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A common language is introduced to study two, well-known, different methods for the renormali-
zation of the energy-momentum tensor of a scalar neutral quantum field in curved space-time. Dif-
ferent features of the two renormalizations are established and compared.

I. INTRODUCTION

This paper is a comparative study of two alternative
methods of renormalization for the energy-momentum
tensor of a scalar quantum field in a curved background.
Reference 1 could be considered as a previous attempt on
the same line focused inainly on the massless case and in
Hadamard vacua (vacua related to Green's functions with
a Hadamard structure). We will study the massive case
and unrestricted vacua in this work, and also compare the
different physical results that can be obtained with the
two methods.

Energy-momentum tensor renormalization is based on
the subtraction, from the unrenormalized tensor, of
another tensor with the same divergences, to obtain a re-
normalized quantity. Different criteria to choose this
second tensor yield different renormalization methods
that we can classify into two sets.

(1) The state-independent renormalizations, where the
subtraction is done using a geometrical object, a function
only of the local geometry at each point, and independent
of any quantum state and of course of the observer or
coordinate system. These methods must be covariant in
the sense that they are observer independent and can be
used for every geometrical background. We will study the
canonical renormalization method (as explained in Ref. 2)
in the generalized version given in Ref. 3, where the
second tensor that we subtract is obtained from a Ha-
damard elementary solution and it is a function of the lo-
cal geometry only. It can be proved that this renormaliza-
tion in unique and that it coincides with the canonical
one, where a De%'itt-Schwinger elementary solution is
used. %'e shall call this recipe the "Hadamard renormali-
zation. "

(2) The state-dependent renormalizations. To develop a
completely covariant geometrical method is in the best
tradition of relativistic physicists, but realistically there is
no compelling physical reason to choose the former class.
In fact, we can as well suppose that the renormalization is

state dependent, i.e., that somehow we choose a quantum
state ~q) and that we subtract (q ~

T„„~q). In Min-
kowski unbounded space-time, if we use inertial observers,
there is a unique vacuum (0) and a unique renormaliza-
tion method (the one with

~ q ) =
~
0) ). However, we

know that we have different vacua in curved space-time
and also that the vacuum turns out to be observer depen-
dent. Thus, it is possible that the renormalization could
be observer dependent, in the sense that

~ q ) could be ob-
server dependent. In this second class of renormalization
methods we have a greater freedom than in the first set.
In fact the Wald axioms~ restrict the differences between
possible renormalizations to a conserved geometrical term.
Other requirements imposed to Hadamard renormaliza-
tion make this renormalization unique (cf. Ref. 3).

Even if the first set of renormalizations is, perhaps, the
more aesthetic one, the second class could have some im-
portant advantages. In fact, with Hadamard renormaliza-
tion we will always have the phenomenon of trace anoma-
ly, and we inust introduce in the right-hand side (RHS) of
Einstein's equation second-order curvature tensors "'H„„
and ' '0„„that yield problems with the causality princi-
ple, at the classical level, and ghosts in the completely
quantized gravity theory. Using the freedom of this new
kind of state-dependent renormalization we can overcome
these problems. We will use as an example of this
second-class method introduced in Refs. 7 and 8 (see also
Refs. 9—12) for the Robertson-Walker universe with
comoving observers, that we shall call minimal renormali-
zation. This method wi11 be developed in this particular
geometry and it will be generalized to all conformally flat
geometries. Perhaps it can be generalized to a wider class
of geoxnetries. Reference 1 is an attempt to generalize this
kind of renormalization to an arbitrary geometry in the
massless case, but this renormalization is not continuous
if we go from one geometry to another. Perhaps the
correct generalization could be found if the observer is in-
troduced in the renormalization method in a covariant
way. However, for the moment, we will focus our study
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on Robertson-Walker geometry.
In Secs. II and III we review each method separately.

In Sec. IV we see how %'c can obtMQ the m1MIQal renor-
malization from the Hadhunard renormalization formal-
ism and generahze the minimal renormaIixation to con-
formally flat geometries. In Secs. V and VI we see that
both methods yield different physical results. We can
find different self-consistent de Sitter cosmological solu-
tions (Sec. V), and the behavior of Minkowski space for
small conformal fiuctuations is different (Sec. VI). In Sec.
VII we state our principle conclusions.

