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%e associate to any quantum field propagating in the background metric of a black hole an effec-
tive density matrix whose statistical entropy can be interpreted as a contribution to the total entropy
of the black hole. By evaluating this contribution in a simplified case, we show that in general it can
be expected to be finite and proportional to the area of the black hole. As a by-product of our calcu-
lation we obtain a general expression for the entropy of any real Gaussian density matrix.

I. INTRODUCTION

The horizon' of a black hole—insofar as this surface
remains well defined in the quantum context —divides
spacetime into "interior" and "exterior" regions. %ith
respect to the latter, and in particular with respect to ob-
servations conducted entirely outside the horizon, the
black hole appears to behave as a thermodynamic object
of entropy 2n(k//p )A, where A is the horizon area and
i =(SmGiil/c3)'~ .

Possibly the first evidence for this was the discovery
that classically an isolated black hole rapidly settles into
an equilibrium state characterized by only a handful of
parameters, the precise number depending on how many
gauge fields exist in nature. With the entropy specified
as a function of these parameters, all other thermodynam-
ic quantities can be derived as usual, and one finds in par-
ticular the well-known formula

bh
8 Gk

for a spherical hole of mass M.
The interaction of such an equilibrium black hole with

various sorts of external matter has been analyzed in the
framework of classical metric plus quantum field; and the
hole's thermodynamic aspect has been borne out in almost
every respect. To our knowledge the most complete result
along such lines concerns scattering of massless spin-zero
bosons off a black hole, and states that for a given mode
the effect of the scattering is to convert a thermal input
(Gibbs canonical state) of any temperature into a thermal
output of some other temperature, nearer to Tbh. Such
scattering (which of course includes the Hawking radia-
tion as the special case of zero input temperature) will al-
ways increase the value of

where S,„, and U,„, are the entropy and mean energy of
the external quanta. This is exactly the effect that in-
teraction with a heat bath of temperature Tb~ would have.
(At least the increase of %' is guaranteed when the input
dcns1ty matrix 1s diagonal 1n tllc particle-nuInbcr bas1s.

We do not know whether this guarantee can be extended
to the case of a general in state, in which phase correla-
tions among states of different particle number may be
present. )

Another way to express the above increase of 4 is to
say that the sum S =S,„,+Sbh 1ncreases when the
quasistatic "back reaction" dM =—dU, „, is taken mto
account (because then dS =dS,„,+dSbh =dS,„,+dM/Tbh
=dS„t—U,„t/Tbh ——dill). In still other words, the so-
called "generalized second law" is "semiclassically" (and
modulo the above caveat) valid for any process of scatter-
ing of radiation quanta off a black hole. A number of
Gedanken experiments6 involving box-lowering processes
not obviously reducible to scattering have corroborated
this impossibility of constructing perpetual motion de-
vices by means of interactions with equilibrium black
holes.

Finally, there is also evidence for the "second law" even
when the black holes involved are far from equilibrium,
but unfortunately only in the limit i)i~0. In that limit
Sbi, /S, „,~ oo (because ip ~0), and the increase of
Sbh+S,„, reduces to the stateIDent that the total horizon
area cannot decrease, something which, though not fully
proven, has been reduced to the so-called cosmic censor-
ship conjecture.

Although the above and similar results establish that a
black hole is, with respect to its environment, a thermo-
dynamic object, they neither explain the origin of its en-
tropy nor answer the closely related question of why
Sbh+S,„, always increases. One's first impulse would be
to identify Sbh with k inN, N being the number of "inter-
nal black-hole states. " But such an identification suffers
from two drawbacks.

In the first place the number of internal states compati-
ble with a given external appearance is infinite, as exem-
plified by the Oppenheimer-Snyder solutions in which the
"interior" contains a Friedmann universe of arbitrarily
large diameter. Perhaps one could exclude such configu-
rations classically by requiring that the black hole "not
have a white hole in its past, " but such a condition would
seem difficult to formulate for quantum gravity where
"tunneling" would probably be possible between any tmo
configurations, and where in particular no unique space-
time metric would represent the past history of any t=O
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quantum state.
In the second place, no law of entropy increase would

follow, even if a finite number of internal states could be
associated to a given black-hole exterior. The correspond-
ing deduction for ordinary thermodynamic systems is
based on the hypothesis of weak coupling between the sys-
tem and its environment. This allows one to define
separate "phase-space volumes, " X,„, and X,„„,in sucb a
way that %tot =&sysNc~v~ which yields the desired addi-
tivity S=S,„,+S,„„upon the taking of logarithms.
Then, if the system is in approximate internal equilibri-
um, N, r, will approximately equal the number of internal
states compatible with the values of its thermodynamic
parameters. For a black hole, however, neither the as-
sumption of weak coupling nor (probably) that of internal
equilibrium is tenable. Instead, the coupling
outside~inside is very strong, whereas the converse cou-
pling inside~outside is nonexistent. Moreover the inte-
rior is far from equilibrium, since the only Killing vox:tor
there (say for the Schwarzschild black hole) is spacelike. '

