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It is shown that the action principle solves the quantization problem of gauge fields without the
recourse to path integrals, without the use of canonical commutation rules, and without the need of
going to the complicated structure of the Hamiltonian. %'e obtain the expression for the vacuum-

to-vacuum transition amplitude directly from the action principle in the celebrated Coulomb gauge,
and then finally we write the amplitude in terms of 5 functionals. To study gauge transformations,
we use a variation of the Faddeev-Popov technique which is quite suitable to deal with the nonlinear

transformation character involved with non-Abelian gauge fields.

I. INTRODUCTION

Ever since Faddeev and Popov' introduced their quanti-
zation scheme of gauge fields via Feynman path integrals
it has remained a challenging problem to me on how the
quantization problem may be solved directly from the
very elegant action principle. Why the ingenuous break-
through of the quantization problem has occurred via the
path-integral approach rather than through the action
principle is difficult to understand since it is far simpler
to apply the latter, as taking various (functional) differen-
tiations, rather than to deal with complicated (continual)
integrals. Of course path integrals are extremely useful in
many respects and may be formally derived directly from
the action principle (cf. Refs. 4—6). The first time I
learned about the action (dynamical) principle, I was con-
vinced that it should be able to handle any complicated
field-theory models. The papers dealing with the, by now
standard, Faddeev-Popov quantization approach are too
numerous to be given here and fortunately many of the
basic papers have been collected.

Below we give a direct solution to the quantization
problem from the action principle —no appeal is made to
path integrals, no commutation rules are used, and also we
do not go into the complicated structure of the Hami ltoni
an. We work in the celebrated Coulomb gauge, where the
physical components are clear at the outset, to derive the
expression for the vacuum-to-vacuum transition ampli-
tude. Then finally we write the amplitude from the latter
expression in terms of so-called 5 functionals which is in
the spirit of path integrals. The resulting expression
makes it explicitly evident the gauge constraint and the
gauge-invariant components in the theory and makes it
quite suitable to study gauge transformations. To study
gauge transformations we use a variation of the very use-
ful Faddeev-Popov trick which is quite suitable to deal
with nonlinear transformation properties of non-Abelian
gauge fields. Sections II—IV deal with QED, while Secs.
V—VII deal with Yang-Mills fields including matter. We
urge the reader not to skip over the QED part since the
corresponding analysis given is very general to the extent
that many of the results are carried over to the Yang-
Mills case with minor modifications and makes the paper

easier to read and is certainly more instructive. Some as-
pects of renormalization, including Becchi-Rouet-Stora
(BRS) transformations, ' and the quantization problem of
the gravitational field will be dealt with in a subsequent
report.

II. ACTION PRINCIPLE AND QED

We choose the following Lagrangian density for QED:

F+""+——1
4 p 2 ."0 y"0 Py" —."0 —moA

l

+copy„pA "+rip+ peal+ A„J", (2.1}

where

F„„=a„A,—a+q, (2.2)

and g, rl,P are external (c-number) sources with rl, ri an-

ticommuting. We work initially in the Coulomb gauge by
imposing the constraint

akA"=0, k =1,2, 3 . (2.3)

Equation (2.3) allows us to solve for A in terms of
A i, A 2 (see also Ref. 8}:

A'= —a, -'(a, A'), i =1,2. (2.4)

With A, A', A (not A ), and P as dynamical variables,
the equations of inotion are readily obtained to be

apyi' —eoA„+mo f=g (2.5)
J

+-
a pf y" . +eoA„—mo (2.6)

a,Fko= (eoeyo~+Jo) -. (2.7)

i =1,2. We note that (2.8) is trivially true for i replaced

a„F~' a, 'a'(a„F~'+coy—y'P-+ J')= (copy'g+ J'), —
(2.8)
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by 3.
The canonical momenta are

n(A )=0,
n(A') =n'=O '(O'F —O F '),

n(P)=if

[~(4)]'=—i4.