II. HADAMARD RENGRMAI. IZATION

will use the following conventions: The signature is
( —,+,+,+),

R~~, =r~,—r~~, +r~ r'„,—r~ r~,
p 8R„.=g Piv

We will study a scalar neutral field with due action

S[p]=—, Jd x& g—(p„p'"+m pi+gRpz), (2.1)

where, as usual, the action turns out to be invariant under
a conformal transformation if m =0, g= —,

' (conformal
coupling). The field equation is

Let us first review the, by now, usual formalism (cf.
Ref. 2 and bibliography therein, Refs. 3, 13, and 14). We

I

(Cl —m —gR )P(x) =0

and the energy-momentum tensor operator is

(2.2)

T„„(x)= 2

g Qggv

=-'(1—24){&. &,.j+-'(2C—-'){4, 0 jg . 4{4—;,Aj+Cg,.{(:}0,4j

+ —,
'
g(R„„,' Rg„„——,

—' m igi'"—) {P,P j, (2.3)

where {P,Pj =Pf+iJIP and T„„'"=0.
Let us define the symmetric Green's function as

6, (x,x')=&0~ {y(x),y(x')j ~0) . (2.4)

%'e shall say that G~ is an Hadamard-type elementary
solution of the field equation (2.2) when Gi(x,x') has the
01Tll

Obviously this Gi satisfies the field equation (2.2). If we
symbolize the coincidence limit as

(x x') 2
Gi(x,x')= ' —+U in@ o+w86 (2.7)

[Gi]= lim Gi(x,x')
X~Z

it can be proved that (cf. Ref. 3)

(2.5)

&0 I
T'„„

I
0) = ——,

' [6,.„„]——,'(4 ——,
' }[):}6,]g„„

+ ~ ( i —C)[Gi l;i + ~ (0——'}&Gig,.
+{s(4——,')(m +OR)gi„+ —,'CRi„j[6,].

(2.6)

We can also use this equation to compute a tensor from a
symmetric Gi that satisfies the field equation even if this
Gi is not related to a vacuum by Eq. (2.4). We shall call
this tensor & T„„&

fG))

u(x, x') = g U„(x,x')o",
n=0

w(x, x')= g w„(x,x')o",
m=0

(2.8)

where U„and w„are regular functions in the coincidence
limit. In order that Gi satisfy the field equation (2.2) it is
necessary that

where cr is half the square of the geodesic distance be-
tween x and x', p, is an arbitrary mass scale (that normal-
ly we shall make equal to the mass in the massive case},
b,(x,x') is the Van Vleck —Morette determinant, and
U(x,x'} and w(x, x') are regular functions of o that can be
developed as

Uo+Uo'"o. „=V—5 ' Q(h'~ ),
U„+U„'"o,„= [Vu„ i

—6 '~ Cl(h'~ U„ i)], n & 1,
2n n+1

w„+w„'"o.„= [Vw„ i —5 '~ Cl(h'~ w„ i)]— U„— U„„o'" (V=m +. gR) .2n(n+1} " " n(n+1) " n(n+1}

(2.9)

Thus, not only h(x, x'), but also u(x, x') is determined by the background geometry and the choice of wo(x, x') is the
only thing that remains arbitrary. In fact the differential equation (2.9}plus the initial conditions stated under Eq. (2.8)
fix U(x,x') completely and also w„(x,x') (n ~ 1) if wo(x, x') is known.

Therefore, the two first terms of any Hadamard elementary solution (2.7) are always the same and we shall call them
6 i" (x,x') (this term has a part which is divergent in the coincidence limit). The third term is detessssined by wo(x, x');
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we shall call it G' '(x,x'), and it is always finite in the coineidenee limit.

Thus (T„„) is determined by wo or more precisely by the coincidence limits [wo], [wo ], and [wo.„„].The coin-
cidence limits of higher order are irrelevant because they do not appear in Eq. (2.6). From G i" (x,x') using Eq. (2.6), we

can compute (T„„)'"',which is the same for every Hadamard elementary solution (and has a divergent part). From
G i '(x,x') we can compute ( T„,)' ' as a functional of [wo], [wo &], [wo&„] and the result is always finite:

lM(T„„&' '= —I[ o,„„]--,'g„„[I:I o]I+-,' [f o],„.——,'g„.I:jf o]I —(4 ——,')I[ ];„.-g„.(-j[ 1]

+(4——,
' )«„.—2 Rg„.)[wol —-'m'[ wolg, .+9(k—

6 )fui ]gal . (2.10)

Finally

' = & T„.&' '+ & T„.&'"'