The observation that the region outside the horizon is
to all intents and purposes an autonomous system suggests
we seek the entropy there rather than attempting to
overcome the difficulties brought forward above. '" To
that end introduce p„q, the reduced density matrix corre-
sponding to the observables available on a spacelike hy-
persurface A, extending from (some two-dimensional
cross section of) the horizon to spatial infinity. Because
the external region is autonomous, p,& undergoes a well-
defined (albeit nonunitary) evolution as A advances in
time. Moreover the entropy S„g———tr(p„~lnp„g) will in
general be nonzero even when the overall quantum state is
pure. Entropy of this sort may be said to be purely quan-
tum in origin, since an analogous situation is impossible
classically. To solve the "riddle of black-hole entropy"
along these lines would be to show first that S,~ splits
into the sum of 2m' with the usual entropy of external
rnatter, snd second that S„z increases with time.

In the following we consider only one possible contribu-
tion to S,~, but one of the sort which, semiclassically,
carries all the entropy once the hole has evaporated, '

Specifically, we consider' a scalar field propagating in a
black-hole background and estimate the contribution to
S„~ arising because p,~ lacks the information contained
in the vacuum correlations between points inside and out-
side the horizon. ' %e do not consider other possible con-
tributions„such as that due to the geometrical variables
associated with the horizon itself (its "shape" ), which is
perhaps more promising as a candidate for the primary
source of black-hole entropy.

Nevertheless we are able to show that the contribution
we do consider is proportional to the horizon area 3, and
that the proportionality constant will have the correct or-
der of magnitude if there is an ultraviolet cutoff at around
the Planck length /p. %e also argue that the total S„z
must increase with time in the full quantum theory.

In the following model calculations, we consider a real
scalar field satisfying the Klein-Gordon equation on a
fixed background. %e use units in which A=c =k= I.

Consider the scalar field to be in a pure state to start
with. Then the density matrix p is trivial and the entropy

vanishes:

S= —tr(p lnp) =0 .

However, we will calculate the quantity tr(p„~lnp„~), and
we will find that it does not vanish. We will see, more-
over, that the major contribution to the entropy comes
from the high-frequency modes of the field, with a wave-
length much smaller than the radius of curvature of the
background manifold. Our simplified model will be based
therefore on a scalar field on a flat background in its vac-
uum state. In forming p,~ we will trace out the variables
associated to a spatial region 0 representing the interior
of the black hole at a given time.

%e remark here that nowhere in our calculations will
we use directly the fact that 0 is the interior of a black
hole, and one msy wonder to what extent the procedure
can be applied to some other region: after all, in any cal-
culation of entropy one chooses to perform some coarse
graining on the observables, which could consist in ignor-
ing all observables associated with measurements in some
region of space. What distinguishes a black-hole interior
in this sense is, on one hand, the objective limitations to
any attempt by observers outside a black hole to refine
their coarse graining (if they want to keep communicating
the results of their measurements to each other) and, on
the other, the fact that most other choices for the region
0 would not lead to a useful notion of entropy, since the
external region would not be autonomous and one would
not be able to show, using the argument in Sec. IV, that
the quantity one calculates is nondecreasing with time.

II. ENTROPY OF A COLLECTION OF COUPLED
HARMONIC OSCILLATORS

We model the scalar field on R ' as a collection of cou-
pled oscillators on a lattice of space points, labeled by cap-
ital latin indices, the displacement at each point giving the
value of the scalar field there. In this case the Lagrangian
can be given by

where q gives the displacement of the Mth oscillator
and j~ its generalized velocity. The symmetric tensor
Gsrz is positive definite, and therefore invertible, i.e.,
there exists a G such that

G MPG gM

and we can thus consider G~z as a metric on the configu-
ration space of the coupled harmonic oscillators. The ten-
sor VM& is also symmetric and positive definite. Intro-
ducing the conjugate momentum to q

we can write the Hamiltonian for our system as

I'~I'x+
p ~~me V

MX 1 I A

Next, consider the symmetric matrix 8'~tv defined by
8'&0 and
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where we have used the metric to raise indices (in other
words, the matrix W is the square root of V in the scalar
product 6). Using this expression for VMN in terms of
Wbt~, we obtain the usual expression for the Hamiltonian
of a system of coupled hartnonic oscillators,

(PM t W—M~q")'(Px i —Wjvaq )+ ,
' «—W,

(3)

where the first term is positive definite, as can be seen by

going to a basis that diagonalizes 6, and the term with

tr 8' is the zero-point energy.
Notice that abt (PM ——i W—btgq")'=(Pbt+i WMgq")

and abt (Pbt ———iWbr&q") are creation and annihilation

operators, but they do not correspond to normal modes,

since they satisfy the commutation relation

[aM, aN ]=2Wbt„.

