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The simplest two-body relativistic system with direct interaction, described by two first-class con-
straints, is investigated. After a description of the multitime approach (canonical quantization
without gauge fixings), the two coupled integro-differential wave equations are solved. The elemen-

tary solutions for the bound states are found and are shown to transform as irreducible representa-
tions of the Poincare group. Invariant scalar products are introduced assuring the unitarity of the

representations and some of the associated conserved currents are discussed. The initial data prob-

lem has been solved by means of a quantum canonical transformation, which transforms the
integro-differential equations into differential equations.

I. INTRODUCTION

There has recently been a renewed interest in the rela-
tivistic classical and quantum theories of particles in
direct interaction. ' Models for systems of two" ' in-

teracting particles have been proposed by various authors,
and applications to the phenomenology of the elementary
particles have been attempted. ' ' In particular, in Refs.
11 and 12 it has been shown that models of this kind, for
two scalar particles or for two spin- —,

' particles, recover
the quantum relativistic effects up to the c order. Appli-
cations of these models to the determination of the masses
of the mesons have been also tried, giving a very good
1t 17

The problem of the foundation of a consistent theory of
relativistic interacting particles, in the classical literature
on relativity, was unsolved since the discovery of the no-
interaction theorem. ' After that time the main reason of
the difficulties encountered was understood, and a correct
approach to the problem became possible. As a conse-
quence there has been a new fiowering of papers on this
subject.

For all these reasons there is now an interest on this
kind of problem from a general point of view, but we may
underscore other reasons for a thorough study of this
matter.

In our opinion these reasons are essentially three. First
of all, from a field-theoretical point of view, the two (or
more) particle sector of the Fock space on which the field
is defined and the corresponding problem connected with
the presence of bound states, solutions of the Bethe-
Salpeter equation, can receive a clarification from this
study.

As we will show, the analysis of the solutions of a sim-
ple system of two particles provides for a covariant basis
for the bound states in configuration space, which is suit-
ed for a central force interaction, but which can be gen-
eralized to other kinds of interactions by a suitable gen-

eralization of the model. "
The state of a two-particle system transforms as a re-

ducible representation of the Poincare group. This basis
provides for a reduction of this representation in terms of
irreducible representations, each corresponding to a given
mass and spin. The mass spectrum and its degeneracy in
terms of the spin will of course be determined by the kind
of interaction which was assumed. The states of this basis
depend in a natural way on two times, and the problem of
the physical interpretation of the relative time finds here
its natural explanation, as will be more apparent in the
next section. This seems to open the way to the solution
to the analogue problem in the Bethe-Salpeter amplitude.

A second reason is that these theories provide for an
approximation of the kernel of the Bethe-Salpeter equa-
tion, " ' and are related to the quasipotential ap-
proach for weak potentials. As shown in Ref 21 the.
Bethe-Salpeter equation can be replaced by two coupled
integrable equations. Moreover in these models the in-
stantaneous approximation to the Bethe-Salpeter kernel is
expressed in a manifestly covariant relativistic form, and
it is shown in Ref. 11 that for slow motion there is a
canonical equivalence with the Darwin Hamiltonian, i.e.,
with the Fermi-Breit approximation to the Bethe-Salpeter
equation. These models also provide for an instantaneous
approximation, in the center-of-mass reference frame, of
an action of the Fokker kind, at the classical level. This
has an interest because it was shown in Ref. 24 that, at
least for the @ED field theory, a particle limit exists, and
that in this limit the dynamics of the particles is governed
by an action of the Fokker kind.

At last it appears that these theories are best studied in
the framework of Dirac's theory of constraints. In this
formulation they exhibit a gauge invariance, the gauge
transformations being generated by the constraints them-
selves, and this fact put these theories in a very strict anal-

ogy with all the gauge theories. They seem to be a good
laboratory for the study of the applications of Dirac's
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theory, and to extend it to more general gauge field
theories.

In Sec. II the two-particle system we intend to study is
defined and discussed. In Sec. III we briefly review the
Klein-Gordon theory for one and two free particles, with
a discussion of the possible definitions of a scalar product.
A possible model for the coupling of a two-particle sys-
tem to an external field is given. In Sec. IV we give an
analysis of the solutions of the Todorov-Komar model,
and the definition of various conserved scalar products.
In Sec. U the transformation properties of the solutions of
the model are given and it is shown that the scalar prod-
ucts defined in the preceding section are invariant under a
Poincare transformation. In Sec. VI the problem of con-
served currents is discussed. Finally in Sec. VII the prob-
lem of the initial data is discussed, and it is shown that
this problem is well defined for a set of transformed equa-
tions corresponding to a canonical transformation of the
underlying classical constraints. In Appendix A, after the
definition of the standard boost and of the polarization
vectors for a timelike four-vector, a new set of canonical
variables for the two particles is defined. In Appendix 8
a special set of canonical variables for the free scalar par-
ticle is introduced and in Appendix C a singular function
connected with the quantization of the previous variables
is studied. In Appendix D the variables of Appendix 8
are extended to the two-particle case to solve the problem
discussed in Sec. VII.

II. THE MUI.TITIME APPROACH

%e mentioned in the Introduction the no-interaction
theorem, ' and the possibility of a way out of its conse-
quences. ' ' Let us now discuss this point in more detail,
from the point of view of the constraint theory.

Models with constraints avoid the consequences of this
theorem by introducing eight phase-space variables for
each particle instead of six: xt', pI' (i =1, . . . , n; n being
the number of particles; p=0, 1,2, 3). The dynamics is
given in terms of a set of n first-class constraints X;(x,p).
That is, the condition IX;,XJ. ] =0 should be satisfied
when the constraint conditions X; =0 hold
(tpt' xJ I =~,~"" n=(+-

The energies p; are determined by the constraint equa-
tions X; =0, while the times x; are left as gauge variables.
Gauge-fixing conditions are needed to determine them, so
as to get a reduced phase space of six variables for each
particle. Each choice of the gauge-fixing conditions
determines a different physical model, or, in other words,
a model given in terms of first-class constraints only does
correspond to an infinity of physical models. This corre-
sponds to the fact that the constraint equations X; =0 by
themselves determine an n-dimensional hypersurface on
which the motion of the system takes place, and not just a
line.

The problem of what are the physical quantities, or
"observables, ** of the system arises.

The usual way to define the observables A (x,p} is to re-
quire for them to be gauge invariant; that is, the A (x,p)
are the quantities which satisfy the condition IA,X; I =0,
the 7; being at the same time the constraints and the gen-

erators of the gauge transformations.
Clearly, following this definition, the coordinates x,

and p," in general sre not observsbles. Thus the price we

pay to avoid the no-interaction theorem is to lose contact
with the quantities which are to be measured, either in
classical or in quantum theories.

When a singular Lagrangian is available, giving rise to
the constraints 7;, the previous situation can be seen to
correspond to a kind of degeneracy of the Cauchy prob-
lem in the configuration space. That is, many gauge
equivalent configurations may evolve from the same set of
Cauchy data.

To be more definite let us consider the two massive
spinless particle system, whose dynamics is given in terms
of the Todorov-Komar ' first-class constraints:

&i=I i
—~ i

—~ &z=u2 —~2 —~2 2 — 2 2

where the first-class condition

[Xi,X2I =0

is satisfied if

V= V(ri', p' qi' (ri qJ)(p q)).
where

(2.1)

(2.2)

(2.3)

p"=pi+p"» q"= 2(pi —pi»
qi (nv p p ~p )q r xi x2

ri =(n". p"p.~p—')" .

(2.4)

+4X (X +m( —m2 )J, (2.6)

X =
2 (X)—Xi)=(p,q) ——,'(m, —m2~),

M+(qi, ri ) =M i(qi, ri )+M2(qi, ri ),
M~(qj, ri)=[m; qi + V(ri )]'~, —i =1,2 .

(2.7)

In the form (2.6) the constraint equation X+ ——0 deter-
mines the modification produced by the potential V to the
free mass spectrum [which consists in four branches with
thresholds +(m, +m2) and pseudothresholds +(m

&—m2}], while X =0 suggests that its conjugated coordi-
nate (p, r) should be a gauge variable.

To each X; we now have to associate a gauge-fixing

From now on we will restrict our discussion to this
model, in the case of a potential

(2.5)

A singular Lagrangian giving rise to the constraints
(2.1} is unfortunately not known (see, however, Ref. 26).
In any case we can visualize the gauge freedom of the
model by considering the two linear combinations

X+ =2(Xi+Xi)

=p +4[q —V(ri )]—2(mt +mz )

I [p M+ (qi, ri—)][p —M (qj, ri)]
1
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proach does not require gauge-fixing conditions.
To the physical positions, in the sense of Refs. 9 and

30, are associated Hermitian operators, which coincide
with the canonical coordinate operators x; when

r, =t2 —— ——r„. Outside this surface the physical posi-
tions are interaction-dependent functions of the operators
x; and of their associated velocities v;, which in general
will not commute among themselves.

Having in mind this multitime approach for the non-
relativistie quantum case, we may try to follow the same
steps in the two-body relativistic case (2.1).

The first step will be to look for the quantum version of
the model, by introducing canonical operators xI" and p,"
(i =1,2) satisfying

[pf~xj ]= i 5ijg (2.8)

and besides two constraint operators g; such that

(2.9)

This can be done without ordering problems in this
case. The second step will be to postulate two wave equa-
tions

X;g(xi,x2)=0, i =1,2, (2.10)

which are integrable in consequence of (2.9).
Usually all this is done following the theory of con-

straints, that is, by defining the extended Hamiltonian
HD ——A, &X&+AiX2, which determines the evolution in a
scalar unphysical parameter ~, and where A, &, jL,z are two
arbitrary functions of r. In this case we will have a
unique Schrodinger equation for a wave function
f(x i,x2, r).

It is also possible to define a mathematical scalar prod-
uct by considering 1' as an element of an Li( R ) space;
with respect to this scalar product HD has to be Hermi-
tian. It is then necessary to project out the physical states,
which have to be v independent. HD is nothing else than
the most general generator of the gauge transformations.
In this way we recover the two equations (2.10).

In the nonrelativistic theory the two times t& and t2
were the two parameters, in terms of which the dynamical
evolution of the wave function i)'i(xi, x2, ti, t2) was defined.
Here, on the contrary, it is not clear, at least for the mo-
ment, which are their natural counterparts. One can use
x, =t, , thus breaking the covariance of the theory, but, as
is apparent from Eqs. (2.10), by looking at the presence of
time derivatives in the argument of the potential V in Eq.
(2.5), there are strong reasons to prefer another choice for
them.

Indeed as observed, Eqs. (2.10) are not "local" in the
two times x;, and the initial data problem for g is not
well posed. On the other hand, without a clear definition
of the initial state, a dynamics in a true sense does not ex-
ist. Furthermore any choice in the plane (xi,x2) of a
path between an initial and a final state will not clearly
correspond to an invariant choice of a gauge-fixing condi-
tion, such as, for instance (p, r) =0.