If we want this tensor to satisfy the conservation equation

the coincidence limits [wo. ] and [wo. p] must satisfy the equation (cf. Ref. 3)

[wo; ]=[wo];

[wo; pl —
4 [I:jwol, =

~ I:I(fwo], )+ &'z R pfwo]' + 4 (4—
6 )R, [wo] —

4 [m +(4—6)R] fwo]. + ~ [ui],

where ui is the coefficient n =1 in Eq. (2.8) and

m4 m'
[ui] = + (g , )R+ ,—' (g—,'

)R——
,
',—(g ,'—)C—IR+—,—~(Rs~,R ~' R~~Rpi' —ClR ) . —

(2.11)

(2.12)

(2.13)

To see what remains arbitrary if we impose these conditions let us call

X=—[wo]
1

Zap+ 4gapY= fwo;ap—] (2.14)

Then the scalars X and Y are arbitrary; [ wo. ] is determined by Eq. (2.13) and the traceless tensor Z~p must satisfy the
equation

Z p'p= —,'Cj(X )+ ,', R,pX p+ —,'—(g——,')R X —,[m +(g——, )R]X,+ —,[—u ]

With these new definitions Eq. (2.10) reads

1&rr (T~„)' '= Zq„+ ,'(Xq,——,'g~„Q—X)—,—'m Xg~—„+(g ,')(Xq—„g~„C—lX)—
+(k—

6 )(RI.—2Rgi )+9(C—
6 )[ul]gi.

(2.15)

(2.16)

%e see that the trace F is completely irrelevant to com-
pute ( T„„)' '. It is interesting to compute the trace and
the divergence of this tensor:

16&(T~)'"=—m'X —g(g ——,
' )CX+36(g——,

'
)[u, ],

(2.17)
16rr (T„„&'~"'=(—2+9()[ui]„.
%e see that the trace only depends on X and that the
divergence is independent of all the parameters in Eq.
(2.13).

To implement the Hadamard reoormalization we sub-
tract from the unrenormalized vacuum expectation value
(VEV) of the energy-momentum tensor (0~ T&„~0), a

(61)
tensor ( T&„) where the corresponding Gi must be the
more general Hadamard elementary solution that can be
constructed using geometric quantities of the background
at point x: g„„,R,R„„,. . . Up to the fourth adiabatic or-
der (i.e., the fourth order in the metric and its derivatives).
Below we shall consider only terms up to this order be-

X=X' '+AR+, [T+(3C,—C, )CIR], (2.18a)

Z„„= mARp„+(X' '+—m )(g , )R„„——
+C)RRq„+ —+C2 —C) R.~„

—2Cz(R i'R„o„+—,
' UR„„)——,

' g„„(trace), (2.18b)

where the last tensor is traceless

+ 2 (4- 6
)R'- 6(C- 5 )I:IR .

cause this is the minimal order that we need to eliminate
all the divergences. 6& is determined by X, Y; and Z&„,'

the most general choice of these quantities with the
correct dimension and correct Minkowski limit turns out
to be (ef. Ref. 14)
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&, Ci, and Cz are arbitrary real coefficients, X'"' is the
Minkowski value [X'"'=m (2y —ln2 —1)), and I'is arbi-
trary. Now we can compute the ( T„„)' ' from this u:

16&(T»„)'"'= m—(g —,
' —)G»„+9((——,

'
)[ui ]g»

1 2—
~ gp„T+m AGp

(1) " —C"'H
2 pv

H
+[Ci —(4—

e )~]

(2.19)

1

Gp,v ~p,v 2 ~gp, 'r s

"'H»„2R »——„2.RR—„„+, g»„(—R 4OR—),
(2)Hp„—E..p„—UR p„

2R»R—»g + ,'g»„(Rs—R» OR) .—

(2y —ln2)
1 3 2 2

(2.20)

The ordinary DeVA'tt-Schwinger renormalization method
consists in the following subtraction procedure:

& T„,&"" '=(0I T„,Io) —&T„.& ', (2.21)

where ( T„,)"' is the renormalized energy-momentum
(6Ds )

tensor and (T»„) ' is the DeWitt-Schwinger energy-
momentum tensor computed up to the fourth adiabatic
order because these are the orders that appear in the gen-
eral quantities of Eq. (2.18). Of course a regularization

I

The DeWitt-Schwinger Gi (x,x') (written up to its
fourth adiabatic order only) is a particular case of Gi ob-
tained with the choice

A = (g——,
'

)(2y —ln2),

procedure must be used to make the subtraction of the in-
finite quantities. A generic Hadamard renormalization
will be defined by the subtraction

( T„„)"'"""=(0
I T„„I

0) —(T„„) (2.22)

where now 6& is an Hadamard elementary solution with
parameters given by Eq. (2.18) (so the DeWitt-Schwinger
renormalization is a particular case of Hadamard renor-
malization).