(2.9)

(2.10)

(2.11)

(2.12}

That is, A is a dependent field so defined since its canon-
ical momentum vanishes. From (2.10) and (2.7) we may
write (see also Ref. 8)

OkOi OkF'"=—g —,rr;+, (e,+'g+ J'), (2.13)
O O

k =1,2, 3; i =1,2, and from the fact that OkF
= —O A, wehave

Fermi sources. We may rewrite (2.8) by eliminating the
expression in parentheses on its left-hand side and com-
bining it with the v=0 component in (2.7) as (v=0, 1,2, 3)

vk ~k~
O,F""=—g —g", (copy.g+J.) . (2.16)

We note that OP„FI'"=0 is automatically satisfied for
consistency for all J . That is J need not be conserved.
(See also Ref. 8.)

Let (0+
~

0 ) denote the vacuum-to-vacuum transition
amplitude in the presence of the external sources ri, T),J".
The action principle reads

(0+(0 )=i(0+ f (dx)(0)„QA")+ 0
)

. (2.)7)
eo

Now although A is a dependent field we may use (see
Ref. 5) in (2.17}the functional differentiation expression:

~'= —-,«ofr'0+ J') .

We note that Eqs. (2.5) and (2.6) lead to

(2.14}
( l) — ()0

~
['t/l(x)7'&g(x )]+

~

0 )5J (y)

= (0+
~
[)t{(x)y„g(x')Ao(y)]+

~

0 ) (2.18)

Ot.(fr"4)=t (Pal ri4»— (2.15)

and the current is conserved in the absence of the external
I

since g and 11 are not dependent fields and the functional
derivative in (2.18) is defined with the independent fields
and their conjugate momenta fixed. Hence

f (dx}(0+ [ (@y„il)A")+ [
0 ) = f (dx)( i) — (0+ [ [(4{(x)y„@(x)]+[

0 )

and from (2.17)

5 . 5
X —l p~ —l —l 0+ 0

5q(x) "
5&(x) 5J„ x + (2.19)

(0+ ~0 )=exp ieo f (dx)( i) y"—( i) ( i—) —()0+ ~0 )o
5 . 5 . 5

5& 5J~
(2.20)

(up to a normalization factor) where (0+ ~0 )0 stands for (0+ i0 ) with eo set equal to zero. The functional

(0+
~

0 )0 is determined in the Appendix and is given by

(0+ ~0 )o——exp i f (dx)(dx')rl(x)$+(x —x')ri(x') exp —f (dx)(dx')J"(x)D„„(x—x')J'(x')
2

(2.21)

where

g ( t) i dp ~P lp(x —z )

+ Q —Q =
g 2 2

8
(21T} p +ma —le

g)C ( t) f ( q) DC ( )
llt{X —X

(2n )

qk9m
&k (e')= gk-

q
I

&Ok(e) =O=ako(e»

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

Needless to say, (2.19) is well known and we do not claim
originality; the analysis, however, is given to show how an
obvious modification arises when dealing with the Yang-
Mills case studied in Sec. V directly from the action princi
@le in a simple manner.

III. (0+ i
0 ) FOR QED IN TERMS

OF DELTA FUNCTIONALS

We derive the expression for (0+
~
0 )0, and hence for

(0+ ~0 ) from (2.20), in terms of delta functionals.
Here we will see the form of the constraint in (2.3) ex-
plicitly in the expression for (0+ ~0 ). To this end we
have from (2.5)—(2.8) with eo in thein set equal to zero
and upon taking vacuum expectation values:
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y" ."+mo ( —i) &o+ Io &-o=q&0+Io-&o
51

Bp
(0 ~0 ),( i) y~ "—m, = —g(0+~0 )o,+ $g i

(3.1)

(3.2)

Xiv (giv a —laigvi) (3.21)

We use the well-known identity (e.g., Ref. 9) if
[A, [A,B]]=0,then

I [iMo2, X'"J„(x)]+X'"J~(x)I (0+
~

0 )o ——0, (3.20)

where

a„F "'&0,
~

0 ),= —J'&0,
~

0 ). , (3.3) e "Be "=[A,B]+B . (3.22}

(g'"—a 'a'g" )&'F„'„(0
~

0

= —(g'"—a) 'a'g")J„, (3.4)

where

Using (3.22) in (3.17)—(3.20) we obtain
~ I o

e'""ri(x)e ' "(O+ ~0 &o
—o (3.23)

F' = i —a —a„
5

"5J" 5J"
(3.5) ri(x)(e '(0+

~

0 )o)=0,
and similarly

(3.24)

Let

~oi =—1

2
ai 5 5

yP
i 5'

+mp X
5g 5~

'

5„ai 5

5' i
yP

(3.6)

~ I

Yi(x}(e
' "(0+

~

0 )o)=0,
I

J (x)(e '(0+ ~0 )o)=0,

X'"J„(x)(e "(O
~

0 ),) =O.