We ean use (3) to obtain the Schrodinger representation

for the ground state. If we eall
~ go) the ground state for

the system of coupled harmonic oscillators, then, in order

to minimize I,
~
Po) must satisfy the following equation:

(PM &WM~—q"') lfo&=0 «r»1 M . (5)

But, in the Schrodinger representation, PM ———iaZaq
therefore we have

M + W~aq 4o((q" 1)=o
Bq

where I q" I denotes the collection of all q"'s, one for each
oscillator. The solution of Eq. (6) is given by

' 1/4

det exp( ——,W„sq q ) .W B

The density matrix for the vacuum state is given by
p= ~fo)&go~. In the Schrodinger representation this
density matrix is

p(Iq 1 Iq I)=& Iq"I
I 4o&&Vol Iq'I &

=So((q") 4'o(Iq' I)'
1/2

det

Xexp[ ——,
' W„(q"q +q'"q' )) .

Now consider a region Q of R . The oscillators in this
region will be specified by greek letters, so that, e.g., the
displacement of the ath oscillator will be q . If we con-
sider the information on the displacement of the oscilla-
tors inside 0 as unavailable, we can obtain a reduced den-

sity matrix p,& for the oscillators outside Q, integrating
out over 8 for each of the oscillators in the region Q. If
lower case latin letters denote oscillators in the comple-
ment of Q, then we have

1/2
~~a

det exp[ —
2 W,b(q q +q"q' )]f ff dq exp[ —W ttq qt W, (q'+q"—)q ),

where we have set

$V,b 8',~
~~B=

%e will also use

8"
~AB 8'

for the inverse of Wzz ( W" is not obtained by raising indices with 6" ), and the following notation for the various
square Wmatrices: W' is the inverse of W,b; W,b is the ~~~~rs~ of W'; W ~is the ~~~~rse of W ti; and W
inverse of W . Completing the squares and integrating out in (8), we have

p,~(Iq'I, Iq' I)=[det(W,b/o)]' exp[ ——,
'

W,b(q'q +q"q' )]exp[ —,
' W ~W, W»(q+q')'(q+q') ],

where we have used the identity'

det 8'z~ —=det8', ~det8' p .

Notice that, in Eq. (8), only the last term in the exponent under the integral couples oscillators inside Q to oscillators out-
side Q. It is this term which, on integration, contributes to the formation of the mixed state from the pure state.

To rewrite the density matrix in a convenient form, it is useful to prove the following identity:

(10)
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We just need to show that the right-hand side is the inverse of W':

p"~(Wb —W, W~i W@,)= W'"Wqb —W'"Wrb —(W'"Wq~ —W'"Wr~)W ~Wpb ——5'b —W'"Wrb+ W'r5r~Wiib 5——'b .

Then, defining

substituting these in (9), and using the identity (10), we obtain
' 1/2

p„(Iq'I, Iq' j }= det exp[ i l—.b(q'q'+q "q')]exp[ '&—.-b(q —q')'(q —q')']

We want to find now the entropy of such a density ma-

trix. To this end we will first study the entropy of a
Gaussian density matrix obtained for a simpler system of
two oscillators, and then extend this to a general Gaussian
density matrix.

A. Entropy of a Gaussian density matrix:
one degree of freedom

Consider a system of two oscillators, each with one de-

gree of freedom. Let a and b be the annihilation opera-
tors for the two oscillators. Consider the state vector

Iy)=C ' ' Io).e I0)b

ta. Then the creation and annihilation operators for the
two oscillators can be written (in suitable units) as

a =2-'"(p —ix), a"=2-'"(p +ix),
b =2 (q ty),—b =2 (q+iy) .