This problem of the time parameters and of the initial
data will be approached in the last section of this paper.
In the following sections we will look for a physical scalar

condition. The one associated to X selects one pair of
world lines on the world sheet, on which an infinity of
gauge-equivalent pairs of world lines exists. This choice
can also be interpreted as a statement on the time correla-
tion between the two particles and therefore also as a
statement about which Dirac's form of dynamics has to
be used (see Ref. 33). For instance, the choice (p, r)=0
amounts in stating that in the center-of-mass reference
frame an instantaneous interaction takes place whose
natural Dirac's form is the one employing spacelike sur-
faces.

The other choice, associated to X+, refiects the arbitrar-
iness in the description of the free motion of the whole
system, in the chosen Dirac's form of the dynamics.

Other choices are gauge equivalent; they can be ob-
tained by means of a canonical transformation generated
by X+ and X (Refs. 5 and 28).

The above discussion shows the necessity, at the classi-
cal level of the theory, of a choice of gauge-fixing condi-
tions, essentially of the one associated to X, in order to
identify the physical model. For instance, a Bethe-
Salpeter approach suggests the choice (p, r)=0. On the
hypersurface in phase space so identified, the x; are the
physical positions of the two particles; the corresponding
velocities are to be determined from the first set of the'

Hamilton*s equations of motion.
The "observables" A(x,p), defined by the conditions

tA, X; I =0, are constants of motion. They are part of the
Cauchy data of the system„and the gauge-fixing condi-
tions will put some restrictions on them.

We have till now discussed the constraint theory ap-
proach. Another point of view, which does not make ex-
plicit use of gauge-fixing conditions, is that of predictive
mechanics, ' where the physical positions are defined
in such a way to get an unambiguous physical interpreta-
tion of the model in terms of world lines, for any choice
of them.

This last point of view gives rise to the multitime
dynamics (one independent time for each particle), which
is especially suitable for a relativistic dynamics. Its physi-
cal meaning can be however most easily understood in the
nonrelativistic case, where many complications, which
hide the underlying simplicity of the approach, disappear.
For this reason an analysis of the nonrelativistic multi-
time dynamics, both in the classical and quantum case,
will be the subject of a forthcoming paper. '

Some results of this analysis, 6'i2 in the case of the non-
relativistic limit of the Todorov-Komar constraints (2.1),
are the following. It is possible to reformulate the classi-
cal mechanics of a system of n particles as an n-time
theory and to find a canonical form of the equations of
motion; the canonical quantization can be performed, giv-
ing rise to n Schr6dinger equations for a unique wave
function depending on the canonical coordinates x;
(i =1, . . . , n) and all the n tirzees t &i, .2. . , „iThese.
equations are integrable; this implies that in the space of
the times the dynamics does not depend on the path from
the initial and final states. A scalar product for the solu-
tions of the wave equations can be defined, which is con-
stant in each time. The restriction to t~ ——t2 ——. . ——t„
gives rise to the usual Schrodinger theory. Thus this ap-
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[Cli+ m i + V(ri )]g(x „x2 )=0,
[Elq+mi + V(rj )]g(xi,xi) =0,

(2.11)

and for which the integrability condition (2.9) is satisfied.
We will look for a scalar product for f constant in both

times xi and x2, and invariant under the action of the
Poincare group. Since 11 describes a system of two spin-
less particles we assume it to be a scalar under a Poincare
transformation.

In order to give a meaning to Eqs. (2.11) we shall re-
strict in this paper to wave functions 1( with support
p &0 (advanced and retarded functions in momentum
space), so that the argument of the potential r, can be
well defined as an operator on f, by means of its Fourier
transform in the collective variable x = —,

' (x i +xi ).
Furthermore we assume that

product, constant in both times xo) and x02, and relativisti-
cally invariant.

The previously mentioned mathematical scalar product
in Lz( R ) is indeed divergent for the physical states, for
which Eqs. (2.10) hold. So it is not useful for a physical
interpretation of the wave function.

We leave aside the problem of the physical positions.
From the classical point of view it has been already
analyzed by several authors.

%e close this section by summarizing the problem we
intend to study in the following so:tions. As we have said
we will study the two equations (2.10), which explicitly
are

corresponding definitions of a scalar product.
The Klein-Gordon action is

S = I d x[a„g'(x)ai'P(x) m—P'(x)P(x)], (3.1)

from which we get the Klein-Gordon equation (we will

denote by A the operator corresponding to the classical
quantity A):

gP(x) = —(CI+m )P(x)=0 . (3.2)

j"(x)= p'(x)a—"p(x), a"= a "—a ",
2

aJ&(x)=—
t p"(x)(CI+m ~)p(x)

2

(3.3)

—[(CI+ m )P'(x) ]P(x ) J

This current is extended to

This wave equation can be obtained as the quantum
counterpart of a theory based on the constraint
X=@ —m, for a massive scalar particle with canonical
variables x& and p&.

The action (3.1) is invariant under a constant phase
transformation /~/+A with 5g=iag, giving rise to a
Noether current, which is conserved for the solutions of
the wave equation (3.2):

V & —min(m, i,m &2), (2.12}
J&(x)=—P„(x)a&$ (x), a„J&(x)=0,2" (3.4)

in order to preserve the timelike character of the momenta

pi and pi of the two constituent particles. The wave
function P wiH be assumed to belong to the Hilbert space
of a two-particle system Lz( R ), obtained as the closure
of the space of test functions S( R ), on which the opera-
tor potential V(ri ) has to be defined (see, for instance,
Ref. 35).

A further comment on the definition of a scalar prod-
uct is in order. The existence of it has been investigated
by Droz-Vincent, by Molina et al. , and by Rizov,
Sazdjian, and Todorov. These authors define a scalar
product in momentum space; the first two authors for the
mass branch with threshold rn] +m2 only, while the third
authors give various definitions of a scalar product, trying
to match the results known in the case of two scalar parti-
cles coupled to an external electromagnetic field. They do
not get a conserved tensorial current as a generalization of
the current, which can be defined when the two particles
are not mutually interacting.

%e will review in the next section the K.lein-Gordon
theory for one and two scalar particles, and the corre-
sponding conserved currents and scalar products which
can be defined in that case.

III. KLEIN-GORDON THEORY OF
ONE AND T%'0 SCALAR PARTICLES

In this section we will briefly review the Klein-Gordon
theory of one and two massive scalar particles and the

where Pz and Pii are two different solutions of Eq. (3.2).
Equation (3A) implies the usual non-positive-definite

scalar product for smooth solutions of (3.2):

(y„,y, ), = I d~„(x)y„'(x) 'a~y,—(x},
2

a'(y„,y, ), =0,
(3.5)

where do&(x} is a spacelike surface eleinent.
The current (3.4} is interpreted as the electric current,

with the sign of the charge corresponding to positive- and
negative-energy states, suitably reinterpreted. Consistent-
ly there is a minimal coupling to an external electromag-
netic potential A„(x), in which case it becomes

J"(x)=Pq(x) —a "+A"(x) Ps(x) .
2

%e can mention Ref. 38 for a general discussion on this
point, and for the use of an energy norm in order to get
a Hilbert space for the physical states.

On the other hand, it is shown in Ref. 40 that a
positive-definite (nonlocal) scalar product can be defined
for bosons, on a group-theoretical ground. It is now easily
realized that a conserved Noether current can be associat-
ed to it also.

Let us introduce the operator W=(m —V )' [de-
fined on S( R ) and then extended to all Lz( I i)]. On
the space of the Klein-Gordon solutions it transforms as a
zero component of a four-vector. The Klein-Gordon
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equation can be written accordingly as

XP=(iB —W)(iB +W)/=0.
Let us then introduce the operator "sign of the energy"

0

[g,x"]= [2),i 8"]=0, (3.6)
8'

which is well defined on the solutions of the Klein-
Gordon equation and invariant under proper Lorentz

transformations. Under the infinitesimal transformation

())( x)~(I)(x)++(x), Q(x) = — r)(l)(x), (3.7)

where a is a real constant, the action (3.1) is quasi-
invariant, in the sense of the extension of the first Noether
theorem given in Ref. 41. This means that the variation
of the action consists of a four-divergence plus terms
which vanish with the use of the equations of motion:

5S= — f 1 x(d&I P*(x)d~gg(x) [di—r)P(x)]*/(x) I+/'(x)X gP(x) [X ri—(I()(x)]'P(x)) .

By comparing with the formal variation of the action we get the following conserved current:

j"(x)= —(()'(x)(i)—ri )8 "p(x), (3.9)

where

~t

%e may check that it is conserved:

r)p "(x)= ——
I P'(x)X riP(x) [X ri P(x—)]'())(x)+ [gP(x)J'[XP(x)]—[XP(x)]'[ri(I)(x)]I =0 .

On the solutions the zero component of j"(x)becomes

j (x)=p(x)+ —())*(x) ((()(x)+ p(x) (I)(x)
4 W

—=p(x),
(3.10)

where W = W. With p(x) we can define a positive-definite scalar product:

(3.11)

which is scalar on the solutions, constant in x, and coincides with that defined in Ref. 40.
For plane-wave solutions

())(„p)(x)=(21r) exp[ —i{2)()1(p)x —p x)]

[g=+1, and co(p)=(p +m )'~ ], we have

(0(~,i ) 4(~,i))(=n&„„~(p@'(p—p'» (4(~,1) 4'(v, i))2=~~~(p@'(p —p') . (3.12)

The generalization of the result (3.11) in the presence of an external electromagnetic field is a difficult problem. For
instance, in the case A (x)=0, A(x)= A(x) we have the same expression as in (3.11) but with Wmodified in

W ' = [m —(V i A) ]'—
where again

[iB~, W '] =0, X =(iB W')(i 8 —+ W'') .

(3.13)

Clearly the operator 8" can only be defined for a magnetic field weak enough, in order not to destroy the mass gap be-
tween positive- and negative-energy states.

Let us now consider the case of two free scalar particles. We can describe this system in terms of a bilocal wave func-
tion (I)(x „x2), scalar under Poincare transformations, satisfying a pair of Klein-Gordon equations:

Xl(('(x)~x2) ((-)1+m) )4'(x) ~x2) 0~ X24'(xl~x2) (+2+m2 )() (x)~x2) (3.14)
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These equations are the quantum counterpart of two first-class constraints X;=p; —m;, i = 1,2, where p«i and p«2 are
the canonical momenta of the two particles.

If an external electromagnetic field is present Eqs. (3.14} are modified in the minimal way. The new two constraints
X;= [p; —& (x; )] —m; are again of first-class character.

The analogue of Eqs. (3.3) and (3.4) is

J""(x,,x2)=P'„(x, ,xi) —8«+3"(x, ) —Bz+3 "(x2) Ps(xi,x2), (3.15}

with the scalar product

(Pg, Ps)i ——J d xid x2gg(xi, x2) —B(+A (xi) —82+3 (xp) Ps(xi, x2), (3.16)

which is constant in x i and x z for Pz and Ps solutions of the equations of motion.
At least in the free case we may generalize Eqs. (3.9) and (3.11}too. We get

J«"(x„xi }= ——,', y'„(x „x ) 7J,8 «i r/ pa 2ys (x i,xi ),
where i);=q, —il; (i =1,2), and

8,'J«„=82J«„=0 .