(3.25)

(3.26)

(3.27)

Hence (0+ ~
0 )o is determined from (3.24)—(3.27} to be

Mp2= — x F
with F„'„defined in (3.5). We also set

Mp =dc/ p~ +Mp2 .

Upon using the identities

,J"(x') =g&5(x —x'),
5J"(x)

(3.7)
(0+

~

0 )o——exp(iso)5(J )5(X'"J„)5(ri)5(ri), (3.28)

(3.8)

(3.9)

where the 5(f) are delta functionals defined as the prod-
uct of delta functions for each space-time point. A prod-
uct over i is also understood in (3.28). We may write
5(X'"J„)=5(J'—ai 'a'J ) and use the elementary identi-
ties

il(x') =5(x —x')
5'(x) ' (3.10)

5 i'a"-5(J ) =const X5(J )5(J'—a, —'a J'),

(3.29)

,T}(x') =5(x —x'),
5'(x)

(3.11)
5 ia" 5—(J )=constX5 5(J }, (3.30)k 5 ak

5Jk 5Jk

, ri(x) =0,
5'(x)

,TI(x) =0,6
5g x

we readily derive the relations

(3.12)

(3.13)

where the const are independent of the external source J,
for cr =0, 1,2, 3, and a product over i and cr in (3.29) and
(3.30) is understood.

From (3.28)—(3.30) and (2.20) we may then write the
full (0+ ~

0 ) in the convenient and compact form

(0+
~

0 ) =exp(iM')5 —ia" 5(J ), (3.31)
[iMoi, ri(x)]= — yi' " +mo ( i)—

bq(x)

[i Moi, Ti(x )]= i- —tal p5g(x) i

[i Mo2, J"(x)]=a„F'"
We may then rewrite (3.1)—(3.4) as

j [imoi, g(x)]+71(x)}(0+
~

0 )o——0,
t [i Moi, g(x)]+g(x) }(0+

~

0 )o——0,
[[ ~;„J'( )]+J'( )}&0,~0 &,=o,

(3.14)

(3.15)

(3.16)

(3.17)

(3.19)

where W' stands for action with A&, iti, g replaced by
i 5/5J",——i5/5g, and —i 5/5', respectively, and

gka"= 0,'82 (3.32)

This expression is interesting for many reasons. It is writ-
ten in terms of the gauge-invariant part M' rather than
the interaction part, and also makes the gauge constraint,
via the 5( —ia"5/5J") term, explicit. Because of the ex-
plicit appearance of the 5( ia "5/5J"}—term in (3.31), the
expression for (0+ ~0 ) in (3.31) is quite suitable to
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study gauge transformations. This is studied in the next
section. The corresponding expression to (3.31) for
Yang-Mills fields is derived in Sec. VI.

where A(x) is an arbitrary function of x, and

cI

Q' 'g2 (4.5)

IV. GAUGE TRANSFORMATIONS IN @ED

I.et A", g, , and P denote classical fields and consider
the gauge transformations

8(x)=(a"A„' —a &Aq) —A(x), (4.6)

expressed in terms of the field A„'. Hence we may write

We inay then explicitly solve for 8 directly from (4.1) and
(4A) to be

A "(x)~A"(x)+5i'8(x)—=A'"(x),

f(x)~e ' tP(x}:—g'(x),

P(x)~P(x)e =f '(x), (4.3) P(x) =expI ie—0[a"A„' (a "A—„'+A)]jf'(x), (4.8)

P(x)=g'(x)expIieo[al'A„' —(a "A„'+A)]j .