Let us answer three questions: %ill Hadamard renor-
malization always produce a finite result'? Are different
Hadamard renormalizations physically different? What
happens in the Inassless case?

(0
I T» I 0) and ( T„„)'"'have both (in the coincidence

limit) a finite and an infinite term:

&oI T». Io&=&oI T». I
o&.+&o

I T». I o&f
(2.23)

& T„„)'"'=& T„,)'„"'+
& T„,)f"'.

Hadamard renormalization will produce a finite result if
the vacuum IO) is such that

(oI T„„Io)„=(T„„)'„"'. (2.24)

This circumstance must be proved case by case using a
regularization procedure. If this is so (2.22) reads

( T».&""""=(o
I T». I o)f (T».)f"'—(T».)' '—.

(2.25)

This result is finite and covariantly conserved because
T„„'"=0and Eqs. (2.22) and (2.12).

From Eq. (2.19) we see that the three last terms of
(T»„)'~' have arbitrary coefficients. In addition, if we
change the scale p~p' we will have a change

g 1 /2
Gi-+Gi ——Gi — i V(x,x')ln

4+2 p

and therefore

'I

C

16m (T»„)'~'=16m (T»„)' ' —ln [ „'n(3' 'H»„'"H»„)+ —,'(—g —,') "'H»„(g ——,')m G»„—+ „'—m g„„—] .
p

(2.26)

From Eqs. (2.19) and (2.26) we can see that two different
Hadamard renormalizations, with different coefficients A,
Ci, C2, and different scales p yield two different renor-
malized energy-momentum tensors related by

( T& )ren Had ( T )ren Had+ GPV PV PV

+b '
Hp +c Hp„+dgp„. (2.27)

As the renormalized energy momentum tensor is used in
the right-hand side (rhs) of Einstein's equation:

G„„+Ag»„+~a"'H„„+~P"'H„„= ~& T„„)"",
x =—Smo,

(2.28)

the coefficients a, b, c, d can be set together with the
coupling constants G, A, a, and P. Thus all Hadamard
renormalized tensors yield the swee physical results. This

f

conclusion was obvious because the tensors on the rhs of
Eq. (2.27) are all the conserved tensors that can be con-
structed up to the fourth adiabatic order, but it is impor-
tant for a complete understanding of the method. There-
fore as the DeWitt-Schwinger renormalization belongs to
the Hadamard class, no physical difference appears if we
use a different Hadamard renormalization.

Finally it is evident that we cannot use Eq. (2.18) in the
massless case; thus, we cannot find a Hadamard elementa-
ry solution using this method if m =O. Formally the re™
normalized trace can be computed as the limit m ~0. In
this limit we have

(2.29)

The first term is formally zero if m =0 (and g= —,'). In
Ref. 15 it is proved that the second one is also zero in this
case. %e will compute the last one as the limit
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y' &ren Had= —1 ( TP ){ur)
ng -+0

= hm X{"'+~a+,[T+(3C,—C, )oZ]
m~o 16+ m'

[T+(3Ci—Cz)OR],
1

where we have used Eqs. (2.17) and (2.18). This is the
usual trace anomaly if we neglect the arbitrary E1R term
that can be arbitrarily modified introducing a 8 2 counter-
term in the Lagrangian. Working directly in the massless
case the same trace anomaly is found in Ref. 16. Thus, a
trace anomaly is unavoidable in this renormalization
scheme. Also the presence of tensors ' "H„„and '2'H„„ in
Eq. (2.28) could produce unpleasant consequences at the
classical level and ghosts at the quantum level.

III. MINIMAI. RENGRMAI. IZATION

We introduce a new renormalization method (cf. Refs.
7 and 8) that we shall apply only to Robertson-Walker
univet3es that solve the problems stated at the end of the
last paragraph. The metric can be written as

dsz= dt2+a2—(t}(dxz+dy +dz ),
(3.1)

ds =a (rt)=( —dr)i+dxi+Cyi+dzi) .