(3.17)

(3.17')

W, +8'2 1+q,q, 8'2+8', 1+q2g2(P„,Ps )2 dx i——d xiPg (xi,xi ) Ps(x&,xz), (3.18)

where 8';=[m; —V; ]'~ and i);=id;/W; This sc. alar
product is conserved in both times x &,x2 and is positive
definite.

In terms of the collective coordinates

p, 1x"=—,(xi+xi)«, r" =(x, —x, )«, (3.19)

"r)„"[Pg(x,r)d «Ps(x, r)]+8"„[P„'(x,r )48„«gs(x, r)]=0,
(3.21)

8"[P„'(x,r)d„«Qs(x, r)]+8",[P'„(x,»)4d„«ps(x, r)]=0,

which are not continuity equations.
So it does not exist something like a tensor current for

collective coordinates. We should keep this fact in mind
when we introduce a mutual interaction in the following
section. In order to separate the variables we will be
forced to use collective coordinates„but we will not expect
to find a vector or tensor conserved current, from which
to define a good scalar product. When the mutual in-
teraction is present the scalar product will be defined
without recourse to arguments of the kind discussed here.

When a mutual interaction is present, as in the model
(2.11), a simple local coupling to an external field is not

it is not possible to define two corresponding conserved
currents. In other words it is not possible to define such a
thing as a center-of-mass current and a relative current.
Indeed the two equations of motion for P (3.14) can be
written as in Eqs. (2.6), with

X+/(x i,xz) = —[CI„+40„+2(mi'+mi')]P(x, ,x, )=0,
(3.20)

2 2Pl )
—Pl2

X $(x&,xi) = — B~B»«+ f(xi,xi ) =0,
2

from which we get

possible. This is because the first-class character of the
constraints can be destroyed, as can be seen by performing
the minimal substitution in Eqs. (2.11), and the equations
of motion are no longer integrable.

Only external fields preserving the first-class character
of the constraints can be interpreted as probes of the con-
stituent particles.

An example of a couphng to an external field, which
preserves the first-class character of the constraints, is

X+ p +4[q —V(ri )]—2(m& +m&2),

=(p,q) ——,'(mi —m2 ),
(3.22)

p« =p« —e(q« —q«q„/q')~ "(x,),
q"=q" e, (rI« p"p„/p —)B"(ri )—,

and

x«i (rt«„q "q„/q')x——", —
r i =(C p"p. /p')»'. —

(3.23)

(3.24)

A" is an arbitrary external potential coupled to the
"center-of-mass charge" e. Instead B"is an example of a
mutual vector interaction coupled to a "relative charge"
e, . For the variables p and q it holds

Ip",p "]= e(g q"q /q )(rl—p qq—p/q )F ~(xj ),—
(3.25)

t q" q "I= e,(C p«p. /i '}(np—p "pp—/p'}G ~(»»—
where
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~p( )
BA ~ BA

G ~p( )
dB~ BB

e}x Bx~
'

dr dr&

It can be verified that IX+,X J =0.
In the following section we will study in detail the

model described by Eqs. (2.11). Following the discussion
given here we will abandon the scalar products (, )i and

(, )2 of Eqs. (3.16) and (3.18), and we will look for anoth-
er definition of scalar product, consistent with the equa-
tions of motion (3.20).

IV. SOLUTIONS OF THE TODOROV-KOMAR
MODEL AND SCALAR PRODUCTS

(two with p &0 and the two antibranches with p &0).
The solutions with p ~ 0 will be investigated else~here.

If one is only interested in the mass spectrum, this
equation can be written for p=0. It amounts in the bi-
quadratics P(p )=e, where s are the eigenvalues of the
left-hand side operator.

Let us notice that for a general potential, like the one in
Eq. (2.3), the eigenvalues e~ will depend upon p, and that
the equation to be solved can be of a degree more than
four (or even transcendental).

Coming back to Eqs. (4.2) and (4.4}, they become
genuine differential equations when p =0:

In this section we study the solutions of Eqs. (2.11),
which we now write in the representation (p, r), defined by

p(x, r)= f e "r'"'p(p, r)d"p .

Equations (2.11) become

[—V', ' + V( —r')]((),=,(p, r) =P(p')P, =o(p, r),

ip ——(mi —m2 ) P 0(p, r)=0,. o~
dr

P=

(4.5)

X+/(p, r)= p —4 +V(r, )
2

Qri' Br~

—2(mi +m2 ) P(p, r)=0,
(4.2)

X y(p, r)= ipse' ——(m, rn, ) y(p—,r)=0,e} 1

ar"

where

By hypothesis the support of P(p, r) is p2 & 0 (po&~0). Ob-
serve that the first equation can also be written as

but it is not obvious how to get from their solutions the
solutions of the original equations (4.2).

The point is that f(x i,x2) belongs to a reducible repre-
sentation of the Poincare group; this implies that for each
mass eigenstate it requires a different boost 1.(p,p) (see
Appendix A) to transform it from the center-of-mass
frame to the actual one. It is therefore necessary to look

for an operator S which transforms each component of
P(x i,x2) of definite mass in the proper way.

From Appendix A we know that in the classical case
the canonical transformation generated by the function P
[see Eq. (A13)] performs the required operation. In the
quantum case, where [x ~,P "]= [r ",q "]

=ipse",

the opera-
tor

[(p —M+ )(p —M )

p
2

+4X (X +mi' —m, ')]y(p, r}=0, (4.3)

where the mass operators M+ are

Mp (Mi+pMi——), p=+1,
with

S=exp w(p )Iz„(p )S—"'
2

where

~ PP A)A y A+A),S =I'

(4.6)

(4.7)

M~ —— m; +V(ri )+ ri„— 2

ppe 8

p dry' &r~

1/2

i =1,2.

p p"
~pv + V(ri ) P(p, r) =P(p )P(p, r),

p Br" Br

P(p2)= [p —2(mi +mi )p +(mi —m2 ) ] .2 1

4p 2

The hypothesis V« —m2 implies p; «0, i =1,2, but
not p «0. Here we shall study the sector p «0, to
which four branches of the mass spectrum correspond

(4.4)

The operators M, are well defined if the potential satis-
fies V & —rriz (from now on we assume m i & rn2). ~ith
the second equation (4.2) we have that the first can be
written in Todorov's notations:

performs the required transformation [observe that in
(4.6) no ordering problems arise, due to the fact that

A comment on the definition of the operator S is in or-
der: S is defined on the space of test functions S( R ) of
tempered distributions, where a scalar product can be de-
fined, as observed in Sec. It, where it was called a
mathematical scalar product. Then it can be extended by
continuity to the closure of S( iR ) with respect to this
scalar product.

In the norm so defined S is unitary. The physical sca-
lar products we will look for will be defined in S( I ),
and, with respect to these, no unitarity property for S will

hold. So S does not represent a quantum canonical
transformation; here it is merely used to get a set of solu-
tions of our equations.

The action of S is specified by the equations
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g(x, r) =(Sg)(x,r) where

Mp ——(Mi+pMp)', p=+1, (4.12")

= f d x'd r'S(x —x', r, r')g(x', r'),

S(x —x', r, r') = f, " e
ll

~i'»~ (2m. )

X5"(r'"—L".,(p,p)r") .

(4.8)

(4.9)

M; = [m; V„—+ V( —r )]'~, i = 1,2 . (4.12'")

Equations (4.12) are formally the same as (4.5), but now p
is not put to zero.

Let us assume that a complete orthonormal set of
eigenfunctions of the operator —V„+V( —r2) is known.
To be definite let us assume that it has a discrete spec-
trum only, with eigenfunctions X„i (r), defined by

The inverse transformation is defined by

f(x, r) =(S 'f)(x, r)

[—V„'+V( —r')]X„i (r)=e„iX„i (r),
S'X„&„(r)=1(1+1)X„,(r),
S,X„I ()= X„I (},

(4.13)

where

4 —'(p, )

d x' r'S ' x —x', r, r' x', r' (4.10}

S '(x x', r, r')=— ,
" e
~l

(P &0) (2ir)

)&5 (r'" L"„(p,p—)r").. (4.11)

In these equations we used the fact that (p,x)=(p,X), see

Eq. (A18).
The transformed equations are

where

f d'rX„'I (r)X„i (r)=5„„5@5

QX„I (r)X„'i„(r')=5'(r-r') .
nlrb

(4.14)

The assumption V ~ —m 2 reflects in the condition
(mi ~m2):

A A ~ 1

SiJ' rr'qj jCi ~ k 2 GkiJ' JJ } Vi l
Br;

and with the orthonormality and completeness relations
satisfied

( 2)1j2 8
Bro

——(m, —mi ) P(p, r) =0,2 Z

2

—m2 ~ynI ~0.2

The mass spectrum turns out to be

(4.15)

[—V„+V( r')]P(—p, r) =P(p )P(p, r),
where ri =sgnpo.

The last equation can be written

(4.12)
p =Mp„i =(Mi„I+pMz„I ), p = + 1,2 2 2

with

Mini =(ml'+ski)'" & =1» .

(4.16)

(p —M + )(p —M )P(p, r) =0, (4.12') From Eqs. (4.12) we get the following set of elementary
solutions:

or

m —m
&(p,r)=(2n) '~ 5'(p —k)5[p —g(p +M~„i )'~ ]exp iri-

pnl
ro X.i~«» (4.17)

m —P?l

g~v ~&„i~~(x,r) =(2n) e ' '"'exp ig-
pnl

ro X„i (r), (4.17')

k, =~(k'+M, „,2}'".

With the formula {4.10) we get immediately
r —m2

2 2

/~viz„i~~(x, r)=(2n. )
~ e '""'exp i'(k, r) X„I ( —e",(k)r„) (a =1,2,3)—

2M,„,'

(4.17")

{4.18}

[see Appendix A for the defmition of the polarization four-vectors e,"(k)].
The functions (4.18) are eigenfunctions of the total momentum, with eigenvalues k, and of the Casimir operators of

the Poincare. group, vrith eigenvalues



34 BOUND-STATE SOLUTIONS, INVARIANT SCALAR. . .

p =Mp„i, sgnpo ——g, W = ——,'Mp«1(I+1), (4.19)

where $V is the square of the Pauli-Lubanski four-vector.
Therefore, for given values of p, n, and i, the set (4.18) is a representation of the Poincare group, as we will verify in

detail in the following section, of mass Mp«and spin l. In the following section we will also prove that it is an irreduc-
ible and unitary representation, transforming as a Wigner function of the given mass and spin.

In the (M, l) plane, the spectrum (4.16) gives two families of Regge trajectories: one of rising trajectories (with

daughters corresponding to the values of n for given /), and with an asymptotic value (m, +mi ), the other of lowering
trajectories, with an asymptotic value (rn i —m2) .