(4 1) A "(x)=A'"—5i'[a A' ( x)]+5l'[a A' (x)+A(x)], (4.7)

and

a "A„(x)=a "A„'(x)+A(x), (4.4) %e use the elementary identity

H, ia" — H2 ( i} —, ( i) —, ( i) — 5(J )5(ri)5(ri)
5 . 5 . 5 . 5

5J" 5J" 5ri

= e Hi —la" +A(x) H2 ( i)—, ( i)—, ( i ) —5(j )5(p)5(p)
lw'„. 5 5 . 5 . 5

5j" 5j" 5p 5p j~=O p=O p=O

(4.10)

where Hi[a&A&] is a functional of the product a&A&, and Hi[A&, itl, ill] is inuariant under arbitrary transformations of
the sort given in (4.1)—(4.3), and

'I

Wx —— (dx)ri(x)exp ieo —al'( i)—5
5j" a "( i) +—A5

5j p
5

( —i)
5p(x)

+ J (dx)( i) exp—ieo a&( i) ——a "( i) —+A
5p(x} 5J'P 5j P

iy(x)

+ f (dx)J„(x) ( i) ——B&a ( —i) +8& a ( —i) +A
5jp 5J 5j

(4.11)

The identity in (4.10) is easily derived by making a functional Fourier transform of 5(J )5(q)5(TI) in the external sourcesJ, ri, ri and by taking into account the linearity of the transformation in (4.1) and (4.7), and by making use of the identi-
ty (4.4).

From (3.31), (4.4), (4.10), and (4.11) we may write

~ I

(0+ ~0 )=e e(™5—ia" +A 5(j )5{p)5(p)
J jo=O p=O p=O

(4.12)

where W is written in terms of ( —i }5/5j ",( i)5/5p, ( i)5—/5p We —note that. although different factors on the right-
hand side of (4.12) depend on A, the final expression for (0+

~

0 ) is independent of A. We make use of the identity

—ia" +A5
QjP

8

5 ia" +—A 5(j)=0
QJP

for n = 1,2, . . . to simplify (4.12) to the expression

(0+ ~0 )=e' e" '5 ia" +A 5(—j )5(p)5(p)i $V' (iM') ~-

QjP j~=O,p=0,p=O

(4.13)
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8"= f (dx)T)(x)exp( —
eoa "5/5J'&)( i—) + f (dx)( —i) exp(eoa "5/5j "}g(x)

5p(x) 5p(x)

+ f (dx)[(g" a—"d )J ]( i—)
QjP

Finally we use the identity

+A 5(j )=e ~ 5 ia—4 5(j )
—iB '&A

&i" QjP

and the fact that

[iw,', a~ A]=o,

to rewrite (0+
~

0 ) in the form

(4.14)

(4.15)

(4.16)

(0+ ~0 ) =e' exp i f Wt e F[j,P,P]

where

ja=o /=0 p=o
(4.17)

F[j,p,p] =exp(i pS+p)exp j"D„J—
2

(4.18)

qpgv
Dpj(q}—

gpss
q

2 —1E
(4.19)

and where we have made use of Eqs. (A9)—(A15) in the Appendix. Equation (4.19) defines the (free) photon propagator
in the so-called Landau gauge.

Since (0+
~

0 ) is independent of A we may apply to it any functional differential operator of the form

U =exp iH
6A

where

H [f] I I=o=o

without changing (0+
~

0 ). Hence

(o, iO )=U(O, io )
~ ~

=e exp i I e ~J,pp
j =O,p=o,p=o

(4.20)

(4.21}

(4.22)

H [f]=—,
' f (dx)(dx')f (x)M(x x')f(x'), —

we have

H[ imp "]=—,
' f—(dx)('dx')[ imp"(x)]—

(4.23)

where we have finally set 6=0. In particular for a bilin-
ear form

M(q)= f (dx)e-'&"M(x),

defining generalized covariant gauges.
With the choice in (4.23) we obtain

(0+ ~0 )=e' exp i f Wt F~[J' p,p]

(4.26)

(4.27)
X M (x —x')[ i Bp"(x')],— (4.24)

where

which simply amounts in modifying the photon p«paga-
tor in (4.19) to FM[J ~p~pl =exp(tp&+p)exp

2 J Dpvl (4.28)

where

q„q M(q), (4.25)—I

q —l6
with W giuen in (4.14).

