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Stochastic mechanics provides a probabilistic scheme for the description of quantum systems.
Grabert, Hanggi, and Talkner, and Nelson have pointed out that its multitime correlations seem to
be in disagreement with quantum-mechanical predictions. We show that these difficulties are re-
moved upon a careful analysis of repeated measurements in stochastic mechanics. The wave-packet
reduction is naturally described in the stochastic framework, and the predictions for repeated mea-

surements consequently agree in both theories.

I. INTRODUCTION

Since the very beginnings of quantum mechanics a par-
tial formal similarity to statistical phenomena was noticed
(see Schrédinger,! Fiirth,2 and Jammer®). The theory of
stochastic mechanics (see Fényes,* Nelson,’~7 and Guer-
ra®) is one of such attempts at describing quantum phe-
nomena in terms of stochastic processes. Of course, it has
been an interesting and natural question whether the re-
sults of stochastic mechanics are consistent with those ob-
tained in the functional analytic approach to quantum
mechanics. It was clear from the seminal work of Firth
and Nelson that, in the sense of average values of position
measurements performed at a fixed instant of time, sto-
chastic mechanics and quantum mechanics make the
same predictions. Even more generally, the spatial proba-
bility distributions coincide in the two theories at any mo-
ment.

This correspondence is lost when one is considering
more complicated observables because the respective
theory may not be adapted to a particular observable. For
instance, stochastic mechanics seems not to admit natural
representatives of nonconfigurational observables (such as
momentum or energy) (see Golin®), whereas first hitting
times have not been formulated unambiguously in quan-
tum mechanics.

It has been under discussion whether the two theories
could be consistent at all (see Mielnik and Tengstrand'©).
In any case, the results of experiments involving momen-
tum, energy, etc., can be found correctly in the stochastic
frame. On the other hand, Werner!! argues that the situa-
tion is different when dealing with first hitting times inso-
far as the stochastically defined hitting times are not
equal to any of those defined in conventional quantum
mechanics. Grabert, Hinggi, and Talkner,'? and Nelson'?
looked into the question of multitime correlations and
concluded that stochastic mechanics disagrees with
quantum-mechanical predictions. It is the aim of our
work to explain why this is not so. Given the fact that
the stochastic mechanical drifts have a state-dependent
content, one realizes that new drifts naturally appear after
a measurement on the system at hand has been performed.
Thus, by the very nature of stochastic mechanics, one ob-
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tains new stochastic processes describing the system after
measurement. Our analysis causes the difficulties with re-
peated measurements in stochastic mechanics to disappear
and we obtain conclusions different from Refs. 12 and 13.
We will present a thorough discussion in the case of mul-
titime correlations. In a forthcoming paper the question
of first hitting times in stochastic mechanics is to be taken
up. In any case, we hold the view that the ideas contained
in the main body of the present paper indicate that sto-
chastic mechanics is a theory consistent with the predic-
tions of conventional quantum mechanics.

The organization of the paper is as follows. In Sec. II
we explain how the apparent contradictions between sto-
chastic mechanics and quantum mechanics come about,
and then they are resolved in Sec. III by a proper treat-
ment of the wave-packet reduction in stochastic mechan-
ics. We compare the concepts of measurement and
preparation in the two theories in Sec. IV.

II. SOME APPARENT PARADOXES

Stochastic mechanics associates a diffusion process &,
in configuration space to the nonrelativistic motion of a
quantum system. (Originally a finite number of degrees
of freedom was assumed, but later a stochastic field
theory was also formulated.?) We will present a brief ac-
count of stochastic mechanics in Sec. III. The position
observable, having a natural representative in this scheme,
plays an elevated role. By construction the probability
density p(x,t) of the position variable &, is equal to the
spatial probability density |¥(x,t)|? of conventional
quantum mechanics. (This is explained in more detail in
the next section.) In particular, the expectation value
E(&,) of the diffusion coincides with the quantum-
mechanical expectation value (X )={(4(-,1), Xy(-,1)) of
the position operator X (X is just multiplication with the
spatial coordinate x). In other words, the two theories
yield the same predictions for the average position provid-
ed one deals with operations at a fixed single instant of
time. This correspondence was one of the basic features
of the stochastic theory that led to the belief of some peo-
ple that quantum systems might be correctly described in
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terms of stochastic mechanics.