The general solution of Eqs. (4.2), obtained with a linear combination of the set (4.18), is

y(x, r)= y f d'ps(p' M—,«')e(~p, }
qpnlm

2 2—7?7, 2
Xf(g, p,pnl, m) (2ir) e "p'"'exp —i

2 (p, r) X«~( e,"(—p)r&)
2p

(4.20)

&P„,Pa)("'= f d'xd'r f~(x, r)AO"'gs(x, r), (4.21)

with k =1, . . . , 4, and where Ao
' are operators acting on the variables xp and r" of both functions 1((„and t(s. These

operators are best defmed in the momentum-space representation [see Eq. (4.1)]

&O. ,Va&("'= f d4p f d4p'(2~)'5'(p p') f-d" O:(p', r)AO("'(p, p')Vs(p, r),
and are given by the zero components of the following A„'"'(p,p'):

A„'"(p,p') = ,'(p+p—')„—,' lp' p' —(m, '—m, ')'],
A„''(pp')= —,'(p+p')„,'[2p p' (p —+p' )(M—+ +M i)+M+ +M ], (4.23)

A,"'(p»p'}= i (n+n')A,'"(p»p'» A&"(p»p') = i (n+n')A,"'(p»p'»

where the operators M+ (which are Hermitian operators) are defined in Eqs. (4.12") and (4.12'"},in terms of the operator

(4.22)

Let us notice that this solution is different from that given by the model proposed by Feynman and Kislinger, and
from that given by Kim and Noz s and Takabayasi; see Refs. 44—47 also. This is due to the fact that these authors

adopt a Gupta-Bleuler quantization, so they start from different wave equations.
From Eq. (4.20) we see that there are four classes of solutions, corresponding to the four possible choices of g =+1

and p=+1, that is, to the four branches of the dispersion relation between p and p. We may now define four conserved
(nonlocal) scalar products, each corresponding to a different choice of signature, associated to the values of i) and p, in

analogy to the situation we have discussed in Sec. III for the Klein-Gordon equation for a single particle (where there
were two possible scalar products). In other words we may define four Hilbert spaces, spanned by the four classes of
solutions (4.20). These spaces can be collected in a unique space, which will be a Hilbert space with indefinite metrics s

in three cases, and a true Hilbert space in the fourth case.
In the following section we will show that all these scalar products are Poincare invariant.
At first we define them for the functions P(x, r} and then they will be translated in terms of the functions g(x, r).

They are

e= —V„'+I ( —r ),
whose eigenvalues are e«. From the same Eq. (4.12") it follows that M+ M =(m, —mi ) .

With respect to these scalar products the set of elementary solutions (4.18) are normalized as

g {k) 2 2
~pnl e{ )

Pl ] Pl2
((x, )= e ' p" exp i' — ro X«(r),

(2ir) 2M «

where p =ri~p«( p), ~p«(p) =(p'+ Mp„,')' ', and M», is given by Eq. (4.16), with

{]) {3)It p('„', =Z('„I = [(m, '+e„,)(m, '+e«)]-'&'=

g (2~) g (4~I [(m 2+e )( 2+e )]
—i/2

M+ —M

(4.24)

(4.25}

(4.26)

%'ith this normalization factor ~e have

&it(v', p ,p' 'r, ') Aq, pp'«m) & =~p i(p)5 (p p' ~pv ~ v'6ppv'~a&'~0'~{k) g {k)
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with h~' ——pq; h~' ——g; h~' ——p, h~' ——1. For the general solution

it)(x, r)= g f d p5(p' M—p„i )8(rip )g(q, p, pn&, ~)f(„pp„), )(x,r),
gpnlm

{4.28)

where, for each given 1T(x,r), the inversion formula is

(I{:} &k}g(n p p«~)=I ~ &A, .,(,~»f& (4.29)

we have the scalar products

d3
&y. ,y, )("'= g f

vpnlm p~( p

)(g g ('g, p,p«, pl )gs(7),p,p«, i' ) .

(4.30)

These four scalar products are clearly conserved in both
x and r . For the functions g(x, r) we now define

{4.31)

Clearly, when in the right-hand side (RHS) of this
equation we substitute f for its expression in terms of it,
the nonlocal operator S will appear in both arguments of
the scalar products, so Eq. (4.31) defines highly nonlocal
scalar products. We will see that they are invariant under
Poincari: transformations, thus giving a unitary realiza-
tion of the Poincare group.

With the definition (4.31}we may write the analogous

relations of (4.27), (4.28), and (4.30) for P(x,r). Clearly all
these scalar products are conserved in x and r .

Let us compare the scalar product defined with Eq.
(4.31) to those defined in Ref. 38. In this reference three
kinds of scalar products are defined. One, in the total
momentum p and relative coordinate r representation, is
analogous to our definition restricted to states with the
same P" p"iM. This can be understood if we observe
that the measure d r of Eq. (4.21) can be made invariant
if substituted with d r 5{(r,P)), when p is a fixed quanti-
ty. The same observation is also essentially true for the
second scalar product defined in that reference.

The definition given here seems to be more similar to
the third definition of Ref. 38, which is given in configu-
ration space, but for functions depending on a further pa-
rameter ~, which is a variable conjugated to the total ener-

gy mass M. This does not happen in our case. Here we
have defined a scalar product in configuration space
x",r", constant in both x and r, with an explicit struc-
ture, for general solutions (not restricted to be eigenfunc-
tions of the energy p or to a particular branch of it) of
the original equations.

It is explicitly given by

(gq, fg)'"'= f d x f d r f S(x x', r, r')Pz(x—', r')d x'd r' Ao"' f S(x x",r, r")gs(x—",r")d x"d r"

where the kernel S is defined in Eq. (4.9).
For k =4 this scalar product is positive definite (for all

the branches of the energy p ).
In the next section we will show that this scalar product

is invariant under Poincare transformations, as it should
however be clear from the way in which it was defined
[see Eq. (4.31)].

It does not reduce to the scalar product (3.16) (when the
external field is absent) when the interaction vanishes
( V=O), but, of course, it remains well defined also in this
case.

V. TRANSFORMATION PROPERTIES

[U(a, A)g](x),x2) =f(A '(xi —a), A '(xz —a)), (5.1)

or

[U(a, A)g](x, r)=g(A '(x a), A 'r) . —(5.2)

In this representation the generators of the Poincare
group are as usual

8
P~ ——i

Bx"
(5 3)

() . () ()
M~v = l Xp —Xv +l P& —fvBx" Bx" Br Br"

In this section we study the transformation properties
under the restricted Poincare group of the set of solutions
found in Sec. IV, Eq. (4.18).

We assume that the bilocal wave «nction
g(x„x2)=p(x, r) transforms —as a scalar field; this means
that, if U(a, A} represents the action, as a hnear operator,
of the Poincare transformation (a,A} on the space of the
functions g(xi,x2), we have (for the notations used in this
section, see, for instance, Ref. 35)

The wave function f(x, r) belongs in general to a reducible
representation. Our problem is to decompose this repre-
sentation into irreducible components of given mass and
spin.

Equation (4.20) accomplishes this decomposition if we
show that each elementary solution of the set (4.18)
transforms as an irreducible representation of the Poin-
care group.

In order to show this, let us apply Eq. (5.2) to this set:

2 2
—i( ~( —a) Pl )

—fPl2
[U(a, A)g(„p,~„i )](x,i')=(2~) ' 'e '~ '" "'exp i (—p, A 'r} X„i { 0,'(p)(A 'r)„) .—

2M'„g
(5.4)
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The transformation properties of the polarization four-vectors e,"(p) (a = 1,2, 3) have been studied in Ref. 49 and are

given by

e,"(Ap) = (R '), A".~b(p),

where R, is the Wigner rotation R =R(A,p) =L(p,p)A 'L(Ap, p) (see Appendix A). From Eq. (5.5) we get

A'„e",(.p)=R, eb(Ap) .

This means that the argument of X„I in Eq. (5.4) can be written

(A 'r)pe, (p) =R,' eb(Ap)r„.

(5.5)

(5.5')

(5.6)

By hypothesis the basis of functions g«m belongs to an irreducible (unitary) representation of the rotation group of spin
l. It follows

X„I (Rp)= QX„I (p)D"' (R '),

where the matrix D'"(R) is the representation of spin l of the rotation R.
By collecting Eqs. (5.4), (5.6), and (5.7) we finally get

[U(a, A)g(v p p„l )](x,r)=e""P"g P(q hp p„l )(x,r)D"' [R '(A,p)] . (5.8)

We recognize the transformation rule of a Wigner representation of spin l (Ref. 40). It follows that the set (4.18)

transforms as an irreducible representation of the Poincare group of mass Mp„l and spin l.
It can now be easily verified, using this result, the orthonormality relation (4.27), and the unitarity of the representa-

tion O'I'[R(A, p)], that all the scalar products defmed in Sec. IV are invariant under a Poincare transformation:

(U(a, A)fg, U(a, A)t/is)'"'=(fg, Qs)'"'.

Since the elements 1l) of the Hilbert space are represented by the series of the kind

p(x, r)= g f d p 5(p M„l )8(rip —)g(rl, p, pnl, m)f(„p p„I )(x,r),
gpnlm

(5.9)

(5.10)

which are convergent in the norm induced by the scalar products defined in Sec. IV, it is sufficient to verify Eq. (5.9) for
the basis 11(„pp„l )(x,r). For these functions we have

'
A

( U(a A)(1'(sl p p.l, ) U(a A)(l'( )', ps'. p'. 'I, ))' '=e ' " " ' Q (st)(sl hpp. l;) 4(sl', hp, ' I,.))'

With the normalization (4.27) we have

y D,'""[R '(A,p)]D," ' [R '(A,p')] . (5.11)

q(k) l.I. .I, g(k)
(0(sl, hppnl, s)~4(sl ,hp p n I's )I', ''', &''r(sl„hppnl s)~'V(s)', hp', p'n'I', s') )

=2~p„l(AP)53(AP Ap )hn(kp)589, 5~5„„5115„
=2cup„I(p)5 (p —p')ll'„p'5„„5~5„„5II5„, (5.12)

since a)(p)53(p —p') is Lorentz invariant.
Using (5.12) in (5.11), the unitarity of the representation D' '[R (A,p)], and the fact that for g=rl', p=p', n =n',

I =I', p=p' we have p =p ', we get

(U(a, A)$(q p p„l ), U(a, A)Q(v p p„ I ))'"'=2'„l(p)5 (p p')hp"„'5qv 5—~5„„5II5
.), (k)

V'(sl, p, pnl, m)~ II'(sl', p', p'sl'I', m')

It follows that the scalar product for a general solution

d
(fq, gl) )'"'= g f h»'g~ (rl, p,pnl, m )gII (rl, p,pnl, m )

nl

(5.13)

(5.14)

is invariant, and Eq. (5.9) is verified.
For each element P of the Hilbert space, the inversion

formula holds:

g(n p pnl m) =&»(A, ,;I, »4)'"(k) (5.15)

where g coincides with the g of Eq. (4.29), because of def-
inition (4.31).

In place of the Wigner functions (4.25) we may define a
basis of covariant functions:
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&(t) p p.nl m){X «}

= g P(„pp„l m )(x,r)Dm'm [L (p,p)], (5.16)

where, as usual, it is necessary to extend the representa-
tion D' ' of the rotation group to the representation D' '

of the Lorentz group. The new basis has more simple
transformation properties under the Poincare group:

[U(a, A)X(„pp„l )](x,r)

=e'"P"+X(„„p,„, )(x,r)D(l:0)(A) . (5.17)

(k}
(t (t),p),pnl m) ){Xtr)~)t (t'(t), p2, pnl, mi){Xt (6.1)

where A&
' are the operators (4.23), which operate on the

arguments of both functions 1'. The functions ((( are de-
fined by Eq. (4.17').

