a'AR„„)„~R""R
2

+0( V' R, V'CR, V'C),

as equations of motion. [Note that
r

P= 1+A +b T(A 'G„„,b '4 )

(4.9b)

except that we have made use of the ambiguity discussed
in Sec. III to add —4a'V„V„C) to P„„and —2a'(V(I)) to
g .] The (tree-level) string effective action must take the
form

S[4,6»]= f d x e ~GL [4,6]
=(2a') ' f d x e v 6 [R+4(V&) +aRq„i~R"" +bRq„R""+cR +dVqV„&R""

+e V' (IiR +fV R +0 ( V4) ] . (4.10)

The exponential coupling of the dilaton arisesi from the term (1/4') f MgR( )4 in the o model since f ~gR( )=4nX
and 1=2 for the sphere. The first two terms are those found in Refs. 2 and 3. The quartic derivative Lagrangian is the
most general possible one when account is taken of the Bianchi identity V"R„„=—,VQ and the possibility of relating
certain terms by partial integration. We have then the following variational derivatives:

= —2e tL[4,6]+4[V 4—2(V4) ]]+V V,(dR""+eRG""),

=e [Ri +46' (V4) +2(V)(V 4—V 46i ) —ZaR"„iQ„+2bRi,R'+2cRi R6 56~

(4.11)

+2dV(iV"4R )„+eViV C)R+f(V)(V R+V' Ri )]

—4a(VqV(xR )" OR)„~)+2b(2—V"V(gR )q
—CIR~i 6), V"V"R„—)

+c (2V Vi —26' Cl)R ——,
'
Gi~e L [4,6] . (4.12)

In the above we have again omitted pure dilaton quartic derivative terms and put R„=e R„„.Now in order that the
leading-order calculation of Pz P@ agrees with the equations of motion from S we must have

5S 1 6 5S
gGPv 4

1 5S
4 54

(4.13)

(4.14)

The question is whether these equations remain valid up to quartic derivative terms. Using the expression for P» we
find immediately from (4.13) that b =c =0 and a'A =a = —a'/4. This is consistent with (4.14) and the expression for
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p+, because of the absence of R&, and R terms in the latter. The terms involving covariant derivatives of the Ricci ten-
sor in (4.12) would seem to disagree with the p functions but we have to allow for the possibility of adding finite 0(a )

counterterms in computing the p functions. Thus suppose we make the change G„„~G& +4z'R„„and also make use
of the ambiguity under diffeomorphism mentioned at the end of Sec. III. Then we have to change the p functions in the
following way:

I

(—2a') 'pq„= —(2a') 'p G~„~Rq„+ —A-(ViV+q+ViV~R" OR—„„V„—VQ)+ R—qi,R„'+V„u„+V~„,

a' 'P =a' 'p 4~—'R ——R i R"" +u"V 4.
8p

pv p p

Now choosing u& ——(a'/2)V&R we find that (4.13) and
(4.14) are satisfied with A, = —,',u„=a'V„R.

The effective action that we find [Eq. (4.10} with
a = —a'/4, b=O, c=O, f=a'/4, d =3a'/2] is not of the
ghost free -form' R„„i 4R„„—+R . Indeed this action
has a ghost at p =a' ' but this is clearly an artifact of
our low-energy expansion (which is expected to be valid
only for a'pi gg 1 ).

Recently Callan, Klebanov, and Perry have also com-
puted this effective action from a somewhat different
method. Instead of computing p@ directly they use the
expression for p„„and the Bianchi identities and the
lower-order equation of motion to show that V"p„„=V„F
for some scalar functional I'. They then identify p@ with
F. The resulting effective action agrees with ours up to
terms which can be obtained by a field redefinition. This
also agrees (up to field redefinition) with the direct S-
matrix calculation of Neopomechie. '

1 5S gg, 5L
~G 5G~" 5G~"

(5.2a)

1 5S L ~ „ dL

~G 54 „ i BVi+
(5.2b)

From the normal-coordinate expansion we can see that
p„„will not have any terms proportional to G„„so that
the vanishing of the p functions is equivalent to the equa-
tion of motion only if L-p@ and 5L/56""-p„„with
gV"[e (Bp /BV"4)]=0. (The above argument has
also been given in Ref. 7.} Thus we may expect to have to
all orders equations of the form (4.13) and (4.14), with the
p functions being suitably defined by some nonminimal
subtraction prescription as discussed in Sec. IV. Now
under a diffeomorphism 5y"= V" (with V" an arbitrary
vector field). We have 5G&„2V~&V„~ ——and 54=V"V&4
and the invariance of the action

V. THE "BIANCHI IDENTITY" FOR P FUNCTIONS 0=5S= J d y 2V„V +V"V„4
5G„„

(5.3)

To lowest order in o.' Callan, Martinec, Perry, and
Friedan found that the two p functions satisfy an identi-
ty of the form

V~ = V "P„„2V"4P„„.— (5.1)

S = I d y~Ge +L [G„„,Vz@] .