For each t we can find a vacuum
I 0), (ME=minimal

energy) that minimizes the Hamiltonian:

H = f d xV ~g Too (3.2)

computed at time t; i.e., it turns out that, (0
I
H

I 0),

(2.30)

t

is the minimum of the set of the quantities (0
I
H

I 0),
where

I
0) is an arbitrary vacuum of the set of vacua that

corresponds to positive- and negative-frequency solutions
that can be written as a product f(t)g(x) (cf. Ref. 17).
This set of vacua is naturally related to the metric (3.1)
and to the comoving reference system where it is written.
Now we can introduce an energy-momentum tensor,

( T„„),"'=",'(o
I T„„(x)I

o)", ', (3.3)

and the correspondj. ng 6 ~

G", '{r}(x,x }="',(o
I Iy(x), y(x )] I o&,"', (3.4)

that, in fact, are related by Eq. (2.6). We can define the
minimal renormalization prescription as

( T„„(t,x))™"=M,(0
I T„„(t,x)

I 0),
—";(0

I T„„(t,x}
I 0),"', (3.5)

where
I 0), is the minimal energy vacuum defined at time

The renormalization is state dependent in the sense
that we subtract a tensor computed at a quantum state

I
q)=

I
0), : the vacuum at time t. This state, of

course, changes with time. Using the results of Ref. 14
we have, in the case g= —,',

m [1+2 I p»(t r) I']———[ I p»«r) I']
k H Ck

&olToo(t)lo& =f, 2
[1+2lp»(t~}l ]

ME(ol T I()) f
(3.6)

where the Bogoliubov coefficients a» and p» can be com-
puted solving the system

m H
ci» —— i p»exp 2i oi»(t')—dt'

2COk

~ m Hp»= i a»exp 2i t0»(t')dt' (3.7)
2')k

I

and where H =a/a Thus we ca.n obtain

";(ol T~(t,x) lo),"'= f
(3.9)

k2
2 +m

Q

with the initiaI conditions

a»(v;r) = 1, P»(r, r)=0, (3.8)
l

2ma COk
2

It can be proved that these quantities are divergent and, in
fact, are the only divergent terms of Eq. (3.6} because in
the case g= —,

' for regular evolutions a (t) we have

I P» I
'-k when k~ e). Thus Eq. (3.5) is

d k( T )renmlll f I p ( t) I

2

(2ma )

d'k m
&T &'"-"- ' f Ip(

(21Ta ) oi»
———[ I P»« t)

I
']

H Ch

(3.10)
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We call this renormalization "minimal" because we

subtracted only the infinite term of the unrenormalized
expression (3.6). The corresponding results computed
with the Hadamard renormalization method reads

X=X' )+WR,

Z„„=n BR~„+C]RR~„+C2R.p
+CiR„eR„——,

'
g„„(trace),

(4.1)

(t) )ren Had ( T )ren min+P (3.11)

where P„ is called the "vacuum-polarization term" (that
makes Hadamard renormalization a nonminimal one, cf.
Ref. 14)

288&Pq„m——G—„„
—~ ["'Hq„+ ,

'
gq„—(R 6R I'—Rqs„p)) .

(3.12)

It can be proved that G ~

'" is not a Hadamard elementa-
ry function (cf. Refs. 13 and 18) even so the vacuum ex-
pectation value (VEV) of the energy-momentum tensor
computed in a vacuum that minimizes the energy, as
those we use in this paragraph, can be renormalized with
a flnite result as it is shown explicitly in Ref. 14 [i.e.,
G, '" yields a tensor that satisfies Eq. (2.24)]. In Ref. 18
the authors arrive at a different conclusion because they
find a term that makes the Gi '" different from a Ha-
damard structiire, but they do not verify whether this
term produces an infinite difference between the corre-
sponding energy-momentum tensors. In fact it does not,
as can be verified using Eq. (78) of Ref. 15.