The objects (6.1) are conserved due to the wave equa-
tions {4.12) and (4.12') in the following sense:

its transformation properties, for a given energy value.
Let us define

~ { pnl}1ittP (,ttt (
', Pi, m i ) {Xt

VI. CURRENTS
~p, (qpnl)

Qxlt (' )' i' i )(x,r) =0,
(6.2)

In Sec. IV we have defined the scalar product without
any recourse to a current-conservation law. %e may now
wonder if it exists something like a conserved current.

It is easily recognized that the definition (3.15) of a ten-
sor current for the free case cannot be generalized to the
interacting case, as discussed in detail in Ref. 38. A ten-
sor current of this kind should be the natural way for the
generalization of the model to the case of the presence of
an external electromagnetic field. But in general an exter-
nal field will destroy the first-class character of the two
constraints, if not properly introduced, as shown by the
example given in S(x:. III, Eq. (3.22). But even in this last
case a tensor current does not exist.

One difficulty lies in the reducible character of the bilo-
cal wave function ()(t(x(,x2) under Poincare transforma-
tions. Each irreducible component of 1'(x„x2), with
given mass and spin, transforms in a different way, so we
may expect that, at most, a different current for each
mass and spin value can exist.

Let us consider the integrand of the scalar product and

lt(qpnl)

Qr (' (' 2' 2J(p m p m )(x,r)=0 .

Their transformation properties are easily deduced from
that of the 1T). These are the same as that of the basis
funCtiOnS 1'(q p p„l m)(X, r):

(U(a, A)((()(q p p~m))(x, r)

=e'""g4(v, ~p,p i,nm)(»r}Dm'm[~

(6 3)

except that now the RHS is no longer equal to
/[A '(x a), A 'r]—, but instead we have

( U(litAW(t), ppnl, m))(Xtr)

=i'(v p p„l m)[A '(x —a)tR (A,p)r] . (6.4)

The results (6.3} and (6.4) are easily deduced from Eq.
(5.8) and the definition (4.8) of the function 1T).

It foBows that the integrand defined in Eq. (6.1) has the
following transformation rule:

j &(spP,
"',.p, m, )(x,r)=A

& g g,
'

a „l,)(x,r)D' ', [R '(Apl)]A„'"'(Ap), Ap2)D' ', [R '(Ap2)]g( z l, )(x,r) .
I

N! )152

(6.5)

This is a very complicated transformation rule. Nevertheless, in spite of its complicated transformation properties,
when integrated in d x and d r this kind of current gives an invariant (and conserved) scalar product, as we have seen in
Sec. &.

For each mass level, determined by the quantum numbers (p, n, l), when observed without looking into the details of its
internal structure, the composite system described by the wave function 1(t(xi,x2) must behave as an elementary particle
of the given mass Mp„l and sPin l.

Indeed it is possible to define a wave function, depending solely on x, obeying to a Klein-Gordon equation with mass
Mp„l, and transforming as an object of sPin l.

Let us define

d3
((}'P" (x)=(2~) f [a(p,pnl, m)e "P'"'+P(p,pnl, m}e'P '],

2~pnl(p)
(6.6)

where p =lt)p„l(p}={p +Mp„l )', and

a(p, pnl, m)= gD' ' '(L(p,p))g(+ l, p,pnl, rn'),

The matrix D' ' belongs to the representation (l,0) of
the Lorentz group, as in Eq. (5.17). The matrix C is such
that

P(p,pnl, m)= g D'' '(L(p,p))C ~

(6.7) D("'(Z) =CD("(Z)C-', (6.8)

&g'( —l,p,pnl, m") .
where 8 is a rotation (in which case D" ' reduces to
D'l'); see Ref. 50 for more details.
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g (q, p,pnl, m)~e "P"gD "~ [R (A ',p))

Xg(r!,(A 'p), pnl, m') . (6.9)

These in turn determine the following transformation
rules for the coefficients a and P:

The coefficients g (il, p,pnl, m) are defined in Eq. (5.15);
their transformation rules under a Poincare transforma-
tion (a,A), induced by the transformation of it)(x „x2), are

For the functions p'p""(x) it is not possible to define a
four-vector conserved current as in the Klein-Gordon
case, since the representation D" ' is not unitary; but, if
we extend the representation (I,O) to the representation
(l,O)e(O, l) as in Ref. 50, it is possible to define such a
current„and accordingly an invariant and conserved scalar
product. As a by-product we get a new set of functions
for which it is defined the parity operation.

The procedure is straightforward and we may refer to
Ref. 50. We quote here some results.

The new representation is defined by

(6.11}

and transform in the following way:

( U(a, A){()(P"")(x)= g D"".(A)y(P". "(A-'{x—u) ) .

a(p, pnl, m)~e'P" g D "~'(A)a{(A 'p),pnl, m'),

(6.10}
13(p,pnl, m)~e 'P" gD' ' '(A)P{(A 'p), pnl, m') .

Nf

The functions {()g""(x)satisfy a Klein-Gordon equation

(CI„+Mpnl )(1)'P""(x)=0,

u("(A) =
D""(A) 0

0 D""(A)

0
I 0

The new set of functions are

For this new matrix it holds

~(l)t(A) P~(!)(A—1 )P

where

(6.13)

(6.14}

(6.15)

(6.12)

The functions (YIg" '(x) are analogous to the fields defined
in Ref. 50; the difference lies in the fact that the former
transform as states while the last transform as the corre-
sponding fields.

y(pnl)(x )

& "'(X}=
~( nl)(„)

(pnl) (6.16)

denoting a column vector with 2(21+1) components,
where

gg""(x)=(2n.)
' ' [a(p,pnl, m)e "p"'+p(p pnl m)e"p"']d

(6.17)

and

a(p, pnl, m) = g D" '[I.(p,p)]g(+ l, p,pnl, m'),

P(p,pnl, m)= gD" '[I.(p,p)]C ~

m'

Xg'( —l, p,pnl, m"),

(6.18)

[U(a, A)X' "'](x)=gD' '"(A)X' ""(A '(x —a)) .

(6.21)

The adjoint of the function f(p" '(x) is defined by

q (pnl)(x) qt(pnl)(x) p (6.22)

with p"—=(p, —p).
For the particular case of a boost, I.{p,p), we have the

relation between the representations (l,O) and (0, 1) (see
Ref. 50}:

D""[L(P p }]=D""[L(p»J'}) (6.19}

so a and P are the analogues of a and P for the (0, I) rep-
resentation. Since D' '(R) can be equated to D' ' '(R), as
done for the demonstration of Eqs. (6.10), as well as to
D' "(R), we have the following transformation rules for
a and P:

The transformation properties of )t( and )7( are

{U(a,A)g'p"")(x)= g N'" (A)lid'p""(A '(x —a)),

{U(a,A)g' "")(x)=gg' ""(A '(x —a))&"' (A ') .

(Cl„+Mpn! )itlg" '(x) =0,
and the current

(6.24)

Finally we have that 1''p" '(x) satisfy the Klein-Gordon
equation

a(p, pnl, m)~e'P" g D~ "'(A)a{(A 'p), pnl, m '),
(6.20)

P(p,pnl, m)~e 'P" gD' ~ (A)P((A 'p), pnl, m'),

from which we easily get the transformation rule for
g(pnl)( ).

(pnl)( ) y y (pnl)( ) g(pnl)( )p, m
Ifl X

transforms as a four-vector
.~(pnl)( i) A v (pnl){X — ~J„ X

and is conserved

(6.25}
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1p(pnl)(x ) {} (6.27}

From Eqs. (6.26} and (6.27) we may define an invariant
and conserved (in x ) scalar product as for the Klein-
Gordon case (sce Sm. III for a positive-definite scalar
product).

For the states f(p""(x) the operations of time reversal
( T), charge conjugation ( C), and space inversion or parity
(P} are well defined [see Ref. 50 for all the details and for
the other equations satisfied by f(p""(x}].

We have here followed a particular construction, based
on the representation (j,O)e(O,j). For a more general
choice see again Ref. 50 and Refs. 51 and 39.

The current j„'p""(x) defined in Eq. (6.25} is a bilinear
functional of the original wave functions f(x i,xq }. It sat-
isfies thc collscrvatloI1 law (6.27) olily whcii f(xi,xI ) ls R

solution of the original wave Ixluations (4.2), and in this
case it does not depend on r .

So we see that g(p""(x) describes an object of mass Mp„?
and spin l, without the details of the original internal
structure.

The existence of the wave functions p(p""(x) was as-
sured from general physical principles, so the construction
given in the second part of this section is an a posteriori
verification of the physical reliability of the model under
study.

VII. THE CAUCHY PROBLEM

As we have seen in Sec. IV, only for eigenfunctions of
the total momentum p with p=O the wave equations
(2.11) become true differential equations. In this case the
nonlocal equations (2.11) become Eqs. (4.5). The same
esuations are satisfied by the functions of the basis

It(??,Opnl, m?(x~ r}
%e can boost to a general momentum each solution

found at p=O, in order to get an arbitrary solution such
as (4.20), but the boost needed for this operation will de-

pend on the quantum numbers determining the mass and
the sign of the energy, that is (ri,p, n, l) This w. as the
reason for the use of the operator S in Sec. IV.

This fact suggests that for this class of interactions,
where the potential depends on rj, the Cauchy problem
can be formulated in the center-of-mass reference frame
only.

In other words, the extended nature of the systein re-
quires a special frame for any statement about the initial
data. In a general frame an infinite number of initial data
18 needed.

Let us notice that the transformation from g(x, r) to
It?(x, r) is not sufficient for our purpose Indeed t.he f(x, r)
also satisfy a set of nonlocal equations (4.12).

Let us further notice that the expansion (4.20), where
the coefficients g(I},p,pnl, m) are constant in both times
x and r, does not allow the usual procedure of giving
the function g(x, r) at a fixed value of x and r, in order
to determine the general solution. The coefficients
g (g,p,pnl, m) are in fact scalar products involving P(x, r)
at all times x,r, due to the nonlocal nature of the opera-
tor S.

X+ ———
I I [s —M+'(q, r})[c2—M '(q, r)]

+47 (X +mi —m2 )I, (7.1)

7 =ECR —
? (ml —mI ),2

where M;2(q, r)=m; +q + V( —r ).
The wave equations become (q~ i V,)—-

dT;
+M, q(z, r, T„T,)=0, ? =1,2, (7.2)

where q? is the wave function in the new representation
(see below}.