Thus, from (15) and (16),

(16)

[9 yq) i —(x +y—y}] I 0& =o,
( 7)

[(q yp') —i (y +—yx)] I 0& =o
If we now change variables to u —=x+yy and u =y+yx,
with

=c g y" In), e In)b,

(13)

where y is sortie real number and the normalization con-
stant C =(1—y )'~ . Forming p=—

I g)(g I
and tracing

out over oscillator b we get for the reduced density ma-

trix, the "Gibbsian" state

p.~= X b &~
I
0&&PI~ &b

m=0

= X C'y2™l

P„=(1—y ) '(q —yp),

we can rewrite (17) as

[(1 y)P„—iu]—I g) =0,
[(1 y)P„iu] —

I
t—P) =0. (18)

In the Schrodinger representation, (18) becomes a pair of
differential equations. Solving these, we obtain

The entropy associated with this density matrix is given
1( ( u, u) =K exp ——

2
(u +u')1

2 (1—y')
(19)

S= —tr(p, ~lnp„q )

2
= —ln(1 —y ) — lny2 y 2

1 —y
2

(14)

where K is some constant, and

u'+u'=(x +yy)'+(y+yx)'

=(x'+y')(1+y')+4yxy .

In order to relate this entropy to that of a Gaussian densi-

ty matrix, we express (13} in the Schrodinger representa-
tion. From (12), and using straightforward algebra,

Hence,

1+y x +y 2yg(x,y) =K exp —
2

—
2 xy

y2 2 1 y2
h

(20)

which just expresses the fact that
I p) is obtained from

the vacuum by a Bogohubov transformation. Let x and y
be the displacement of the two oscillators from equilibri-
um. Let p and q be the corresponding conjugate momen-

Notice that this P(x,y) is of the form (7). From (20),
forming

p[(x,y), (x ',y') ]= it (x,y)g'(x', y'),

and tracing out over the second oscillator, we have

p,~(x,x')= JdyK exp
I +y2 ~2+@2

y2
2y Xg—

1—y

1+y x +p 2y
X P'

y2 2 1 y2

1+y x +x=E exp
1 —y' 2

' 1/2
m(l —y )

1 +y2
y (x+x'}

exp
(1—y )(1+y )

2 2
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2 2 l 2 2

+ (+')'
y2 2 1 y4

1 —y
ir(l+y )

p~(x,x') =

Using the normalization of g(x,y) to determine the value of K, we have
' 1/2

If we now let

4p
p, =—y, M=, and X= 2,1+@ 1 —p

(22)

p—:1+2~ —2[A, (1+)I, )]i~~ (25)

[

of the dimensional parameters in the density matrix. But
tllls Ilicails that, if we define

p,~(x,x')=
1/2

exp[ ——,'M(x +x' )

,'N(x ——x')] . (23)

we can generalize our result to state that the entropy of
any density matrix of the form (23), with M and & freely
specified, and p given by (25), is the expression (24).
particular, for comparison with what follows, this is the
entropy of the density matrix20

This is a Gaussian density matrix of the form (11). We
have thus obtained the result that the entropy of the one-

parameter family of Gaussian density matrices for one de-

gree of freedom (23},where M and N depend on the pa-
rameter y, is the expression (14), or, in terms of p,

p lnp, +(1—p, )ln(1 —p, ) (24)
1 —p

Notice that Eqs. (22), with the condition p, & 1, can be in-

verted to get

@=1+2M/X 2[M/N(1—+M/N)]

We will need„however, the entropy of (23) for arbitrary

M and N. To see how this is related to the result above,
consider a density matrix of the same form {23),but with

M and N freely specified. The entropy S, being dimen-

sionless, can depend only on the ratio

pre(xix') =~ ' 'exp[ ——,'(x'+x') ——,
' l.(x —x')'] .

(26}

8. Entropy of a Gaussian density matrix: general case

In the more general case of our model for the scalar
field, the direct generalization of Eq. (23) is (11). In order
to calculate its entropy, we want to write it in a form to
which we can apply the previous result, namely, as a
product of density matrices of the form (26). To achieve
this, we will construct a basis (not necessarily orthonor-
mal) in which both M and N are represented by diagonal
matrices. ' To that end, consider M itself as a metric on
configuration space, and choose as a basis a complete
orthonormal set of vectors with respect to M. This fixes
the basis up to an M-orthogonal transformation, which
can be used to diagonalize any other symmetric tensor,
and in particular N,s. If we do this we can rewrite (11) as

p. (Iq'J Iq'])= g I
'"

p[ ——,'(q„q"+q„'q'")- —,' )(,„(q q )„(q q ) ])

(just for this equation, we are not using summation con-
ventions}, where the )I,„'s are the diagonal elements of N, b

in our basis. Obviously, these diagonal elements are the
eigenvalues of the operator

A's—=(M '} X,»,
and, as such, they can be calculated in any basis. %e now
have p,~ in the form

p.~= s(~. »
which means that the entropy is given by

Theorem. The entropy associated with a Gaussian den-
sity matrix of the form (11) for a system with many de-
grees of freedom is given by

p„in@„+(1—p„)ln(1 —p„)
1 —p

where p„ is the unique positive solution of X„=4p„/
(1—p„), given by (25), and I)L,„J are the eigenvalues of
A'b=(M ') N, I, . The relationship between S and the
A,„'s can also be expressed directly as

S = g Iln(-,'I,„'~ )

S= g S [p(A.„)]. (27)
+(1+A, )' in[(1+A, ')'~ +g '~~]I

a sum of terms corresponding to the different eigenvalues
of A, each one giving a contribution of the form (24) seen
for the two oscillator case.