IV. MINIMAL RENORMALIZATION
USING HADAMARD FORMALISM

To formulate minimal renormalization in Hadamard
language let us consider the set of geometries which are
conformal to Minkowski space-time: g„„=Q rl„„and let
us repeat the construction of quantities X, I; Z„„but
now using the geometric object of these geometries where,
e.g., the tensor R„a can be written as a function of Re,
R, and g„„. We keep the Minkowskian limit but now we
add the condition that we must also have a finite massless
limit, thus m must appear only in the numerator. The
computation can be found in Ref. 14 where

Then Eq. (2.16) gives

2880ir ( T„„)ci," ——180Am G„„+RR„„,' R—R.„—„R„sR—„
+ 4g„„(R—epR

i' —R + —,'CIR), (4.3)

where CF denotes conformally flat. We can see that only
the parameter A remains. We can write

(4,4)

that is covariantly conserved because Eq. (2.14) is satisfied
and it has a trace

(T"„) ' = —m (X' '+MR) (4.5)

We can now define the minimal renormalization in this
flat conformal geometry as

(T„.&"" '"=(0~ T„.~o) —(T„.& ' (4.6)

from (4.5) we see that in the massless case (T„")"" '"=0;
i.e., there is no trace anomaly. This renormalization is
state dependent because we have chosen a particular state

~ q) to make the subtraction (a vacuum defined using the
conformally flat geometry). Notice, that we used dif-
ferent vacua in Sec. III, and now we use only one. Even
so we will obtain the same renormalized values.

From Eqs. (2.22) and (4.6) we have

(GCF)
( T )renHad (T )renmin (T ) i (T ) i

where

( T )ren min ( T )ren Had
pv ~V (GCF)

1

(4 7)

where A, 8, C&, C2, and C3, are real parameters. In the
case g =—, in order to satisfy Eq. (2.13) we must have

1

C) ———C3 ———
(4.2)

C2= 5~+—540

288(hr ( Tq„)
i
Gcp'i 180Am Gp„+——RRq„,' R p„RqeR—„+—,'

g. p„—(2R gpR ~+ —',—CIR——', R ) . (4.8)

Now if we compute this tensor in Robertson-Walker universes we obtain

2880&( Too) "~p') 540Am'ai+3pi ——3p2+6pi+6p4, —
1

288(}ir ( T; ),""cF; = —,
'
g J [540Am (ai —2a2)+ 15Pi —3Pz —6P3 —12P4 —6P5],

(4.9)

where the coefficients a; and p; are listed in the Appen-
dix. Thus if we compare Eqs. (3.11), (312), (4.7)»d
(4.9) we see that the ininimal renormahzation introduced
in this section is equivalent to the one in Sec. III if

(4.10)

a '(g )a '(tI')
2&[(rl' —t)) +(x' —x) ]

(4.11)

and therefore from Eq. (4.1) in the massless case we have
X=—R/18. This is precisely the value [ufo] =X that has
to be taken to produce the propagator:
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i.e., the propagator of the conformal vacuum in
Robertson-Walker universes (cf. Ref. 3}. Thus minimal
renormalization is the natural renormalization in a con-
formally fiat geometry: the parameters of its propagator
are built with the objects of the geometry, and the only
coefficient left undetermined is fixed by the condition that
the G~" turns out to be the one that corresponds to the
conformal vacuum in the massless limit. The result arises
naturally if, as in Ref. 19, the renormalization scheme is
performed after the rescaling of the matter field using this
conformal factor. Furthermore, the rescaling seems to be
fundamental for the quantum analysis, as was shown in
Ref. 20. Also, this rescaling appears to be necessary in
this framework of the self-consistent approach described
in Refs. 6 and 7.

Now we can reobtain these results using the language of
Ref. 1. First let us observe that in the case m =0, (=—,:

16&(T„„) ''"=0,

16&(T~) ' = T—
(4.12)

16&(T„„) ' '"=0,

16~'(T&) ' =0.
(4.14)

Our conformal, anomaly-free, minimal renormalization
recipe consists in the subtraction (4.6); therefore it is based

{GCF)
in the use of the traceless Hadamard tensor (T„„)
This tensor can be obtained using the results of Ref. 1

from its solution for the conformally flat case [see the
Appendix of Ref. 1, Eq. (A3)]:

1

t&v= 36OSpv

1=,~ [ Rqi R „+—RR~„—,R—
+ —,'gq„(3RspR t' —2R +2CIR}] (4.15)

which, using T&„(8H) 't&„——, yields our tensor

(T„„)i c„; in the case m =0, g= —,'. Then we can ob-
1

tain

=—,' (R, R'~' R,,R"—+Ca},
where we have used Eqs. (2.21), (2.17), (2.18), and Ref. 15.
Thus our solution of Sec. II is a solution of the problem
stated in Ref. 1, Eq. (2.22) with

t„„=—(8~')(T„„) ' . (4.13)

(GC1" )
On the contrary the ( T„„) ' of this paragraph is not a
solution because

general metric, obtaining a traceless Hadamard tensor for
every background but as the tensor of Ref. 1 is not con-
tinuous when we pass from one type of metric to the other
we will obtain an unpleasant noncontinuous renormaliza-
tion method.