EquatloI1 (4.4) bccoIIlcs (c=sl +CI)

[—V~ + V( —r )]%(z,r, ci,e2) =p(SI)%(z,r, el, sz), (7.3)

This state of affairs suggests that xo and r (or xi and
XI) are not the most convenient variables for specifying
the two degrees of freedom for the canonical quantization
without gauge fixing, along the lines discussed in Ref. 33.
They have a natural interpretation as "time variables" in
theories with local interactions, but the interactions we are
studying are not local. Moreover, the natural gauge fix-
ing, over which the Gupta-Bleuler quantization of the rel-
ativistic harmonic oscillator is based, ' ' is (p, r)=0.
This is a nonlocal concept in configuration space, and has
no meaning in the plane (x,r )

We will therefore look for two new "time variables" Tl
and TI, with the follawing properties: (i) they must be
Lorentz scalars (like the proper time); (ii) the line Tl ——T2
in the (Ti, TI) plane must be equivalent to the condition
(p, r) =0; (iii) in the nonrelativistic limit the plane ( Tl, Tz)
must become the (ti, ti) plane, with the Newton equations
of mation defined on the line t, =tz [which is the non-
relativistic limit of the condition (p, r) =0]; (iv) they must
be the canonical canjugated variables of the center-of-
mass energies (p,p;) (i =1,2), which are constants of
motion for this class of interactions, which privilege the
center-of-mass reference frame.

In this research we will take advantage of the works of
Aabergesi an the free relativistic scalar particle. In his
work Aaberge finds a canonical transformation to a new
set of variables, which, after quantization, give the
Wigner theory of the free spinless particle; in particular
the Newton-Wigner position operator belongs to this new
basis. We will modify his procedure in that the new time
variable will be chosen as T =Ii(p, x}/(p )'~, that is the
"time" of the center of mass. In some sense this is a non-
local description of a scalar particle; in terms of this new
description it is possible to define new scalar products.

In Appendix B we give this new set of variables for the
free particle, and in Appendix D we will extend the set to
the two-particle case.

The new times are T; =I)(p,x;)/M, and their conjugat-
ed variables e; =II(p,p;)/M, where M =(p )'~ . They are
the times and the energies in the center-of-mass frame.

With these variables the classical constraints (2.1), (2.6)
become

X;=s; —M; (q, r) (i =1,2),
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where

dT1dT2 g(p T +g T )

%(z,r, E„s2)= e ' ' ' '%(z, r, T, , T ).
(2ir)

the quantum numbers (ri, k,pnl, m); the basis of the ele-

mentary solutions is

+(q, k,pnl, m)(z~r~ T~ TR )

The wave equations (7.2) do not determine the depen-
dence on z of the wave function )p; this is in agreement
with the fact that z is essentially an initial constant (see
Appendix 8). We can choose ql to be an eigenfunction of
k.

2 2
m1 —Pl 2=(21') exP i—ii Mp„lT+ 2M „l

—k.z X„, (r), (7.5)

From Eqs. (7.2) we see that the evolution of ql in Ti
and T2 is completely determined once the following ini-

tial data are given:

'll(z, r,0,0), (z, r, 0,0), (z, r, 0,0),a2+

that is, in the new description, the Cauchy problem is well
defined.

The choice of the center-of-mass reference frame, that

is, the choice of 4' being an eigenstate of k, with eigen-
values k=O (p=sk), does not now change the situation.
We have in any case a well-defined set of initial data.

As before we can classify the elementary solutions with

T=ri = —,(Ti+ T2)„Ta——il =Ti —T2,(p,x) (p, r)
M M

and where the exponent in the RHS can also be written in
terms of the individual times Ti and T2:

PPl 1
—Pfl 2

2 2

g ~pnlT+ TR I1, IlpglT1+ 92~2pnlT2 ~

2Mp„l

with ri, =ri, ri2 ——rip, Mp„l Mi„l+——pM2„1 (remember that
once and for all we have chosen mi &m2 and that
Mi„l —M2„1 ——m 1

—m2 ).2 — 2 2

We can define the following scalar products. We write
only two choices of the possible signatures, corresponding
to the signatures with k =3 and k =4 of Sec. IV:

(%'z, %s)' '= f d zd r+&(z, r, T),T2) ,'[(1—0, )' —+(1—V, )' ]—,
'

F 1 —,
'

F12%'s(z, r, T),T2), (7.6)

()ll„,its)(4)= f d'zd rrPg( zr, T),T )2—,'[(1—0,')' +(1—V, )' ]—,'(1+re )i)1)—,(1+i) 2&2)ps(z, r T) T2)

where il; =(iBlBT;)/M;.
These scalar products are constant in Ti and T2, due to Eq. (7.2).
For the elementary solutions we get

( PI k l ),0 . . . , & =alii&2(1+k ) & (k k @ '~ 'I5nn'~ll'5mm'

(7.7)

These results can be easily extended to wave packets.
Moreover by using the transformation properties of the wave functions %(„„k„l )(z,r, Ti, T2) given in Eq. (D16), we

can check the unitarity of these irreducible representations as in Sec. V, Eqs. (5.9)—(5.13), with respect to the previous
scalar products.

From Eqs. (D9) and (D13) we get the following relation between itl(x, r) and %(z,r, T, Ts ):

r

1'(x,r)=(2m) d zd ke 'k*4 z, r —k ro k-r (1+k )' x —k x (1+k )' r —k.
1+(1+k')'" (7.8)

)
—4 f d4 f I

s
I ed k i(n[(1+k2))~2no —k.x—Tl+k.x)

(1+k2)1/2

&()p x;r =(1+k )'~ T~+k r;r=r+k Ta+ 1+(1+k2)1j2 (7.8')
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With these formulas we may check that the elementary
solutions (7.5) became those given in Eq. (4.18).

VIII. CONCLUSIONS AND OPEN PROBLEMS

In the previous sections we have carried out a detailed
analysis of one of the simplest models for two interacting
spinlcss relativistic particles, namely, the Todorov-Komar
model, which is based on a pair of integrable wave equa-
tions for a wave function, which depends on the position
four-vectors of both particles.

This analysis shows that it is possible to give a descrip-
tion of a two-body system, which is in agreement with the
requirements of relativity. We have shown that the gen-
eral solution can be decomposed into irreducible com-
ponents describing bound states of given mass and spin.
The mass-spin relation being dictated by the particular
potential chosen.

In our opinion the most important result of this
analysis is the demonstration of the existence of a
positive-definite scalar product (choice k =4 of Sec. IV),
which is constant in both times, x 1 and xI, and is invari-
ant under Poincare transformations. This is the needed
ingredient for a consistent quantum theory of the model.
The scalar product turns out to be nonlocal, in the sense
that its kernel in the momentum space representation is
not a polynomial in p. This nonlocality does not seem to
be related to the presence of a nonlocal interaction.
Indeed the definition of the scalar product given in Sec.
IV holds as well in the free case, and, as shown in Sec. III,
also in the case of a single Klein-Gordon particle, the
positive-definite scalar product is not local. Here the non-
locality has two origins. One, as in the Klein-Gordon
case, due to the requirement of positive definiteness (in
the non-positive-definite cases only the choice k =1 is

free from this nonlocality); the other due to the operator 5
defined in Sec. IV, which is essentially a boost for the
wave functions. This second origin of the nonlocality is
peculiar of the present analysis.

The existence of such a scalar product allows us to
represent the action of the Poincare group on the space of
the wave functions with unitary linear operators.

Each mass and spin state of the system can be described
as an elementary system in agreement with the usual re-
quirement of relativity (as shown in Sec. VI), in terms of a
wave function satisfying a Klein-Gordon equation with
the corresponding mass, and admitting a conserved four-
vector current. All these features were expected, if the
model had to correctly reproduce the physical characteris-
tics of a compound system.

The initial data problem has been analyzed in the last
section, where it was sho~n that the Cauchy problem is
weH defined in the center-of-mass frame. A canonical
transformation was then performed in order to put the
equatloll of lllotloll ill a forlll allowing a two-tlllles (111-

variant times) description, in the sense of Refs. 6 and 32.
To this end a nonlinear realization of the Poincare

group was introduced. The two-times description so given
is suitable for a choice of a gauge-fixing such as the one
usually used in this kind of model, namely, (p, r) =0. The
use of a gauge fixing is not in principle necessary, as ex-

plained in Ref. 33, but it can be done in order to go down
to a more usual one-time description of the model.

The nonrelativistic limit is in agreement with the ex-
pected Newtonian mechanics, once reduced to the equal-
time situation.

The equal-mass case was not considered explicitly. It
can be easily recovered as a limit, apart from the restric-
tions due to the statistics.

We now list some of the problems which remain open.
First of all we assumed p &0. However, when p (0

other solutions are possible, but they need a physical inter-
pretation, since they are outside of the interpretation of
the solutions of the wave equations, as bound states of a
two-body system. In the case p &0, the solutions seem to
correspond to an analytic continuation to complex values
of I; from this point of view they seem to be related to a
crossed channel. This is only a possible suggestion for a
future research.

As a second open problem we may mention the external
field problem. In Sec. III we have shown an example of a
two-body system with mutual interaction, in the presence
of an external field. In this example the first class charac-
ter of the constraints is preserved; this is clearly a neces-
sary requirement in order to have a quantization without
gauge-fixing choices.

Another open problem is the connection of this kind of
theory with the quantum field theory. This is the most
important problem for the physical interpretation of these
models. A first answer is given by the work of Refs. 11,
13, and 21: they are an approximation to the two-particle
sector of quantum field theory, based upon the replace-
ment of the Bethe-Salpeter equation with two coupled in-
tegrable relativistic wave equations. Therefore the bilocal
wave function P(x„xz) is some kind of approximation of
the amplitude (0

~
T(p(x&)p(xl))

~

2). The problem of
the relative time has now a twofold interpretation. From
the point of view of the constraint theory it is a gauge
variable, conjugated to the constraint X of Eqs. (2.6).
This implies the choice of gauge fixing for the physical
identification of the model: with a potential V(rl ) the
natural gauge fixing is (p, r) =0, i.e., an instantaneous in-
teraction in the center-of-mass frame in accord with the
Bethe-Salpeter Ixluation. On the other side, as the coupled
wave equations have been obtained with a canonical
quantization without gauge fixings, the physical identifi-
cation associated to the choice (p, r)=0 must be imple-
mented with a probabilistic interpretation of the bilocal
wave function g(x&,xI). However, from the results of
Sec. VII about the Cauchy problem, it turns out that the
wave function %(z,r, T&, Tz) of Eq. (7.2) is the natural ob-
ject to be interpreted, because the diagonal in the (TI, T2)
plane is just (p, r)=0 z, r are by .construction a maximal
set of observables for every value of T& and T2, and not
only for the natural "one-time" theory, (p, r)=0, of this
class of models. These problems will be studied in more
detail in Ref. 31. A second connection with quantum
field theory is given by the effective Fokker action of Ref.
24 deduced from QED in its particle limit: this class of
models can be viewed as a short transverse distance
(ri +0) approxim—ation to the Fokker action. This point
will be further investigated elsewhere.
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Connected to these problems there i.s another important
point, that is what has to be understood for causality (or
acausality) of these models. When gauge fixing is im-

posed [like (p, r)=0], the resulting one-time dynamics
seems to violate the causality, since the two particles in-
teract at a spacelike separation. This is just the situation
in the model studied in this paper. This aspect was for a
long time questioned and answered in the literature, see,
for instance, Ref. S3. However, let us make the following
remark. As the choice of a different gauge fixing can be
realized through a canonical transformation generated by
the constraints, the kind of causality satisfied by the
model should not depend upon the chosen gau~e fixing, at
least in the case of potentials like V(ri,p ). For the
analogous situation in electrodynamics so: Ref. 54.