Summarizing, we have thus shown the following.

We now give some further identities satisfied by the
various 8"s. From 8 W&~ ——0 and 8',z 8"" =0 we
have, respectively,
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(28)

[and, if W&ii were not a symmetric tensor, we could have
written down similar but inequivalent identities by inter-
changing latin and greek indices in (28)]. From these, one
can easily derive several identities of the form

ed with the procedure described in the preceding section,
but, for convenience, we will take the continuum limit of
that formalism. In this limit, we have

=f [ , (—&P)'+—,
' m'P ]d'x, (30)

4'b ———8"~ 8'~b, (29)

For later use, notice that, using the definitions of the
tensors M and N, and the first identity in (28), we can
write equivalently A as

Our goal is to construct the operator corresponding to the
A'b of the preceding section, evaluate its eigenvalues, and
calculate the entropy (27) for some appropriate region Q.
We start with the momentum representation of the opera-
tors involved. From

which shows clearly how A depends on the choice of una-
vailable oscillators. Also, all of its eigenvalues can be seen
to be positive, by the following argument. If we consider
W,b as a metric for the configuration space of the oscilla-
tors outside 0, we can use it to lower the index a in A'b,
which gives

8bA b= —8' 8 8 b ——g yg~ P

d kf (k2+ 2) ik (x —yJ

(2n )

we get

W(x ~) ( k 2+ m 2)1/2e ik ix —y)d k

(2n )

(3 I)

where we have used the second identity in (28). But, since
W„s, and hence W ~, are positive definite, this shows ex-

plicitly that A b is a positive (semidefinite) operator, and
that its eigensubspaces are orthogonal in the metric 8',b.

What we have to do now is to write down the form of
the operator A'b, taking into account the dynamics of the
specific field we want to study and the specific set of os-
cillators that will be ignored, determine its eigenvalues,
and, using the theorem above, its entropy.

III. THE KLEIN-GORDON CONTINUUM LIMIT

Consider now a real scalar field satisfying the laein-
Gordon equation, and the problem of calculating the en-

tropy associated with this field in the presence of a black
hole. As discussed earlier, the latter will be simulated as
some region 0 of fiat space. The entropy will be calculat-

W —1( ~) (k 2+m 2) —1/2eik (x —y)d k

(2ir)
(33)

where continuous indices over I have replaced the ma-
trix indices, and the above expressions should be thought
of as (kernels of) integral operators. These integrals are
well defined as Fourier transforms of distributions. In
particular, e.g. , for the massless case, W(x,y) is propor-
tional to the so-called "finite part" of r, where
r = ~~x —

y~~ consistently with a dimensional analysis of
(32). From (29), the operator A is obtained as a sum over
the oscillators in the region 0:

A(x,y)= —f d z W '(x,z)W(z, y), (34)

i.e.,

A(xy) f di (k2+ 2) —i/2eik(xzi p(p 2+m 2)i/2e/p(zy)d k

(2m) (2~)
(35)

%e now have to solve the eigenvalue equation

dyAxy y =A, x

and use the eigenvalues in the expression for the entropy
(27).

A. The need for a cutoff

Consider first the case m=O. Since the entropy is a di-
mensionless quantity, S has to be invariant under a rescal-
ing of the region 0, and the only answer we can expect to
get for it is ao (unless it vanishes). In the m&0 case, S
could be a function of mR, where R is some characteristic
»&e of Q. If the entropy was not infinite, we would ex-
pect it to vanish in the limit as the size 8~0„but this

I

limit is equivalent to m ~0, which gives an infinite entro-
py from the above argument. We therefore get again
S=oo. Physically, thus, the divergence of the entropy
seems to be of ultraviolet origin, since it is not removed by
a nonvanishing mass: it comes about from including
modes of arbitrarily small wavelength. But the only way
for entropy to be physically meaningful is for it to be fi-
nite. This means that there has to be a fundamental
length in the theory. We will therefore introduce a new
dimensional parameter I, that will act as a cutoff. Now
the entropy can be a function of 8 /I.