Another interesting example of a state-dependent renor-
malization is the renormalization of (P ) in the de Sitter
space-time done in Ref. 21. Even if it is done with an
ad hoc procedure, that can only be used in this space, it
has relevant physical consequences (cf. Ref. 22).

Therefore we cannot disregard the state-dependent re-
normalization methods just because they have no covari-
ant known generalization to all kinds of geometries. We
must rather use the physical consequences of different re-
normalizations as a criterion to see which one is better.

Finally the absence of the trace anomaly in the minimal
renormalization was clearly stated in this paragraph.
However we can find in the literature some interpretations
that talk about the appearance of an anomalous term in

(T&~)"" '" (see Refs. 23 and 24). This term is found by
doing a perturbative expansion of the unrenormalized
(T„") in terms of rn '. The result after the subtraction
(4.6) is

( Ttr )ren min ptr +0( —4} (4.17)

This equation which is valid for large values of the mass
is interpreted in Refs. 23 and 24 as the origin of some an-
tigravitational effects that occur when the mass of the
scalar field is rn & 288m a '. Using the usual Hadamard
renormalization Eq. (4.17) can never be obtained. In this
case the anomaly takes place when we work in the mass-
less limit and the anomaly is given by

( Ttr )ren Had Ptr(m

[note the difference in the sign of P&~in (4.17)].

(4.18)

V. SELF-CONSISTENT DE SITTER SOLUTIONS

%'ith both renormalization methods the de Sitter
universe turns out to be a self-consistent cosmological
solution of Einstein s equations (2.28), namely, a solution
to the back-reaction problem. In each case the curvature
of the de Sitter space is a function of the mass, but the
function that we obtain using one method is different
from the one we obtain using the other, showing that the
difference between the methods is not only mathematical.

For the Hadamard renormalization, Eqs. (2.28) are
equivalent to (cf. Ref. 2)

T

m 4G 1((
—', +v)+ f( —,

' —v)8= —lnM
2

( Ttr. )

[see Eq. (4.7)] as

mRG E. G
36~

+
12~360

(5.1)

(4.16)

(GcF )
Thus, the traceless Hadamard tensor ( T„„) ' can be
considered as the difference between the solution of Ref. 1

and our solution. This idea could be generalized for a

R &4320m.G '=—Ro Vm (5.2)

and the solution exists for every value of the mass. The

where R =12/r, r is the radius of the de Sitter universe,
M =mr, v =( —,

' —m r ), and g(z) is the digamma func-

tion. In this ease all the curvatures satisfy
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m &6~irG '/'= mo— (5 4)

{here the curvature R can take values in the interval

[0,+ oo)).
The differences between the two solutions are shown in

Fig. 1, where we use dimensionless axis m/mo and
8 /RQ ~ We see that the two methods are not different
prescriptions of the same renormalization but, in fact,
they are physically different renormalizations.

VI. THE STABILITY
OF THE SELF-CONSISTENT SOLUTIONS

In both cases the Minkowski space is a trivial solution
of Eqs. (2.28). There are some works that study the
behavior of this solution when we introduce a global con-
formal perturbation in the metric (cf. Refs. 27 and 28).

'I ~ I I I

(CI)

0
IK

2

O. I Io.o

FIG. 1. The curvature of the de Sitter self-consistent solution
vs the mass of the scalar field. The curve (a} corresponds to the
Hadamard renormahzation and (b) to the minimal renormaliza-
tion. Vfe have Ro ——432(hrMpL, g and F0=6(m')' Mp)~, k.

term m RG/36m can be eliminated from Eq. (5.1) by a fi-
nite renormalization of the gravitational constant. If we
do so the result is rather different: R is always lower than
432(hrG ' and the de Sitter solution exists only if the
mass is lower than a threshold value. This result was ob-
tained by Anderson {cf. Ref. 25). We think that this
"massive polarization term" can be absorbed into a renor-
malization of the gravitational constant only if it is
present in all the possible background metrics. %e are not
sure about this point: up to now the term m'G„„/288m
has been detected in P„„wh enone works in Robertson-
%alker or Kasner metrics only.