For a conserved external current 8 J =0 the last term
in (4.14) simply becomes
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f (dx)J"{x} ( —i)
5j"(x)

Gauge transformations of Green's functions, in general,
may be exphcitly carried out from (4.27) and this expres-
sion is consistent with earlier deviations" by different
methods.

The simplicity of the derivation given in (4.27) with
basic components in (4.14) and (4.28) are based on a gauge
transformation (4.1) AI'~A) —=A'", such that the identi-
ty in (4.4) holds, is essentially due to the linearity of the
gauge transformation A "~Ag =A '& under the constraint
(4.4) in @ED. This linearity property is evident by the ex-
plicit solution in (4.7) and is explicitly used in writing
down the identity of (4.10). The corresponding situation
for non-Abelian gauge theories is much more complicated
due to the nonlinearity of the corresponding expression to
(4.7) in A'". Accordingly, we quickly rederive (4.27) by
an approach which is a variation of the Faddeev-Popov
trick"~ and generalizes immediately to the non-Abelian
CSSC.

Let F[A ]=a"A„and T (A&)=A"(8), where A"(8)
I

is a gauge transformation of A", that is A "(8)
=A"+iF8. We note that (trivially)

he[A ]=det BE[Te(A")] =const .
88 F

(4.29)

The importance of introducing this object will become
clear when we study the non-Abdian case in Sec. VII. %e
also introduce for an arbitrary functional 6 [ ] the object

BG[Te(A")] (4.30)

and make use of the. identity that for an arbitrary func-
tional H [f]:

1

5 H ( i}—5 5(Z) =e'+H)det 'H"'

(4.31)

where 8(H) is a solution of H(8)=0. Equation (4.31)
makes the gauge invariance of ha[A ] in (4.30) evident
upon setting EC =O. %e may write

eiJ)'[( i)s/sj&]5— )i 5
5( )

jP j=0
i . 5 . 5= const xe+ [' ''s sj ]5 ia& —hc ( i) —h—a . ( i)—

5j ' 5j

Upon writing
P

)( b,a ' ( i) —5(j—).
j=0

(4.32)

~,-) {—i)—. =5(6[T-"'"])5{X) (4.33)

where T„=Ts[ i5/5j"], an—d carrying out the transformation ( i)5/5J'"~T—„',we obtain for the right-hand side
of (4.32), up to a multiplicative factor:

*

I5/SE 5 . 5 55(a"T& )e " 5(E)
~ s 04, ( i) d—a —( . i) 5—6—(. i) —5(—j).

5j 5j
(4.34)

—ixeo
pg, 8

det

P i

5 —ixe, ) 5=5 6 { i) e——hc ( i)—
5j 5j

„-~0
where 8o is such that aI'T& ——0 when

6 ( —i}—.=o.5

T

5 6 ( i) 5—(a"—T.'s~s )5(E)=5 6 ( i) e— —
5J I 5J

(4.35)

All told we have

5 a"( i) 5{J—)=e "5 6 ( i) ha—( —i.) 5{j)——.5 a)I' . 5 . 5
51" 5j 5j

j=O

(4.36)
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In particular if

6[A"]=a "A„+A

then ha[A "]=const, and

a"T '
( i—)

QjP

(4.37)
py" . —goA„+mo 4=rt
l

Bp
+gOA p ~0

~k"Gb '= go—A't'0 J—

(5.6)

(5.7}

{5.8)

yields

5
8 =ia"

QjI
(4.38)

V„'Gt"—83 'c)'(V„'Gg +gory t'p+J ')

go/—y't'Q J",—i =1,2, (5.9)

where

J"T '
( i) — =[(g" —a"8 )J ]( i)—

~p eP
(4.39)

and coincides with our earlier derivation upon the applica-
tion of the differential operator (4.20) to (4.22).

gab {5abg +g~acbAc )

~(A~) =0,

~(A ia) +a g
—i({)t603a $360t) i = 1,2,

m(f)

=inst,

(5.10)

(5.11)

(5.12)

(5.13)

V. ACTION PRINCIPLE AND YANG-MILLS FIELDS

We consider the following Lagrangian density:

(5.14)

and A ' is a dependent field. From (5.12) and (5.8) one
may ~rite

W= ——6 6"a
4 pv 2

."it y"0 tty" —."1{' — oA'
l l 6Oka

g
ki ia+ gkqga

gkgi
"2 7

+gokyt A"'t'0+ri4+&n+ Jt:A"'

where

G~, c}qA'„i3——„Aq+g—of' 'A„A'„,

(5.1)

(5.2)

where

b k b obc b k

k =1,2, 3; i =1,2, (5.15}

and for generality we have also included a (multicom-
ponent) matter field. A summation over different matter
fields may be also considered. The t' are generators of
the underlying Lie algebra, and the f', totally antisym-
metric, are the structure constants satisfying the Jacobi
identity. The Lagrangian density (5.1), without the (exter-
nal) source terms (Yig+Pri+J&A"') is invariant under
simultaneous local gauge transformations:

or

gkgi
+b Dbc Joc+gopyotcy+g+cdeAd gki g'e

where" '

V'k "d"D (x,y) =5(x —y)5" .

(5.16)

(5.17)

U(8)g—=P(8),

'(8) —=P(8),

A" U(8}A"U '(8)

(5.3)

By eliminating the expression in parentheses on the
left-hand side of (5.9) and combining it with the v=0
component (5.8) we may also writes

V,"Gt'"= (g" 5- g"'—a„D"VL—)(gory. t'0+ J.'),
4

[&„U(8)]U '(8)=—A"(8),
go

where U(8)=exp(ig08't'), [t', t ]=if' t', A"=t'A,".
We work in the Coulomb gauge by imposing the con-

straint

BkA =0, k =1,2, 3

and we may write

A '= —83 '(c);A"), i =1,2 .

{5.4)

(5.5)

With A, A', A, and g as dynamical variables, the
equations of motion and the canonical moments are

(0 ~0 )=i I (dx)(0 ~L(x) ~0 ),
~go

where

(5.19)

I (dx)(0+ iL(x)
i
0 )

= ——, I (dx)f' (0+ ~

(A" A"'6~„)+ ~0 )

+ I (dx)(0+ ~(fy„A"'t'f)~ ~0 ) . (5.20)

(5.18}
consistent ' with the identity p'„'p'„' Gf"=0 for ail J'.

Let (0+ ~
0 ) denote the vacuum-to-vacuum transition

amplitude in the presence of the external sources. The ac-
tion principle reads
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1 g abc' pbg vcG a gabe kbg Ocg a
2J pv J kO

& fabcA kbA mcg c (5.21)

AI pc((Akbga ) ) ((ApcAkbgc ) )

g kb6a
gJc ko

0 . +

where k, m =1,2, 3. We denote ( —i)5/5JI by A&',

( —i )5/5' by p', ( —i )5/5' by p ', and
(O, ia iO )—= (a). Then

= ((A "A"'G„',), )

—i A, Gko
kb

5Jo
(5.24)

&(A""A"G;.)+)=A'kbA'"Gk' (O+
~

O ) . (5.22)

On the other hand, quite generally

A ™&(A"'G') &~&(A A"'Gkp)+&. (5.23)

This is due to the fact that Gkp depends on the time
derivative BpAk and also on the dependent field Ap. The
rule for carrying out the functional differentiation on the
left-hand side of (5.23) is very simple and the rule was

completely worked out over 20 years ago, and gives an
extra term on the right-hand side of (5.23) from the
dependence of Gkp on 4', as given through (5.15)—(5.17),
with the latter in turn depending explicitly on the v=o
component of the external current J

Also

5
, Gkp= —5kD ac

5Jp
(5.25)

((A Gkp)~) =A'" Gkp(0+
~

0 ),
since Gko does not explicitly depend on J~. Finally

(5.26)

The functional derivative on the right-hand side of (5.24)
is carried out by keeping the independent fields A",g, (ft)
[note A3 may be completely expressed in terms of
3;A"—see (5.5)] and their conjugate momenta fixed.
Equation (5.24) is derived by an elementary application
of a completeness relation followed by a repeated applica-
tion of the action principle (see also Ref. 9). That is in a
matrix notation, we have, directly from (5.15)—(5.17),

f (d )x&(tT~„A&'t'tP) )= f (dx)P'y„A'"'t'P'(0 ~0

All told we have, from (5.20)—(5.27),
T

(0+ ~0 )=i f (dx)1. '(x) i f f—' Ak BkD'" (0+ ~0 ) .
~gp

Upon integration over go we have

(5.27)