This follows from the general form of the string loop
expansion where e serves as the coupling constant, and
from the fact that in the normal-coordinate expansion 4
occurs only through its covmiant derivatives. Now we
have

This identity implies that if p„„=O,p is a e number as
would be required by the Virasoro algebra (see Sec. II).
Furthermore it means that if the graviton field equation is
satisfied the dilaton field equation is automatically satis-
fied. It is then important to establish whether such an
identity is valid to all orders. In the following we shall
show that if the p functions are derivable as gradients of
an effective action [as in (4.13) and (4.14)] then the above
identity is a simple consequence of the diffeomorphism
invariance of the action.

As argued in Refs. 3 and 4 (see also Sec. IV) the string
effective action must have the general structure

gives us from (4.17) and (4.18) and integration by parts
the identity (5.1). It should also be noted that irrespective
of the connection with p functions the equation of motion
for the dilaton is automatically satisfied when the gravi-
ton (and other fields in the effective action not considered
explicitly above) obey their equations of motion.

VI. VERTEX OPERATORS IN BACKGROUND FIELDS

In fiat space the S-matrix elements are given by corre-
lation functions of dimension two vertex operators. The
spectrum of string fluctuations in flat space is determined
by these operators. However a realistic string theory must
be formulated in curved space and hence it is necessary to
discuss the construction of vertex operators in a general
background which allows the consistent propagation of
the string. Such vertex operators will determine the mass
spectrum of the compactified theory. The conditions that
these vertex operators have to satisfy (in a background
which has vanishing p functions) have been recently dis-
cussed by Callan and Gan. They explicitly calculate in
perturbation theory the anomalous dimension operator for
the massless fields, and find that this operator is essential-
ly the variational derivative of the corresponding P func-
tions. Furthermore they conjecture that this relationship
is valid to all orders in a-model perturbation theory and
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for the massive fields as well as for the massless fields. In
the following we give a simple argument proving the va-
Bdity of these conjectures.

I.et us consider the fully generalized o model, where in

addition to the couplings explicitly written down in (2.1),
we allow all possible terms restricted only by world-sheet
reparametrization invariance and D-dimensional general
covarlanee. Such terms would have the general structure

f d'zV'g(z)V[x(z)]= f d'zing(z)H„. . . „[x(z)]V"' ""[ax(z),g(z)], (6.1)

where V ' " is a function of the derivatives of x and the 2-metric g. For the massless fields G&„8&„,and 4, the
V"' " are, respectively, g ~8~"Bpx", d'~8~"B~", and vgR( '. For the tachyon, V"' " is just unity. For the
first positive (mass) level we have the following possibilities for V:

H„„,.a~~aI} "a+'5~ g I'gr', H„„„V.a~~a~"a~'g ~g",
H„'„,V.a~~a~ "a~"g rgl", H„,V.a~~w, a~ "g"g&,

H„„a.a~~a„a~ "g.~g",
H"„a~&a~"g ~R"' H V.a~~g ~R"'H(R'")'

As stressed by Callan and Gan (and also by Tseytlin' }
one should in general expect mixing with lower dimension
operators having R'2' factors. In fact in terms of o-
model couplings, arguments similar to the ones given for
the dilaton couplings (@~gR) given in Sec. IV can be
generalized to justify such terms on grounds of renormal-
izability. Of course such (naive) dimension four (and
higher) operators are not superficially renormalizable but
the point is that since we add all possible terms allowed by
the symmetries of the theory (i.e., including R' ' terms in
a curved world sheet) the model is a renormalizable one.