However, an analysis of multitime correlations (see
Grabert, Hiinggi, and Talkner,'? and Nelson'®) seems to
indicate that stochastic mechanics violates quantum
mechanics. The common idea behind the construction of
these apparent paradoxes is to consider at least two
quantum-mechanical operators which are supposed to
have obvious analogues in stochastic mechanics. In par-
ticular, if the two operators commute the expectation
value of their product is the unique candidate for the
quantum correlation. It turns out, however, that the cor-
responding stochastic mechanical correlation has a dif-
ferent value. The occurrence of these contradictions will
be illustrated in the following by means of two examples.

Example 1. Let us consider a one-dimensional harmon-
ic oscillator. Now suppose that we want to measure its
position £y at time O, and its position at a later time z.
Having done this we might be interested in the corre-
sponding two-time correlation E (£y,). If, for simplicity,
we consider the ground state, the corresponding stochastic
differential equation

d§ = —wob; +dw, , (1)

where w, denotes a standard Wiener process with variance
2v=#i/m (cf. Sec. III), is linear and can be solved by
quadrature:

E,=e [§0+ fo'e"""dw, ] (1>0) . )

Here w(> 0 denotes the frequency of the oscillator, m >0
is the particle mass, and # is Planck’s constant divided by
27. Let 0%:=#/2mw,. Then the autocorrelation function
follows immediately from (2):

E(&f)=0% """ (1>0). 3)

It is to be noted that this correlation, which is just the
famous Ornstein-Uhlenbeck correlation, does not exhibit
the periodic character of the ground state.

Now let us consider the corresponding quantum-
mechanical prediction. The Hamiltonian H of the system
is given by

2
# mag
H=——32+——x?, )
2m O T 2
and in the Heisenberg picture the position operator at
time ¢ is just

X,:—ei(W/MH Y, —i(L/RH ()

For the harmonic oscillator one finds explicitly

sinwgt
X;=coswgtX + P, (6)
mawg
where P:= —i#id, is the momentum operator. Obviously,
the commutator
[X, X, ]:=XX, - X, X
. sinwgt
=it )
mawg

vanishes whenever ¢t =nw/w, for some n €Z. Now let us

suppose that ¢ is of this form and that the system is in the
ground state

. x2
la)ot+—

Y(x,t)=(2ma?)~*exp 5
20

@

Since X and X, commute the mathematical correlation
(XX,)=(—1)"0? )

corresponds to the actual, experimentally measurable
correlation. Clearly this correlation does show the period-
icity of the ground state, and it contradicts the result (3)
of stochastic mechanics.

An example along the same lines is due to Nelson.!> He
considers two noninteracting harmonic oscillators with
the same frequency. Since the two systems do not interact
their position operators (at possibly different times) com-
mute and, in fact, the above analysis carries over to this
example. Therefore the same apparent disagreement is
noted in Ref. 13.

Example 2. Now let a particle be given moving along
the real line. We want to deal with a scattering state and
fix the wave function at time O to be the Gaussian

P(x,0)=(2ma?) /4 —x*/27 | (10)

for some a >0. Being interesting in potential scattering
we consider the incoming and outgoing Mpgller operators
Q;, and Q,,, respectively. They allow us to define the ki-
netic energy of the particle in the remote past and the far
future, which corresponds (up to the constant 1/2m) to
the operators

Pinzzﬂinpzﬂi‘;‘l ’
PoutzzﬂoutPZQ;ut .

(11a)
(11b)

The elasticity of the scattering is reflected in the fact that
these two operators commute (as a consequence of the in-
tertwining relations):

[Pinz’Poutz]:o . (12)

For simplicity we consider the most trivial case of zero
potential, where Q;,=Q,,=1 and P;,=P,,,=P. One of
the experimentally accessible quantities is the momentum
and similarly the kinetic energy. The correlation for the
kinetic energy at t = — 0 and t=+ o is easily comput-
ed, since we are dealing with a freely evolving Gaussian
wave function, viz.,

ﬁ4
oy

(P, 2P, 2) =(PYy =2 (13)
4 g

The corresponding random variables are defined by

pin:= lim (14)

t——cw

t—s+ow I

According to results by Shucker,'* Biler,'® Serva,'® and
Carlen!” these limits exist with probability one and have
the correct quantum-mechanical distributions. Since £, is
a Gaussian process, p;, and p,,, are jointly Gaussian and
their characteristic function