The question that remains, however„ is that of how to
take into account this cutoff in our calculations, without
knowing exactly how it arises physically. Some possibili-
ties are the following.
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(1) We do the whole problem on a lattice of spacing l.
This would be the most physically reasonable option, but

we would lose the calculational advantages of the continu-

um. (2) We use a momentum cutoff I ': integrals like
those in (31)—(33) have a finite domain of integration.
This seems to make sense physically, but it has some
drawbacks related to properties of the operators we want

to use, like the sign of their eigenvalues. (3) we use a posi-
tion cutoff near the boundary of 0: the integration over z
in (35) is restricted to points at a distance I at least from
the boundary. In this way we do not allow correlations
between points inside and outside 0 whose distance is less
than I. Notice also that the high-frequency modes that
we expect to contribute most to S are localized near the
boundary.

In the calculations that follow, as we will see, we as-

sume our geometry to have certain symmetries, that allow

us to reduce the three-dimensional problem to an effective
one-dimensional one. In this reduced problem we will use

the third possibility listed above for the cutoff implemen-

tation. As for the value of the cutoff, we can think of it
as being of the order of the Planck length. It certainly has

to be much smaller than the size R of the region 0 and

the radius of curvature of spacetime.

S. The half-space case

To begin with, we will consider the simple example in
which the unavailable region 0 is a whole half-space in

lR . Then the total entropy we will compute will be in-3

finite, but we are interested in showing that the area of the
boundary surface factors out, and calculating the entropy
per unit area. The latter result will agree to a very good
approximation with a more realistic calculation taking
into account the actual shape of a black-hole horizon and
spacetime curvature. More precisely, in our example, for
dimensional reasons, we will obtain, e.g., for the m=O
case, an entropy per unit area

5/A =CI

where C is some constant and I the cutoff. If the model
had included other dimensional parameters, like the mass
m or a characteristic size R of 0, we would expect to ob-
tain

S/3 =C(R/I, m1)1

where C(x,y) is a slowly varying function of its argu-
ments.

Consider then a scalar field initially in the vacuum state
in R, and carry out the tracing-out procedure for the re-
gion 0= (x

~
x2 & 0 j. If we decompose all three-vectors U

into their component normal to the boundary, Uz and a
two-vector along the boundary, U~~, Eqs. (32) and (33) be-
come, respectively,

k
W(xy)= '

(k '+k '+m')'"e' '"' "e' ~~ "~t '~~

2n(2~)' (37)

W-'(xy)= ' " (k, '+k '+m')-'"e' ""' "e' ~~
"~~ '~~ .

)2

Next, if we make the ansatz

f(x)=e ~~ ~f«i)

for the eigenfunctions of A, the eigenvalue equation (36) reduces to

(38)

Af(x )= —f dy f dz f (k +v +m )
' e

(40)

where the cutoff I has been introduced, and the integra-

tion along the boundary has been performed. Equation
(40) gives, for each v~~, an effective one-dimensional prob-
lem for a massive scalar field with effective mass

p,„in@„+(1—p„)ln(1 —p„)
o„(m, I)=-

An

where

(42)

m, = (v)('+ m ') '" .

The solution of this one-dimensional problem obtained
for a fixed v~~ gives the spectrum of eigenvalues I A,„(m,l),
n&Z] of the corresponding integral operator. Each A,„
gives a contribution to the entropy that, from the theorem
proved in Sec. II, can be written as

p„(m, 1)= 1+ —2 1+2 1 1

A' k. A'
(43)

o( m, I)= g o „(m, I),
n=0

Summing over the contributions of all eigenvalues we get
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and the total entropy is obtained by integrating over all
using the fact that, for a surface area A in configura-

tion space, the density of modes in momentum space is
2 /(2Ir):

I fd v~~o(m, l)

f dkko[(k +m )'~ l]
2m

(I+I'm') '"
, „,dggcr g

which obviously bounds g„k,„ink,„. This shows that
Ir{g) 1S fllll'tC.

For the entropy to be finite, the integral in (4S) must
also converge. Since we know that o(g) blows up for
$~0, this means that, unless we introduce„at least in the
massless case, the lower momentum cutoff in (45), we
need a fall-off like cr(g)=0(g I+s) as $~0, for some
6p0.

An upper bound on the entropy could be obtained from
an estimate of o (g). We have

In (45) we have introduclxi two cutoffs in the momentum
along the boundary of II. For the ultraviolet cutoff we
us& possibility (2) mentioned above. It is physically
reasonable to use this cutoff, although mathematically the
integral would have been well defined even for an infinite
upper limit of integration. As regards the infrared cutoff,
we would expect that it also is not needed for the integral
to be finite [even though o(0) is infinite], since otherwise
the coefficient C(R/l, ml) would not be a slowly varying
function of its arguments, as required physically when
ml~0, 8/l~ ao. Nevertheless in the physical situations
we want to approximate, this cutoff enters in a natural
way because of the finite size of the region Q.