The arguments of Secs. II and III would then apply and
a P function may be associated with each vertex V. Thus
the trace formula (2.9) and (3.9) is generalized to

(6.2}
l

The multiparticle emission vertices corresponding to S
matrix elements in flat space are given by the correlation
functions

S(i(, . . . ,i~)= f ff d z; (g; )'~

x (5V(i, ) 5V(i }), (6.3)

5 V'= 5H„",'. . .„V(;I— (6.4)

S(i(, . . . ,iN)= g f 5H"'
(,)

I [[H'I,g]5H" 0 =Ho

(6.5)

where I is the 2D effcetive action for the model and the

with 5H being a fluctuation of the field H'. The correla-
tion functions (6.3) can then be written as the variational
derivatives of the fully generalized (T model:

0

= g f 5p„", . .„„«„', (6.6)

using (6.2). Thus the condition for the conformal invari-
ance of the particle-emission vertices is that the variations
of the (33 functions around a conformally invariant back-
ground should also be zero. These give a set of equations
of motion for the fluctuations which reduce in the trivial-
ly conformally invariant fiat-space background to the usu-
al mass-shell and gauge conditions of conventional string
theory, which have been discussed by Weinberg from the
functional-integral point of view. ' In fact it is easily
checked from the graviton dilaton sector equations
5P =0,5g =0 that one gets for this case the usual gravi-
ton vertex and the dilaton vertex discussed in Ref. 17.

A question may arise at this point to the consistency of
a nontrivial background in which only the massless modes
condense. Since as we have just seen the background
fields must satisfy an infinite set of coupled equations
P„".. . &„——0. However it is easily seen that all these P
functions for operators whose (naive) dimension is greater
than two are trivially zero when a11 massive fields are set
equal to zero. This follows from a power-counting argu-
ment which shows that the diagrams involving only ver-
tices with massless fields ( G&„, (Ii, and 8&„)do not contri-
bute to the renormalization of operators whose dimension
is greater than two. In other words, the P functions for

variational derivatives are to be evaluated in a background
which is conformally invariant, i.e., P(HO)=0. The con-
formal invariance of the functions S(i(, . . . , i(v) then
gives us
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the couplings of the massive fields are at least linear in
such fields and hence vanish when the latter are set equal
to zero.

The conditions 5P'"=0 are equivalent to a weak form
of the standard Virasoro conditions. The easiest way to
see this is to use the fact that in Becchi-Rouet-Stora-
Tyutin (BRST) quantization the condition for conformal
lnvarlance is equivalent to the nilpotency ( QBRsT

——0) of
the BRST charge. '

Let us recall that the BRST charge is given by [using
the world-sheet coordinates defined in (2.3)]

QsRsT = f «&'(&)[C(&)+ 2 4(&)l .

In the above c' is the reparametrization ghost, 8" is the
energy-momentum tensor for x" [see (2.7a)] and 8 is the
ghost energy-momentum tensor. All that we need to use
about the latter is that the ghost system is free so that
under a variation of the fields H' we have

5QBRsT = f dz c (z)5tPzz

Now for a conformally invariant background H =Hp
[P'( I Hp I ) =()] we have ( QiiRsT ) =() where QaRsT
=QaRsT(Hp). The condition for conformally invariant
vertex functions 5P'=0 implies that the o model with
H =Hp+5H is also conformally invariant so that

(Qp+5Q)'=0
which implies, to leading order in the fluctuations,

IQp»Q I =0
As discussed, for instance, in the second paper of Ref. 10
such a condition is equivalent to a weak form of the
Virasoro conditions.

VII. CONCLUSION

There are two major issues which need further discus-
sion. One is the validity of the connection between P
functions and string effective actions (4.13) and (4.14) to
all orders in a'. %e have shown that even to second order
in a' it is valid only when finite 0(a') counterterms are
added to the original action. Presumably this persists to
all orders so that the D-dimensional metric 6""and other
fields which enter in the string effective action are related
to the couplings of the rr model only after the addition of
a series of finite counterterms. There is also the puzzling
question of the relationship of this method of calculating

the effective action to the direct method proposed by
Fradkin and Tseytlin. The latter take the rr-model effec-
tive action I [Eq. (2.6)] and integrate it over the confor-
mal mode p. However there seems to be no clear prescrip-
tion of how to do this integral and indeed the p depen-
dence of I (unlike in the case of a free theory) is extreme-
ly complicated. In a recent paper' Tseytlin has proposed
fixing the conformal gauge and dropping the p integral.
However, it is unclear to us whether this leads to a con-
sistent string picture. On the other hand, if as Tseytlin
says (quoting a result due to Zamolodchikov) the rela-
tion between P functions and effective actions is more
complicated than (4.13), (4.14), i.e., is of the form

g Ir;J (H)13J[H]=5I /5H',

where [H) is the set of background fields and v,z is a non-
degenerate matrix which also has to be computed order by
order in a', then the simple connection S = f e P@ is
lost. Of course it could be the case that Ir;J is simply the
differential operator that effects the D-dimensional fiel
redefinition (addition of finite counterterms) discussed in
Sec. IV to 0 (a' ).