¢>(x,y):=E(e“xp‘"+yp°“‘)) (15)
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is of the form

x
y

x
y

2

The covariance matrix

exp

COV(p in»Pout )
var(poy )

var(p;,)

COV(pout s»Pin )

(16)

is easily determined since due to the linearity of the sto-
chastic differential equation for £, the autocorrelation
E (&) can be explicitly computed. (Details can be
found, e.g., in Ref. 7.) It turns out that

1 —e” 7
V=;zz‘z e g (a7
Therefore one obtains
E (Pin’Pou’)=3,3,%9(0,0)
4
= “‘2% (142e2m) . (18)

Again, this result differs from the quantum-mechanical
correlation (13).

ITII. RESOLUTION OF THE PARADOXES

As we have seen in the preceding section there seem to
be severe difficulties in stochastic mechanics on the level
of multitime correlations. Using arguments in the same
spirit Grabert, Hinggi, and Talkner,'> and Nelson!® ar-
rived at the conclusion that stochastic mechanics being in
disagreement with some predictions of quantum mechan-
ics could no longer be viewed as an acceptable model for a
description of quantum phenomena. Do we have to dis-
card stochastic mechanics now?

Stochastic mechanics can be viewed as an attempt at
describing quantum phenomena in classical terms. In
contrast with quantum mechanics a particular theory of
measurements should therefore not be needed. Of course,
the generic occurrence of quantum-mechanical interfer-
ence of wave functions must give rise to probabilistic
consequences. First accounts of this are due to Shucker!'®
and Guerra.!’

In this section our main objective is to implement re-
peated measurements in the stochastic framework. Our
argument will show that—even on the level of multitime
correlations—there is no inconsistency in the measurable
predictions of stochastic mechanics and quantum
mechanics.

We recall that the description of quantum systems in
stochastic mechanics can essentially be divided into two
parts. The kinematical content is based on formalizing
the quantum motion as the diffusion process &, governed
by the stochastic differential equation

d&,=b(£,0dt +dw, , (19)

where w, denotes a standard Wiener process with variance
2v (v being some positive constant). To complete the
kinematical picture an initial condition for £, has to be

added. Of course, this distribution is taken to be identical
to the quantum-mechanical one at time O.

On the other hand, the dynamics has to incorporate the
influence of the potential. It is required to be some kind
of generalization of classical dynamics. This can either be
achieved by a Newton law in the mean®® or by a stochas-
tic variational principle.”?* As a result of this, the osmot-
ic velocity

u (x,t):=v grad Inp(x, ) (20)
and the current velocity
v(x,8):=b (x,8)—u (x,1) @1

satisfy the coupled partial-differential equations

d,u = —vgraddivv —grad (u-v) , (22a)

ov=— ;ll-gradV——(v-grad)v +(u-gradu)+vAu , (22b)

and v is now specified to be equal to #/2m. If one adds
some initial conditions u(-,7y;) and v(-,¢y) at some time
ty, then Egs. (22) fully describe the evolution of the sto-
chastic system. The correspondence to the normalized
quantum-mechanical wave function

¢(x’t)___eR(x,t)+iS(x,r) , (23)
where R and S are real-valued functions, follows from
u(x,t)= *ri—gradR (x,t), (24)
#
v(x,t)= ;z—gradS(x,t) , (25)

and the probability density p(x,?) of the diffusion process
&, is given by

plx,t)= | P(x,t)|?. (26)
From the viewpoint of stochastic mechanics the
Schrodinger equation

ﬁ2
ifid, P(x,t)= ——EA+V(x) P(x,t) 27

appears as a linear reformulation of (22) on account of hy-
pothesis (25). It follows from (21), (24), and (25) that the
drift satisfies

b(x,t)= %(Re+lm)grad Iny(x,2) . (28)

Formula (28) shows the dependence on the state and the
dynamical content of the drift explicitly. In applications,
this formula is usually applied to calculate the drift rather
than obtaining b =u +v by solving the coupled equations
(22).