In any case with potentials such as V(ri,p ), the gauge
fixing (p, r)=0 seems to be the "natural" choice: indeed,
as shown in the last section, the Cauchy problem is well

defined in the plane (Ti, Ti), and the choice (p, r) =0, that
is of the diagonal in that plane, is dictated by the instan-
taneous approximations of the Bethe-Salpeter equation.
From this point of view, more general models with a po-
tential such as V(ri,p, (q, ri ), (p, q)) selecting as "natur-
al" a gauge fixing such as r =0, would describe a situa-
tion in which the two particles interact along the light
cone. This line of research requires further investigation.

The natural prosecution of the present work should be
the extension of this analysis to the case of two spin- —,

'

particles. ' '
Let us finally remark that this model, as shown in Ref.

33, and its nonrelativistic limit 6'i are the first nontrivial
examples of gauge theories, whose canonical quantization
can be achieved without a gauge-fixing choice, as there
are no ordering problems generating anomalies.

APPENDIX A: STANDARD BOOST AND
NE% CANONICAL VARIABLES

The parameter P of the Lorentz transformation is

(A4)

or, in terms of a complex rotation co(p),

y =(1 p—) 'i =il =cosh')(p),
M

ilPy = ri =sina)(p) .
M

L (p,P } in exponential form is

L (p P) e~(P)1(P)

where

(A4')

III"'(p}I
I

=

II I

[indices as in (A3)]. I".„(p) has the properties

I„„(p)=—I„„(p), I'(p)=I(p) .

(A5')

(A6)

Clearly we have detllL (p,p)l I
=+1 for both signs of the

energy p .
The inverse of L (p,P) is L (p,p)

L"'(p p) =L."(p p) =L"..(p p) I,
( &

ro(p)lya—

We define the following vierbeins:

&~(p») =L"~(p p)

e„"(p)=L".„(P,p)

=ri" ri„~z(p) ((M, A =0, 1,2, 3),
Let us define the standard boost which carries the time-

like four-vector p& from its rest frame, where it becomes
I)"=(riM, O),—with i)=sgnp, M =(p )'r, to a general
frame:

(A 1)

Our choice of L (p,P) is

which satisfy

e&(p)e~(p) =~," e,"(p)4(p) =~s
and

p v 3

n""=&~(p»n"'ea(p) =, —g e."(p)e."(p),
a=1

n~a =&~(p»n„Ws(p), e".(p)e."(p)g„.= —&..

(A9)

(A10}

p"p. (p"+P")p.+p. }

(p+p p)
(a,a'= 1,2,3),

where we used e„(p)=eo(p) =imp"/M.
The e,"(p) are the polarization four-vectors defined in

Ref. 49.
With the boost L (p,p) we can define the new relative

variables:

IIL" (p p }I I

= (A3}
P' ~, P 5'J'

M J M(M+ripo}

r "=L."„(P,p)r)'=e„"(p)r",

More explicitly

(A 1 1)

where p—:(O, i), i =1,2, 3, is a row index and v=—(O,j},j=1,2, 3, is a column index; p:—(p'), and the same con-
vention will be used for any spatial vector.

(p, r)ro=g, rg =eg(p)r~ (a =1,2, 3) ~I (A12)
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and it is shown in Ref. 49 that r =(r ') is a Wigner vector
of spin 1, while r is a scalar, The inverse relation is

r = M(&spo+p r) ~

(A19)
pPr"=d"„(p)r "=g r e,—(p)r, ;M

(A 12') r=r+ 'QTg +P pr
M+ ago

the same relations hold for q" and q ".
The transformation from r, q to r,q is a canonical

transformation generated by the function

(A13)

q =
M (sap +1'q) ~

with

5""=r&q —r "q~,

That is

(A14)

The Wigner rotation corresponding to the I.orentz
transformation A is

R".„(Ap)=[L(p,p)A 'L(App)]".„
P'p =8 ' T~,

f4. )

and where

(A15) 1 0
0 R'.g

(a, b =1,2,3),

(x"p") =

P"qb l =~.b .

Explicitly

1 „gg d~a(p)x"=x"+—eq(p)r)"~ S
2 Bp„

(A16)

P„S"&+qM So&—S'" ",
M M+qpo

M

r=r —~ r'—
M n M+qS

(A17}

P o O'qq=q M qq M+

e(~.)~ =a+ [y a j+-'(y [y a }]+
If we apply the canonical transformation generated by

f to all the variables x",r",p&,q" we get the new variables
x ",p",r ",q " (we will also use the notation r
=~~,q =eq), satisfying

—0

and the new variables transform under the Poincare
transformation (a,A) in the following way:

x'"=A"„x"+. S,bR'.,(—A,p) R ,(A,p) .+a&,
Pv

r,'=r&R".,(A,p), q,'=qsR. , (A,P),

(A21}

p, — — &J~J
P ~~io —&iso &oA+'9

M+gpo

M,J —xgP) —xJP; +5;
(A22)

The transformation used in Sec. IV is instead that gen-
erated by —g. The new relative variables are obtained us-

ing in (Al 1}the inverse boost L (P,P }. They are

r &=L".„(p,p)r", q &=L"„(p,p)q", .

from which we get, in particular,

(A23)

where S,b ——r, qb —r~q, . That is, r and q are %igner vec-
tors.

The generators of the Poincare group in terms of the
new variables are

It can be verified that

(P, X)=(p,x) . (A18)

r =r, r~ —r, (pr)=i)Mr=
q'=q' qi'= —q' (p q}=nMq'.

(A24)

This canonical transformation is a point transformation
in p", that is, is linear in x", r~, and q&.

Its inverse is

x =X + (1gp q —egp'r),o -o
M

x=X+ (rzq car)+- r
M M+i)po

Tg Q'P —Eg I"P
Mz(M +vapo)

To find the final set x,p, r, q from the set x,p, r, q we
only have to replace p with —p in Eqs. (A17}.

APPENDIX B: CANONICAL TRANSFORATION
TO THE VARIABLES c,, w, k, AND z

In this appendix we consider a free scalar particle,
~hose dynamics is described in an eight-dimensional
phase space ( [x",p "J = —g&") by the constraint
g=+ 2 2

I.et us define the following point transformation (not
connected with the identity), restricted to p & 0:
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(p,x)
c.=qM,

M

z=gM x — x 0

po

(81)

( 2)1/2 7f p,x 31 ri
(p2)1/2 2 (p2)1/2

P
2 Iy2(p )

( 2) 1/2

z=ri(p )'/ — xll —— p,
po 2 po

(86)

where M=(p )'/, 7)=sgnp; the inverse transformation
1s

p
0

&( 1 +k2) 1/2

(81')

x =(1+k ) ~+ —k z, x= —z+ r+ k.z —k.0 2 ]/2 1

E E,

which satisfies

[~,a]= i—, [z',k'] =i5" . (87)

The new operators are formally Hermitian (with respect
to the mathematical scalar product referred to in Sec. II).

The inverse transformation is [k =(1+k )' ]

The new variables ~, e, k, and z satisfy

Ir, s] = —1, Iz', k'j =5",
and the constraint becomes

g =E —Pl 2

(82)

(83)

po &(1+k2)1/2

x =ki+ ka+-o o ko i 3+4k
2

z k 2ikx=k~+ —+—(k.z)+
E E,

(Bg)

p~=.k~, M"=k'z', M'J=z'kj z4'—(84)

~ coincides with x in the center-of-mass frame, k is
the space part of the four-velocity k"=gp" /M
[k =(1+k )'/ ], with k =+1, and z is a static coordi-
nate corresponding to the initial position at x =0, apart
from a mass factor.

The canonical transformation (Bl) is a point transfor-
mation in p&, linear in x&. It is known that a point
transformation belongs to one of the classes of canonical
transformations, which can be implemented as a quantum
transformation without troubles.

In terms of these new variables we get a nonlinear reali-
zation of the Poincare group. Its generators become

k'M"=k'z+-' ',2ko'
M'J=z'kJ —z'k'

(89)

We verify that s is a scalar and k& a four-vector. For
the other variables we have

The ordering in (86) and (88) corresponds to a sym-
metrization. These results can be easily obtained by the
use of a general formula for quantum point canonical
transformations as can be found in Ref. 56.

The Poincare generators are

z'~z' = A'. k&
A'. - zj

(only the rotations are linearly realized).
Under the Poincari: transformation (a, A) we get

r~~'+k„(A 'a)", e~s'=e,

fp",r] =ik", [M"",~]=0,

k'k J

k02

[po, z]= —i sk/ko, [p',zj]= i s5", —
,

~ kJ' i ~

[M', z~) = i-
ko 2ko

(810)

A'
+e A'.

q
—

0 A.q (A 'a)",
A. ki'

(85)

k"~k'"=A".Jc" .
It can be verified that this transformation satisfies the

group composition law of the Poincare group
(al Al)(a2 A2)=(al+Ala2, AlA2).

F«m (85) we see that w and e are Lorentz scalars, and
that z has an O(3) covariance, such as the Newton-Wigner
position variable.

The integration measure on the whole phase space is of
course invariant: d pd x =deeded kd z; since for
p &0 we have d p=

~
s

~
dad k/(1+k )'/, we get

d x=(1+k )' drd z/~ e
~

. From this we see that
(1+k )'/ d z is a Lorentz scalar.

By quantization we get for the operators x" and p~,
which satisfy [x",p "]= i'"", the foll—owing transforma-
tion:

[M",z'] =i (5'z' 8'z')—

( 1 +k2) 1 /2
(e', k'

i s, k) = 5(z —s')5 (k —k'),

I i
k) iEi dad k(

( 1+k2)l/2

(811)

Under a finite Poincare transformation the Eqs. (85)
give the correct rule of transformation for r, s, and k".
Instead z transforms in a much more complicated way.