On the contrary for the minimal renormalization the
equation which relates R and m is (cf. Refs. 8 and 26)

r 'I

m'G «-'+ )+«-' —»R= —lnM . (5.3)
m' 2

In this case, in order to have a self-consistent solution the
mass of the field must satisfy

The result of the analysis depends on the renormalization
that we adopt.

Let us suppose that we write the metric as

ds =a (rI)( —di) +dx +dy +dz ),
a(g) =1+5(i)),
5(q) =0, r) (go .

(6.1)

We will first treat the massless case in which we can see
how the different results appear. In this case if we use the
minimal renormalization procedure we have
{T„„)""'"=0 and the Minkowski space remains stable
as in the classical case. On the contrary if we study the
same problem using t'he usual Hadamard renormalization
method the result is that ( T„„)""H' =P„„(m=0). If we
write the (0,0) component of this equation we obtain the
expression

HH =,H4 , H—+, (H' 6H—H)+—

k=, , k'= — 6a+2P+ a. ,
IC 1

2880m 2880m

(6.2)

where an overdot denotes d/dt.
As it was noted in Ref. 29 (see also Ref. 30) the Min-

kowski space is an unstable solution of this equation [in a
phase space (H,H ) diagram we can see that all the trajec-
tories that pass through H =0 must satisfy H=O and
then the oscillations around the Minkowski space are not
allowed]. This point is not clear in the literature where
the Minkowski space is seen as a stable solution of (6.2)
[for example in Refs. 22 and 31 this conclusion is ob-
tained linearizing Eq. (6.2) in a wrong way].

Thus the Mikowski space turns out to be stable or un-
stable (in the massless case) if we use one renormalization
or the other. This fact shows again that the two renor-
malizations are physically different.

The same problem has been studied for the massive case
(see Refs. 27 and 28) but we think that the results present-
ed in those papers could be erroneous (including ours). In
both articles authors study the stability of the Minkowski
space using the Einstein equation for the trace which is
one order higher than the one for the (0,0) component.
The stability behavior should be studied using the lowest-
order equation. Otherwise we are not sure that the solu-
tions we obtained are solutions for all Einstein equations
(in fact, the same problem appears when we study the
Minkowski stability classically). For the minimal renor-
malization it is proved that the trace equation and the (00)
equation give the same result, i.e., that Minkowski space
is unstable if the mass is bigger than a threshold mass
[EM0 &288m (Refs. 32 and 33)]. But with the Ha-
damard renormalization the analysis is rather complicated
if we work with the (0,0) component (we will discuss this
problem elsewhere). However, these considerations are
sufficient in order to show the physical inequivalence of
the two renormalizations.

The behavior of the fluctuations around the de Sitter
solution is an interesting problem. The result again de-
pends on the renormalization procedure that we adopted.
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With the minimal renormalization approach the result is
that if the mass of the scalar field is higher than mo the
de Sitter solution exists and is stable under global confor-
mal fluctuations of the metric. With the Hadamard ap-
proach the de Sitter solution exists for every value of the
mass and its stability depends only on the value of the
coefficients a and P of (2.28) (at least in the massless
case).

press his appreciation for the hospitality of the Physics
Department of the Universite Libre de Bruxelles where
this work was partially done.

APPENDIX

VII. CONCLUSIONS

%e have studied two renormalizations using a common
language. %'e have established their virtues and problems.
We have reached the conclusion that the two renormaliza-
tions are physically different because they yield a different
behavior in several physical problems. %e cannot tell
which one is the "good" renormalization. Nevertheless
we can foresee that we will obtain different scenarios for
the early Universe if we use one or the other renormaliza-
tion. Thus a close study of the primordial phases in the
Universe evolution critically dependent on the choice of
the renormalization scheme, will eventually allow us to
solve this problem in the near future.
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The vacuum-polarization tensor can be written as

288m P»„—m——G»„

—~ ['"H»„+ ,'g»„(R—6R»—Rs»)] . (A 1)

If we work in a Robertson-Walker (spatially fiat) metric
this tensor can be expressed as

288(hr Poo ———30m a&+3P& —3'+ 6Ps+6P&,

28802PJ ———,'g J[—30m (ai —2a2)+15Pi

—3Hz —6Ps —12P4—6Ps]

ai —H, aq———R /6,
2

g9~ =A~, ~2=CX2, ~3=CX~O.'2,

P4=H~» Ps=~2

where an overdot denotes d /dt.
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