We now turn to the question of repeated measurements
in stochastic mechanics. Suppose we are dealing with a
quantum system whose time evolution is given by (19).
Moreover let us carry out an ideal position measurement
at time 0. The result of this operation is twofold: on one
hand, the process is fixed to a single point, say x,; on the
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other hand, this new initial condition appears in a new
drift 5°=u""+v™ [which comes from (22) with the cor-
responding new initial conditions related to the new densi-
ty]l. So the system is appropriately described after the
measurement procedure by a family (indexed by x,) of
new stochastic differential equations

dE°=b™(£°,0)dt +dw,° (t>0), (29a)

lil‘(l)l §:° =x, almost surely , (29b)
14

where w,x ° t>0, is a possibly new standard Wiener pro-
cess (again with variance 2v) and starting from zero, and
with increments independent of those of w,, t <0. The
probabilistic information about a repeated measurement at

an instant ¢ >0 is entirely contained in §f°, whereas in
this context &, is of no significance whatsoever.

We want to stress that, taking stochastic mechanics
serious, a new stochastic process has to be introduced
after measurement. According to our point of view it
cannot be argued that such a procedure represents a modi-
fication of stochastic mechanics. On the contrary, the
stochastic mechanical drifts are functionals of the state
(which is not the case in the classical theory of diffusion),
and it is this characteristic (though nonclassical) feature
which we insist upon when dealing with repeated mea-
surements. It is well known that not all quantum-
mechanical aspects can be accounted for by means of a
classical probabilistic theory. For instance, the double-slit
experiment gives a contradiction to the Bayes rule of com-
posite conditional expectations.

What happens, in comparison, upon a measurement in
conventional quantum mechanics? There, an ideal mea-
surement is thought of as an interaction with a classical
macroscopic object (the measuring apparatus) instantane-
ously leading to the so-called wave-packet reduction. This
means that upon making a record of the position at time 0
the wave function i determined by (27) collapses to the
point were the system is found. The further time evolu-
tion is again subject to the same Schrodinger equation

2
i#3,4™(x, )= | — Eﬁ;{A* Vix) |60x,0 (t>0), (30a)
but with a new initial condition given by
lim ¢(x,1)=8(x —x,) . (30b)
tl

In order to construct a process §f° one has to determine
the corresponding drift b™. To achieve this in an accu-
rate way one has to define and solve an initial-value prob-
lem in the hydrodynamical picture (22), i.e., in terms of
the evolution equations for the osmotic and current veloc-
ities. This is probably a hard mathematical problem and
has not been tackled yet. At present we have to circum-
vent this problem by solving the Schrodinger equation
(30) for the collapsed wave packet. The drift 5™ is then
given by

bxo(x,t)z-z—(Re+Im)grad Ing™(x,1) . (31)
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Intuitively, the collapse of the wave function means
that at the time when the measurement is performed the
quantum system has a definite configuration. In quan-
tum mechanics this is expressed by saying that the wave
function of the system is a & distribution, whereas in sto-
chastic mechanics we fixed the density (i.e., the square
modulus of the wave function) to be a § distribution. We
hold the view that it is physically more plausible to re-
quire the density to have this property. Unfortunately,
neither the square nor the square root of a § distribution
is defined in a mathematically rigorous way. Therefore,
from the mathematical standpoint, there is still some
work to be done in order to relate the wave-packet reduc-
tion as described in the functional analytic and the sto-
chastic framework, respectively. The hydrodynamical
picture may probably turn out to be the appropriate inter-
mediate step.

Now these considerations will be implemented in the
case of two-time correlations. Obviously, E (£¢,) cannot
be the right object to have an interpretation as a physical
position correlation, since the wave-packet reduction,
which enters stochastic mechanics so naturally, has not
been taken care of. Assuming that we have obtained the
value x upon the first measurement of time 0 we want to
record the position at a later time ¢ >0 again and the
mean correlation for a system conditioned to start from
Xq at time O is equal to

xo [ dP(0)6;"(0) (32)

where P is the probability measure on the (fixed) probabil-
ity space we are working on. The weight of the initial
points x, is determined by the diffusion process before
measurement. Having denoted its density by p(x,,0) we
obtain, upon averaging the stochastic mechanical predic-
tion,

f dxop(xo,O)xofdP(w)é'fo(co)

= [ [ dPl)dP@)kge 6" (@) (33)

[as opposed to E (£o€, )] for the full correlation.