C. Finiteness and estimate of the entropy

What we want to show now is that this expression for
the entropy is finite. First we will establish finiteness for
cr(g). For an integral operator like ours, the eigenvalues
accumulate at 0 (see the Appendix). Thus, from

All» A,n/4 foi A,»~0,

on - pnlnpn for p»~0 ~

we see that o(g) is finite if Q„A.„lnk,„ is finite. In order
to find the fall-off behavior of A, n, we have to study the
properties of the integral operator in (40). This equation
can be written (changing z~ —z, which takes 0 into its
complement) as

cc 00 EI (z +y)
m

' f dy f dzKO(x+z)
0 (z+y} f (y) =kf {x),

where Eo and E& are the modified Bessel functions of
zeroth and first order, respectively; we have renamed
(m, x,m,y, m, z)~(x,y, z) to obtain dimensionless vari-
ables, and c—:m l. Ill opcfatof terms, A ls a collvolu'tloll,
A =Aoe AI, or its kerne1 is a composite kernel. More pre-
cisely, it can be shown (sm the Appendix) that A has a
kernel in W ([0,00}X[0,co }},convolution of two kernels
in Ci, which are continuously differentiable and Hermi-
tian. From these properties it follows that its eigenvalues
satisfy Eq. (A6):

I/I

n=0

for some constant c=0.56, as can be estimated numerical-
ly by using (42) and (43). But then, if Iv„], Ia„I, and

IP„J are the singular values of A, Ao, and A„respective-
ly,

']/2 ' ']/2

where the first inequality comes from (A5) in the Appen-
dix, with p = —,', the second one from (A7), with @ = —,',
the third one is Holder s inequality, and the fourth one is
the defmition of the trace of an operator. The problem of
giving an upper bound to Ir(g) is thus reduced to that of
finding the trace of two operators (this would be very
simple —numerically —if it was known that Ao and A~ are
posl'tive opcfatofs).

Although we have not been able so far to obtain a nu-
merical value for the upper bound on the entropy using
analytical methods, work is currently in progress on nu-
merical calculations that will give us an estimate of the
value of a(g), and an indication on its behavior for small

This would also tell us how crucial it is to introduce
the lower momentum cutoff in the integration over g for
the massless case.

IV. CONCLUDING REMARKS

The quantity S defined in the previous sections does not
claim to be the sole contribution to the entropy of a black
hole. One of the drawbacks it has is that it depends on
the number of fields present, although this could be cured
by the presence of large couplings at high energies be-
tween fields, or between the fields and the shape of the
horizon (back reaction). What we propose is a framework
in which the contribution to the black-hole entropy from
nongravitational degrees of freedom (including gravitons)
can in principle be calculated.

But one thing that should be shown, if we are to call it
entropy, is that —tr(p, ~lnp, ~) is a nondccreasing function
of time. This can be seen as follows.

The external region of the black hole (the complement
of Q, in our notation), is an autonomous region, whose
evolution does not depend on the interior (this is obviously
true if there is a clear distinction between these two re-
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gions, but we expect our argument to hold even in the
presence of quantum gravitational effects like the blurring
of the light cones), and whose energy we expect to be con-
served since it can be defined in terms of observables in
the asymptotic region far from the hole. Consider the
state (density matrix) which maximizes the entropy for a
given value of the energy. This density matrix is the mi-
crocanonieal ensemble, a function of the energy only, and
is thus conserved. But it is known classically, and is also
true quantum mechanically, that, if the maximum entro-

py state is conserved, then for any other state the entropy
will always increase.

To apply the framework we have proposed to a more
realistic situation, one would first try to use, for the re-

gion 0, not the half-space z &0, but a sphere
(x +y +z )'~ &R. To reduce this case to an equivalent
one-dimensional problem, in analogy with our calculation,
one would make the ansatz, for the eigenfunctions of the
operator A,

f(x)=&i (&,P)f(r) .

In this case, though, the technical difficulties involved in
the calculation become greater. To use some of the
theorems on integral operators that we have made use of,
one would like to write A as a convolution of two opera-
tors. This can be done by suitably changing coordinates
so that the interior of 0 becomes characterized by the
same range of values of the new radial coordinate as the
exterior, but the resulting operators are not as simple as
for the half-space case.

Finally, it would be useful to extend the whole formal-
ism to the case of a curved background.
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APPENDIX: PROPERTIES OF THE SPECTRUM
OF THE INTEGRAL OPERATOR A

In this section we want to prove that the integral equa-
tion (46) has a discrete spectrum with eigenvalues con-
verging sufficiently fast to zero.