(5.28)

&()+ ~0 &=exp i f (dx)WI(x)+Trln 5'"+gpf" Ak'Bk &0+ ~0 (5.29)

(up to a normalization factor) and Wi is the interaction Lagrangian density without the external source terms, that is

2

gcbcA t pbA I vcg ~Q fcbcA I pbA I vcf cdcA cdA tc + p
&

A
&

porc/&I ——
2 J pv p, v gO 3'IM, (5.30)

(0+
~

0 )p is the (free) vacuum-to-vacuum transition amplitude in the presence of the external sources (see the Appen-
dix), that is

(0+
~

0 )p exp(igS+——g)exp J"'D&„'Jb— (5.31)

with D&„given in (2.23)—(2.26). The Faddeev-Popov factor has been obtained, from the action
principle, in (5.29) without great effort.

VI. (0+
~
0 & FOR YANCi-MILLS FIELDS IN TERMS OF DELTA FUNCTIONALS

Directly from (5.29), (5.31), and (3.28)—(3.30), we may write the full (0+
~

0 ) for the Yang-Mills case in terms of del-
ta functionals:

(0+
~
0 & =exp(iM')exp Trln 5' +gpf' ( i) 8" 5— ia" 5(J '—),1 . 5 k . 6

~kc ~pb (6.1)
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where a is defined in (3.32). Here W' stands for the full action without the external source terms, with A„' replaced by
( —i)5/5J"', f replaced by ( —i)5/5', and f replaced by ( —i)5/5' .The Faddeev-Popov factor and the gauge con-
straint are explicit in (6.1). The W term is gauge invariant.

VII. GAUGE TRANSFORMATIONS FOR YANG-MILLS FIELDS

We follow the method applied to QED as given through (4.29)—(4.36) as a variation of the Faddeev-Popov tech-
nique" and is quite suitable since it avoids the problem of nonlinear transformations A„~A„' in non-Abelian gauge
theories as opposed to the @ED case in (4.4).

Let F[A&] =a "A& and set Tz[A ']=A&(8), where A&(8) is defined in (5.3). We note the validity of the following
important equality:

5 ia" — exp Trln 5' +gof" ( i)— 8& 5(J )=5 ia&— detM" 5J"' 5J"

BF T„( i)—

5(J )

6=5 ia"— det5J"

BF T„( i)—
5(J )

(7.1)

where in writing the last equality we have made use of the fact that the presence of the 5( ia&5—/5J") factor singles out
the solution 8=0 for

%e set

b,c[A"']=det F[T„[A ']]
0 F=0

and quite generally define for an arbitrary functional G [A &]:

(7.2)

KG[A"'] =det G[T„[A '])
b 6=0

rx'e, (H) BH [8']
5 E =e ' det5H( i)—5

M'

As in (4.31) we make use of the identity that for an arbitrary functional H [f']

(7 3)

(7.4)

The gauge invariance of bc[A"'] and b G[A I"] are evident from (7.4) upon setting K'=0 in the latter. We may then re-
peat the analysis given through (4.32)—(4.36) to write

In particular if

G[A~b] =a ~A„'+Ah

bg ( i) 5—(j ')
$~pb

)ac O

(7.5)

(7.6)

then 5(G[( i)5/5j" ))=5(—ia "5/5j" +A—), and A (x) is an arbitrary function of x, with a"=8'/0,
eoa"T„'[( i )5/5j " ]=0. Fr—om (7.3) we also have, in a standard manner,

5 ia"
b +A —b,G ( i)—~ 5 g . 5

$~pb
QJ

pQ
=5 ia" +A—exp Trln 5' +gof ( i)——

5jpb $~pc
(7.7)
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We may work out Ho as a Taylor-series expansion in

( —i )5/5l'i":
eoT

5l aa
5 . 5= —I +icl a

5jpa & 5 aa

T ( —i)
5l era

= ( i—),+gof'~Hb( —i)
5jica 5 'ctcc

2

(7.11)