Similarly, in quantum mechanics multitime correlations
cannot in general be associated with a single expectation
of some self-adjoint operator. For instance, in the case of
repeated measurements XX, is not self-adjoint since X and
X, do not commute (apart from exceptional cases), and
even the symmetric product 5 (XX, +X,X) does not give
the right expectations. Therefore the two-time correlation
has to be given more explicitly, viz., by

J [ dxodx, | 9(x00) | 2xoProb(x;,1;x0,00x, ,  (34)

where Prob(x,?;x(,0) is the quantum-mechanical proba-
bility of finding the system in x; at time ¢ conditioned to
having been in x( at time 0. It is at this point that the
wave-packet reduction enters the correlation

Prob(x,;X0,0)= | {(8(-, —x),¢™°(-,1)) | 2
=|¢"x,0)|2. 35)

Note that this is only a formal transition probability be-
cause the & function is not in L2 To be rigorous one
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should work in terms of L? approximations.

In order to prove that the quantum-mechanical correla-
tion (34) coincides with the stochastic mechanical one (33)
we only need to show that

[ dP(@);%(@)= [ dx Prob(x,t;x,0)x . (36)

But this is easily accomplished by checking that
Prob(x,?;x¢,0) is just the probability density px°(x,t) of
§:° because [on account of (30) and (35)] it satisfies the
Fokker-Planck equation

9, Prob(x,t;x,0)= —div,[Prob(x,t;xo,O)bx"(x,t)]

+vA, Prob(x,t;x(,0) (37a)
subject to the initial condition
lirgl Prob(x,t;x4,0)=8(x —xg) . (37b)
1)

Since
[ dP()t (@)= [ dxp"™(x,0x
X fdx Prob(x,t;x(,0)x , (38)

(36) is established.

Next we take up again the examples of Sec. II so as to
elucidate our result a little more.

Example 1 (reexamined). In this case the new process-

es Q‘f" can be explicitly determined. The Hamiltonian (4)

admits a kernel for the semigroup e ~*#*/%, viz.,
me 172
i , 0
e lHl/ﬁ(x,x )= —_—
27l sinwgt
]
Xexp |— (x2—x'?)

P17 2

—iwgt
mwg (¢ Ox —x')?

Ao

(39)

—2iwgt
e 0

This is just the analytic continuation of Mehler’s formula.
Therefore the solution of the Schrédinger equation (30a)
with initial condition (30b) is just

¢™x,0)= [ dx’e = H/Ax,x")$™(x",0)
=e “th/ﬁ(X,XQ) (40)
and the new drift [cf. Eq. (31)] is given by

X0
b™(x,t)=wq

. (41)
tanwgt

sinwgt

(In fact, the osmotic velocity vanishes identically.) Conse-
quently the stochastic differential equation (29) is linear
and can be solved by quadrature:

X,
£:° = (coswgt —sinwgt cotwes)x o

. X
sinwgt _x, t dw,°
———£, % +sinwgt f - ,
sinws s sinwgz

(42)

O<s <t For t being a multiple of 7/w, ie., t=nm/wq,
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the random variable §f° is just the constant (—1)"x, (al-
most surely). Thus the correlation (33) is simply

(—=1)" [ dxoplxo,00xe’=(—1"E(&?) , 43)

and it coincides with the quantum correlation (9).

It is an easy matter to convince oneself that Nelson’s
example (two dynamically uncoupled harmonic oscilla-
tors) can be treated in an analogous fashion; and the para-
dox can be removed there, too.

Example 2 (reexamined). The time limiting procedure
connected with this example gives rise to some complica-
tions, although—as we shall see—the main ideas of this
section go through in a straightforward manner. Let us
imagine having performed a measurement of momentum
in the remote past. (In fact, the outcome of a position
measurement divided by the time of measurement gives
the corresponding velocity asymptotically.) This disturb-
ing operation originates in a family nf" of processes each
of which is associated with an incoming momentum p, at
time t= — . Physically speaking, this preparation could
not have taken place at t = — o exactly, so it is perfectly
reasonable to think of an unperturbed process &, having
existed before the measurement. In analogy with example
1, the stochastic mechanical correlation is taken to be

mn°
J dpodipolpo [ dP() lim % , (44)
where p(p,) is the density of the initial momentum; i.e., if
Y¥(po,t) is the Fourier transform of y(x,?),

—i(pgx/#)

Wpo,n=rf) 172 [dxe Wx,t), 45)
then
plpo):=lim [ P(po,t) | % . (46)

In order to be dealing with proper densities we can ap-
proximate the 8 distribution by some L! function. Corre-
spondingly the improved wave function ¢"°(x,t) [where

lim,_, _ ¢p°(p,t)=8(p —po)] may be approximated by
L? functions. By mimicking the proof of (36) one can
show that the quantum correlation {(P;,?P,,*) coincides
with the stochastic mechanical correlation (44). In fact,
this proof is not restricted to the special form (10) of the
wave function, nor is it restricted to the case of zero po-
tential (i.e., free dynamics).