The equation (redefining for simplicity the eigenvalues
A, to absorb a factor n)is.

00 oo E,(z+y)
J dy f dzEo(x+z) f(y}=Af(x) .

0 Z+g
Our kernel is therefore

Qo E&(z+y)
A(x,y) = dz Eo(x +z}

Z+P
CO Ei(z+y+e)

Z EO X +Z+e
O Z+P'+&

= f dz Ao(x, z)Ai(z, y),

where

Ao(x,y) =Eo(x +y +e),
Ei(x +y+@}

Ai(x,y) —=

X+/ +6' (A4)

The kernel A(x,y) is thus composite and the operator A a
convolution, so we can write formally the eigenvalue
equation as

Af =Ao+AIf'=A.f .

The questions we wish to address are the following. (a)
What is the character of the spectrum of the integral
operator A (i.e., are the eigenvalues discrete or continu-
ous)? (b) If they are discrete, does the sequence of eigen-
values converge to zero or not? (c) If it converges to zero,
what is the rate of convergence'? Specifically, does the
series Q„A,„ink, „converge?

We recall here some nomenclature that will be used in
this analysis. We give the definitions for integral opera-
tors in the interval [0, ce }, but their extension to other
cases is straightforward.

A useful notion in dealing with non-self-adjoint opera-
tors, like our A, is that of singular value. Given an opera-
tor E, its singular values are defined to be the square roots
of the eigenvalues of E'E (or EE', since these two
operators have the same spectrum). The singular values
are therefore positive by definition, and, if E =E', they
are the absolute values of its eigenvalues.

The kernel E(x,y} of an integral operator E is said to
bein Wz if

IIEIIz —= f,"dx f"dy I«x» I'& 00

The operator E is said to be of class C„ if its singular
values I v„] satisfy

gv„"&~ .

In the special case r=1, the operator is called nuclear. It
turns out that a kernel E(x,y} is nuclear if it is the com-
posite of two W kernels Ei and Ez (Ref. 24), i.e.,

E(x,y) = fdz Ei(x,z)Ez(z,y) .

Then the following facts are true.
(1) A(x,y) is an W kernel, when e & 0. For it is a com-

posite kernel of two W kernels, Ao and Ai (Ref. 25) (the
set of all square-integrable kernels forms a complex vector
space, which is closed under composition). We now check
that Ao and Ai are W . If we define u=x+y and
U =—x —y„ then

IIAollz'= f, dx f, dy IA.(x»l'

= —,
' f "

du f dU IE,(u+a) I

'

= f du u
I
Eo(u +~) I

which is finite, since Eo(u)-exp( —u) «r u~~ »d
Eo(u) ———,

' lnu for u~0; and



BOMBELLI, KOUL, LEE, AND SORKIN 34

IIAillz'= f, dx f, dylAi(»y) I'

= —,
' f du f duu lEi(u+@) l

dQ Q K«9 +6

which is finite, but only for e &0, since Ei(u) —exp( —u)
for u~m, and ki(u)-u ' for u~O. From the fact
that AC W, we have that (for @~0) the spectrum of A

is discrete and accumulates at 0, which answers questions
(a) and (b).

(2) A(x,y) is a nuclear kernel when epO. This follows
immediately from the condition stated above for an W
kernel to be nuclear, and from the fact that A, Ao, and Ai
are all W kernels. But from this we have that the singu-
lar values of A satisfy

but this does not yet settle question (c).
(3) A(x,y) is a Cig2 kernel. It can be shown that, if E,

is C& and E2 is C&, then the composite kernel
E =Ei a E2 is C„, where 1/r = 1/p+ 1/q (Ref. 27).
Hence, all we have to show is that Ao and A« are both C«.
But, from another theorem by Weyl, we know that, if E
is an W, continuously differentiable Hermitian kernel,
then its eigenvalues a„satisfy

lim lu„ l
n'~'=0.

Since both Ao and A, satisfy these conditions, and for
Hermitian operators the singular values are the absolute
values of the eigenvalues, it follows that Ao and A, are
C«.

(4) The eigenvalues of A(x,y) satisfy

&n g tX)

n=l
(A6)

We have also in general, from a theorem by Weyl, that,
for O~p~2,

n=1 n=l

Hence the eigenvalues of A satisfy

n =1

from result (3), Eq. (A5), and the fact that the eigenvalues
of A are positive. This answers question (c).

(5) The eigenvalues of A also satisfy the inequality

(A7)

where Ia„ I and lP„I are the singular values of Ao and

Ai, respectively, and p & 0 (Ref. 27).
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