The other major question is the effect of string loops.
Naively it might be assumed that P functions being short
distance effects are unaffected by change of world-sheet
topology. However in a recent very interesting work it
has been shown by Fischler and Susskind ' that small
handles do affect the P function. This may resolve the
question of how the equations of motion from an effective
action„which must certainly contain string loop terms,
remain consistent with the condition for conformal invari-
ance,

Note added. After completing this work I received a
paper prior to publication from Tseytlin in which issues
similar to those considered in Secs. III and IV are dis-
cussed.

ACKNO%'LEDGMENTS

I would like to thank Sief Randjbar-Daemi for colla-
boration in the formative stages of this work, and Willy
Fischler, Carmen Nunez, Nobuyoshi Ohta, and especially
Joe Polchinski and Steven Weinberg for valuable discus-
sions. This work was supported in part by the Robert A.
%elch Foundation and NSF Grant No. PHY 8304629.

'A. M. Polyakov, Phys. Lett. 1038, 107 (1981).
2C. Lovelace, Phys. Lett. 1358, 75 (1984).
E. S. Fradkin and A. A. Tseytlin, Phys. Lett. 1588, 316 (1985);

Nucl. Phys. 8261, 1 (1985).
~C. G. Callan, E. T. Martinec, M. T. Perry, and D. Friedan,

Nucl. Phys. $262, 593 (1985).
5A. Sen, Phys. Rev. Lett. 55, 1846 (1986).
6For theories (such as A,4 ) which are renormalizable in the usu-

al sense this has been discussed by M. Duff, Nucl. Phys.
8125, 334 (1977); L. Brown and J. Collins, Ann. Phys. (N.Y.)
130, 215 (1980); S. J. Hathrell, ibid. 142, 34 (1982).

7After completing this work we received a paper prior to publi-

cation by C. A. Callan, I. R. Klebanov, and M. J. Perry
[Princeton report (unpublished)] in which this is done by a
different method.

8C. A. Callan and Z. Gan, Princeton report (unpublished).
D. Friedan, in Recent Advances in Field Theory and Statistical

Mechanics, proceedings of the Les Houches Summer School
in Theoretical Physics, 1982, edited by J. B. Zuber and R.
Stora (North-Holland, Amsterdam, 1984).

~OA. A. Belavin, A. M. Polyakov, and A. B. Zamolodchikov,
Nucl. Phys. 8241, 33 (1984); D. Friedan„E. Martinec, and S.
Sh k, b d. 8271, 93 (1986).
D. H. Friedan, Ann. Phys. (N.Y.) 163, 318 (1985). See also L.



S. P. DE AL%'IS 34

Alvarez-Gaume, D. Z. Freedman, and S. Mukhi, ibid. 134, 85

(1981).
~2S. Randjbar-Daemi and J. Govaerts (unpublished).
~~B. Zmeibach, Phys. Lett. 1568, 315 (1985).
'4R. Nepomechie, Phys. Rev. D 32, 3201 (1985}.
~5A. A. Tseytlin, Lebedev Institute Report No. 265 (unpublish-

ed).
&6S. %einberg, Phys. Lett. 1568, 309 (1985).
~7S. P. de Almis, Phys. Lett. 1688, 59 (1986).
'SSee the second paper of Ref. 10 and T. Banks, D. Nemeshan-

sky, and A. Sen, Report No. SLAC-PUB-3885, 1986 (unpub-

lished).
'9A. A. Tseytlin, Lebedev Institute Report No. 6, 1986 (unpub-

lished).
2 See note added to Ref. 18. See also C. Lovelace, Rutgers re-

port, 1985 (unpublished) and B. E. Fridling and A. Jevicki,
Phys. Lett. 174$, 75 (1986).

2 %'. Fischler and L. Susskind, Phys. Lett. 1718, 3&3 (1986};
1738, 262 (1986).

~2A. A. Tseytlin, Nucl. Phys. (to be published); Phys. Lett.
178B, 34 (1986).