+BAH +O(H ), (7.8) and

a"T„( i ) —— = ia—" +gof~a"Hb( i—)
5jera 5jica 5 ice

J"'T '
( i)—80

ua
= [J"'—(a"BQ ') j( i)—5

iPQ
'~ 2

or
+H'+ (7.9) +J~'0 5

(7.12)

00 ——ia" +06 5

5j
icb 5j

(7.10) By making use in the process of the gauge invariance
property of W we may then write as in (4.13)

, +A' (0+)0 ),
5l icb

where

I

(0+ )
0 ) =e' e' 'exp Trln 5' +gof —( i) — 5I" 5 ia t'—

5pcc
I L

j~=0,p=O, p=0
(7.13)

W'= (dx)T)(x)exp t —goa"
b +0b 5 5

5l'tcb 5j
T

5 b „5+ f (dx)( i) — exp t goa" „+O

( —0
5p(x)

+ f (dx) II"'(x)—[a"c)Q (x)])( i) — +J"'0 5

5j "'(x) 5j
(7.14)

(7.15)

c

and W' is written in terms of A"'~{ i)5/5j"',—1{c—+( i)5/5P, p—~( i)5/5p. Ma—king use of the identity (4.15), and
the relation (4.16), and using the fact that (0+ i

0 ) in (7.13) is independent of A, we have upon applying any functional
differential operator of the form in (4.20) to it, and in particular the bilinear expression in (4.23):

(0~ i0 )=e' exp i f Wt exp Trln 5' +gof" { i) —cc/ F—br[i'I",p,p]aab 1

I'br[i"', P,P]=exp(tPSip)exp l"'D„' btl
—(7.16)

2

with

gab
Dp„bt ——g„„—" q~q~' (q) . (—7.17)

g g —l 6'

Even more general gauge transformations may be con-
sidered by considering more complicated structures for
H [5/5A] in (4.20).¹teadded in proof. A symmetrization over the prod-
uct of the fields in the Lagrangian densities (2.1) and (5.1)
(and the field equations) is understood as symmetric aver-

age limits of time-ordered products at the same space-
time point, consistent with the action principle. That is,
in particlllar:

QOQ~ z [QO,Q]: ,
'

[(QO)ccrc yacc(QO—)cc—]—

and

QOQA "~,' I [QO, P],A"),—

where t A, B):—AB+BA.

APPENDIX: NOTE ON (0+ )
0 )a

The functional differential equations of the functional
(0+ i

0 )p are given in (3.1)—(3.4). Equation (3.4) may be
rewritten in the form in (2.16) as

t'

5tcga
5.+'" «+10 ).=- g"-, J'.«+i0 ). ,

(A 1)
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a'( —i) .(o, io &= —(o, io &J",
6Jp

(A2)

( —i) &0 ~0 &,= —,J"(0 ~0 &,

where we have also introduced the index a to deal with
the Yang-Mills case. Equation (3.3) together with (Al)
then gives

where Mo2 is defined in (3.7). We use the identity

5 t)"( i—) 5(J )=constX5(J" —t)3 't) J ),
AJAR"

A, =0, 1,2, (A10)

to write the functional differential equation for Z [J]:

gkgcr—g" — J'.(0, ~0 &, .
82

o2(Ji. g lgkJ3) ' ozz [J) ()

Using the equality in (3.16), we may rewrite (Al 1) as

(A 1 1)

These together with Eqs. (3.1) and (3.2) may be integrated
to give

cF3 o3QA,

g — 8'Fu Z[J]=—g
~ — J Z[J] .

3

(0+
~

0 &o ex——P(irlS+ri)+exP J"'D„—'„J"
J

where

—/++Pip
S+(p)=

P +Slip —l 6

(A4)

(A5)

By using the fact that

t)"( i ) —- Z [J]=0,

(A12)

D cab 5abD c (A6) we obtain, from (A12),

Doo(e) =—

Dk (e)= gk—qkqm 1

q q —ie2 2

1 C C

q
2 Dok(iI) =O=Dko(tI) (A7)

(AS)

&( —t')
/vga

Z [J]= —g""— J„Z[J]III (A13)

Finally we consider the following functional:
T

Z [J] exp(i ~02)5 t)"( i ) —5(J ),5J" (A9)

whose solution is

Z[J]=exp —f J" g„„— J" . (A 14)—C3 —st.
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