The wave equation corresponding to the classical con-
straint p —m is, as we11 known, the Klein-Gordon equa-
tion for the wave function (()(x")=(x"

~
P). In order to

formulate this wave equation in terms of the new coordi-
nates, we introduce the new basis

~
s,k) and its dual

~
r, z), eigenvectors of the corresponding operators.
Since it is useful to have an invariant normalization,

remembering that d k/(1+k )'/ is a scalar, we put
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For the dual basis
~
r,z) we have equivalently an in-

variant normalization if we take into account that
(1+k2)'/ d z is a scalar. This means a more complicated
definition:

eve get

(U(a, A}$)(e,k)=e'" "4(s,(A 'k)),

and, after some calculation using Eqs. (816), we get

(818}

5(r r—')5'(z z—'),(r', z'
( r,z) =

(1+k2)1/2

( 1+k 2))/2j ~,x&d.d"

(r z
~

K,k) —(2K) 2e i(cr —t E) (813)

Observe that though e~ is a scalar k z is not.
The transformation from the old to the new description

is determined by the formula

(1+12)1/2
5(s—2}(p2)'/2)5' k —ri

(p2)1/2

(814)
(x"

~
e,k) =(2m)

and

where a=i d/Br and k= i—V,
The RHS of the first equation is a well-defined distri-

bution. In the second equation the factor
(1+k )' /~e~ is to be interpreted as the nonlocal
operator (1—7, )'/ /~ ()/Br

~
applied on a function of r

and z, f(r,z)=(r,xi f).
We have of course

(r z) (2~)—2/2e i(g—m~ kz—) (820)

We can defme two scalar products, which are the analo-
gies of those defined in Sec. III, which are conserved in r
and Poincare invariant:

(4'~ 4'2))(= f d'z 0~(r») 2 [(I—&,')'"+(I—&.'))"]
X

5 $2)(r,x),
(821}

(e.,e.)2= f d2ze:(r, x)-,' t(1-&,2))/2+(1-~.2})/2)

X —1+
2 (()2)(r,z) .1 1 (} (}

m

( U(a, A)(())(r,z)

~
~

~

d 'dk e'(' "'* "*}P(r (A—k a),z') . (819)
(2n )

Equation (817) does not determine the z dependence of
(()(r,x), in agreement with the static meaning of z. There
are only two eigenvalues of e, that is, +m, which are in-
finitely degenerate. The elementary solutions can be

chosen as eigenfunctions of k

(p)'~r, z)=(2n) exp iri (p )'
(p 2)1/2

(815)

On the set of solutions (820) they give

(0(s,1 ).0(v, t )) i =ri5vv (1+k')'"5'« —k'»

1))2=5 (1+k'}'"5'«—k'}
(822)

—m $(r,x)=0 (817)

ol

4P e
—i(Px) xp ~ (p2)1/2 P'*

(p'&o) (2n )" (p2)l/2

Finally the relation between a function of (r,x) and its
transformed form, function of (e,k), is given by

(r, z ~(( &=(()(r,z)
3

'

3

(2%) (1+k )'
(816)

(e,,k
~
P) =P(e,k)

(1+k ) f drd z

(2~)'

The Klein-Gordon equation becomes

The initial data in r are simply (t)(O, z) and (}(I}/Br(O, z).
We close this appendix by observing that the minimal

coupling for Eq. (817}is obtained by requiring an invari-
ance under a local (in r) phase transformation. This
means the minimal substitution (3/(3r 8/'(3r i V(r, z), —
with the associated gauge transformation for the scalar
field V: V(r,x)~ V(r, z)+(8/Br)a(r). A pure gauge is
given by V = V(r).

Of course when this coupling is translated in the con-
figuration space we get a highly nonlocal coupling.

APPENDIX C: THE SINGULAR FUNCTION

In Appendix 8 we have found the expression of the
transition matrix element from the representation x" to
the new representation (r, z). They are given by

(x ~r, z&= f, p, e-"'"d
(p' o) (2~)'

(s —m )$(s,k)=0. (817')

The transformation properties of (()(e,k) and P(r, z) are
as follows. From

)& exp i ri (p ) '
(p2)1/2

(815)
( U(a, A)P)(x) =P(A '(x —a)),
( U(a, A)P)(p) = e "P"P(A 'p),

In this appendix we give the evaluation of this distribu-
tion. Using the results quoted in Ref. 35 we have
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T

{x"
~
r,z}= dm —e' ' + 8(x' )[E&(m(x' )' }+i@(x )Ji{m(x' )' }]

i " z;~, e(x )5(x' ) mi

2n o 4n. g~(x')'~'

8( —x' )Mi(m( —x'2)'~2)

e(x )5(x" )+e 8(x" )[Ni(m(x" )' ) —ie(x )Ji(m(x" )' }]8n(x". )'i+» 8( —x" )Ki{m(—x" )'~ )
( x n2) i/2 (Cl)

where
'2

&2 2 &&2 2 Z
0 —x — & =&0 —x+-

rfl Pl
{C2)

p p'r
M+nao

(Dlb)

The singularities are situated only on the two light
cones defined by x' =0 and x" =0. These two light
cones intersect along a hyperbola, which lies in a plane
orthogonal to z. Outside these two light cones it falls off
exponentially at infinity in spatial directions. When m
goes to zero the two light cones move away each from the
other at infinite distance. For m infinite they collapse in
one light cone.

APPENDIX D: EXTENSION OF APPENDIX 8
TO THE T%'O-PARTICLE CASE

T= —,(Ti+T2)=ri (p,x ) (p, x)
M M

E=ei+e2=Y/M, Ts =T) —T2=7) p, r
M

(Dla)

In this appendix we give the extension of the transfor-
mation of variables studied in Appendix B to the two-
particle case.

Starting from the variables defined in Eqs. (A17) we
give the following transformation to the new variables
T,c, T~,c~,z, k, r, q, which is again a point canonical
transformation in the momentum p, and then linear in the
other variables:

p o 1'qq=q—

%e have also

(p,xi)
Tl =T+ 2 TR —9 M

(p,xi)
T2 —T 2 Tg —g

{ppi)
~&= 2+~a ='9

M

{pp2)
62= 2 E —Eg ='g

M

(D2)

x = (eT+k z)+ —(Tzk q —elk r),o k
E

x'= —[z'+(sT+k z)k']+ —
(Tsq

' ear ')—
F E

S' k k'.(I+k, ) +.(I+k, )
"""' '""

The inverse transformation, from the new variables to
the original variables x", r", p", and q", is

ea = (ei —e2)=t/ p~v
2 M

where M =(p )', and more

p"=ek", r =k Ts+k r,
k.rr= r+k T~ +
+ko

(D3)

z'=qM x ' — X
Po

haik
P gok
po M(M +gpo)

M'

=k c.z+k.q, q=q+k c,z+0 0 k.q
1+ko

We have also
2 -2 2 2 —2

(p e)=«x
The generators of the Poincare group become

@~=ok",
i=z'ki —zik'+Pii gV r iqi —r Jq ',

g ikkk
Mio I 0 i+

I+ko

(D4)
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{z', k'I =5",
I r', q'I =5",

(D5)

with the other Poisson brackets equal to zero, the genera-

Since the transformation (Dla) and (Dlb) is canonical,
that is, we have

{cTI ={ca Tsj=l,

tors (D4) satisfy the Poincare algebra.
The original symplectic structure {xt',pJI =5;Jrj"" is in-

variant under a Poincare transformation; as a consequence
a Poincare transformation on the new variables is again
represented by a canonical transformation, which is how-
ever a nonlinear transformation. That is, a finite Poincare
transformation (a, A) is now represented by the following
(nonlinear) canonical transformation:

k"~A".Jc", T~T+a&A„'"k„, r '~r JRj '(A, k), q'~q/RJ. "(A,k),

z'~ A'J —
0 ~ A 1 zj+ —A'q 0—~ A.q S'JR (A, k) Rj (A, k)+ca "A„'"

A'.Jc"
A'.

p
—

o ~ A.~A.gk

(D6)

where

~ f oP

R'. .(A, k) =A"—
1+A.gk

ki (A 1)A'Pk

1+k 1+A k"

—S'JR(Ak) RJI (Ak)= 0 ~ rI"; AOJ— —(g~o+ k&)
k;AOJ

1+ko

The quantization is performed as in Appendix B. The commutation relations for the original variables are

tP",x "1=fq" r ")=En""

For the variables of Eq. (A17) we have

(P" x "]=~a"" lcs Ts)=~ P'q'1=~5".
Finally, for the new variables we have

f Tc7=P ~s~z]=' [z ~k 3=F ~q l='5
The ordering of the operators is the same as in Appendix 8, and the same inversion formulas hold.
The operators representing the Poincare generators are

(D7a)

(D7b)

(D7c}

p"=ck", M'J=z'k J zjk'+S'J, M—'O=z'ko i-
2k'

and satisfy the Poincare commutator algebra.
The relations analogous to (811)and (812) are now

S "k'
&+ko

(Dg)

1+k2 I/2
( kc', cd'

i
kc, cd) =

3
5(c c')5'(k —k')5(cs ——cs )5'(q —q'),

~

c
(
'dc d'k dcsd'q

i
c,k, cs,q) /2 (c,k, cs,q)= l,

( 1 +k2 )
1/2

A.

( T',z', T~,r
~

T z, T~,r) = 5(T —T')5 (z—z')5(Ts —Ts )5 (r—r },~ t t t
(1 k2)[/2

~
T,z, T&,r) (T,z, T&,r ~dTd zdT&d r=1 .

( 1 +k 2)1/2

The transformation coefficients from one basis to the other are

(D10)

(T,z, T„,r
~
c,k, c~,q) =(2m) 4e

We have again the following transformation coefficients from the old to the new basis:

(D11)
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(p,p ~
&,k, &tt, q) = 5(& —AM)5 k — 5 ea —rl

' 5 q —q+ riq-
(1+k'}'" 3 m Ve) s — p o pq

M M M M+qpo

(x,r
~
e,k, e'„,q) =(2m) exp ~ i—e(k,x)+sit(k, r) —q r —k4 r +(k, r)

1+k'

(D12)

(p, q i
T,z, Ttt, r) =(2m) exp t—ri MT —+ '

Ttt — q — riq-p* (p9) p o p'q
M +qpo

&x,r
~
T,z, T„,r&= e "~' 'exp iri (p )'~ T

iy2 & o) (2~)4 (p 2) 1/2

(D13)

(pr) 3 p o p r
z in 8 r r

z &n &" z &n(p ) (p ) (p ) +ripo

Between %(z,r, T, Ttt)=(z, r, T, TJt
~
4) and %(k,q, e,ett)= {k,q, e,ett ~

qt) we have the relations

d~d k d~ttd q i(er az+e„—Ta ——t(r)
%(z,'F, Ttt, T)= 2,&2

e " " qt(k, q, e, ea),
(2m) (1+k2)'~

(1+k ) dTd zdTttd t' i(aT —k z+a&T& —t(.r)
%(k,q, e, ea }=

4 e s s I'(z. r.T, TR)
(2m )

Finally we have the following properties under Poincare transformations:

(U(a, A)%')(k, g, e,ea)=e" "4'((A 'k), q JRj'(A ',k), s,ea),
3 ~ 3

{U(a,A)qt)(z, r, T, Ttt)= f e'(' "'* "'*' %}'{z', R( A, k)r, T—(Ak, a), Ttt),
(2n )

(D14}

{D15)

which are of course nonlocal transformations.
Equation (D15) restricted to the elementary solutions gives the same transformation law as that of Eq. (5.8) in terms of

the new variables, that is

(U(a, A)gati„q p„t~~)(z, r, T, T&)=e ~"' ' +%i„t'ai, p„t ~ ~(z, r, T, Ttt)D"' (I{ '(A, k)) . {D16)

In the nonrelativistic limit we put xt'=(ct;, x;) and Jt/'=(rn;c+E;/c, p;), and the new variables become

Ti ct +O(c——), s; =mc+ —E+ p — +O(c ), z=rnc1 mi 2 P'PI —3

c 2m m

m2 m)k= +O(c ), r=r — ttt+O(c ), q= pt — p2+O(c ),mc m m m

m &xI+mzx2 p&t&+p2tz
+O(c '),

(D17)

where m =m&+m&, tz ——t& —t2.
In this limit the plane ( Tt, Tq) becomes the plane (t„t2}and the line Tt —T2 [i.e., (p, r) =—0] becomes the line t t ——4.
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