As a last remark we note that so far we have only con-
sidered correlations for just two different times. The
above considerations generalize, however, in an obvious
manner, to multitime correlations.

IV. MEASUREMENT AND PREPARATION

To get a better understanding of the implications of the
wave-packet reduction let us consider again a wave func-
tion ¥ and a position measurement at time O, and suppose
that the resulting value is xg.

As we have seen the measurable predictions about the
future coincide in the stochastic and the functional ana-
lytic scheme. But if we look to the past we have different
degrees of knowledge. In fact, in quantum mechanics we
can only make a statement about the probability density
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plx,t)= | ¥(x,1) | 2t <0, whereas in stochastic mechanics
the existence of the sample paths admits a probabilistic
statement about a system that was in x at time ¢ <O to
reach x at time O.

To put this in quantitative form we consider the back-
ward drift

b.(x,t):=—(Im—Re)grad Iny(x,?) 47)

3 |

and then solve the associated backward Fokker-Planck
equation (Kolmogorov forward equation)

arp‘:z'-diVx(P:bt)**VAp. » (48a)

where p, =p.(x,t;x(,0) is the probability to find a parti-
cle in x at time ¢ <0 provided it will go to x, at time 0.
Of course, p, has to satisfy the condition

ltiTrgp,,(x,t;xo,O)=8(x —Xg) . (48b)
Thus having found the system in x, we have a probabilis-
tic knowledge of where it had been before.

It is the classical nature of stochastic mechanics that is
reflected here in a distinction between measurement and
preparation. Measurement corresponds to a knowledge of
past and future inferred from the presence, whereas
preparation involves only predictions about future experi-
ments. In the common interpretation of quantum
mechanics measurement is identical to state preparation
and there is no distinction drawn between the two con-
cepts.

Unfortunately we cannot check the different descrip-
tion of the past in the two theories because if we tried to
do so we would have to carry out measurements before
time O without perturbing the state of the system. And
that is, of course, in conflict with the occurrence of the
wave-packet reduction. So we are really dealing with a
peculiar theory: on one hand, stochastic mechanics
claims the existence of trajectories; on the other hand, it
provides reasons to make them hidden variables.

V. CONCLUSION

We have presented an exposition of how repeated mea-
surements on quantum systems are properly dealt with in
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the framework of stochastic mechanics. The phenomenon
of wave-packet reduction is thus fully incorporated into
this theory without having any recourse to an external
quantum-mechanical input. The relation of the notions of
measurement and preparation was also discussed, and a
comparison was made to the commonly accepted view in
conventional quantum mechanics.

Stochastic mechanics lends itself to a description of the
collapse of the wave functions inside a purely probabilistic
framework. Indeed, we are tempted to maintain that the
intrinsically irreversible nature of measuring operations
emerges in a theory of diffusions in a more natural way
than in conventional quantum mechanics. More precisely,
this irreversible character is contained in the state depen-
dence of the stochastic mechanical drift fields.

The dynamics of stochastic mechanics is Markovian by
construction, i.e., the trajectories of stochastic mechanics
have no memory: given the presence, predictions about
the future do not depend on the past. But after an obser-
vation this feature is lost because the measuring device
carries information about the observed system and thus
serves as a memory. The joint system (observed system
plus measuring device), however, is still Markovian.

In any case, the paradoxical aspects which appeared in
the work of Grabert, Hanggi, and Talkner, and Nelson
disappear if the dynamical structure of stochastic
mechanics is carefully taken into account in dealing with
repeated measurements. The predictions for correlation
functions do not differ from those of quantum mechanics.
The quantity E (£&,), although it is a well-defined object
in this theory, is of purely mathematical nature but not a
physical correlation.

It seems very hard to imagine an experiment that allows
us to choose between stochastic mechanics and conven-
tional quantum mechanics, although this statement
should by no means imply the epistemological equivalence
of these two theories.
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