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%e study the quantum vacuum definition for spin- 2 fields in a Robertson-+alker universe using

the coincidence of a local property (singularity structure of the De%itt-Schwinger kernel) and a glo-

bal property (energy minimization) and we obtain two kinds of vacua: strong and weak (which coin-

cide with the energy minimization vacuum). The density of particles created during the expansion

of the Universe between two weak vacua is found to be finite. However, we prove that the energy-

momentum tensor vacuum expectation value is nonrenormalizable.

I. INTRODUCTION

In quantum field theory in curved spacetime, the prob-
lem of the definition of a quantum state and the deriva-
tion of a renormahzable energy-momentum tensor vacu-
um expectation value (VEV} to be used as the source of
the semiclassical Einstein equation have not yet found a
satisfactory solution. '

The first point has been studied by several authors.
In a series of papers, Castagnino et al. '0 'i proposed a
criterion for the definition of a vacuum state based on the
coincidence of a local property [singular structure of the
kernel Gi ——( Ip(x},1t(x') I )] and a global property (ener-

gy minimization}, leading to the definition of two kinds of
vacua: weak and strong. For scalar fields, they showed
that the density of particles created during the expansion
of the Universe between two weak vacua is finite and the
energy-momentum tensor VEV is renormalizable. '0"'3
In the case of massive spin-1 fields, the results are similar
for transverse-polarization modes. '

In order to study the generality of the above results,
this work is devoted to the study of vacuum-state defini-
tion and energy-momentum tensor VEV renormalization
for the case of spin- —,

' fields in Robertson-Walker metrics
with a spatially fiat section. We prove that the density of
particles created is finite through the computation of the
Bogoliubov transformation coefficients between the basis
defined by weak vacuum in the considered times. We also
show that the energy-momentum VEV is nonrenormaliz-
able. This result is in agreement with the one obtained by
Najmi and Ottewill in Ref. 8. They studied the vacuum
state definition for spin- —, fields using the energy-
minimization criterion and proved that the energy-
momentum tensor VEV is nonrenormalizable because the
singular structure of the commutation function
( [f(x),g(x')] ) does not have the Hadamard form.

In Sec. II, a brief Dirac-equation generalization to
curved spacetime is presented and the adiabatic solution
in the Robertson-Walker metric is found.

In Sec. III the spinorial field is quantized and the densi-
ty of particles created between two times is calculated as a
function of Bogoliubov transformation coefficients.
Energy-minimization Cauchy data are also calculated.

In Sec. IV the cases in which it is possible to define

weak and strong vacua are determined and the density of
particles created between two weak vacua is computed.

In Sec. V the energy-momentum tensor renormalization
is studied, and finally in Sec. VI the conclusions are
presented.

ap(x}
V „(x)=-

ax~

is a set of four vector fields called vierbein. '~ Note that
the label a refers to the local inertial frame, associated
with the normal coordinates g~, while p is associated with
the general coordinate system x". %'e adopt the conven-
tion that labels from the beginning of the greek alphabet
refer to the former, and those from the end refer to the
latter.

The covariant derivative of a spinor field 1( is given by

(2.2)

(2.3)

where o& is the spinorial affine connection

o„=—,X ~V "Vp „
with

(2.4)

(2.5)

Iy I denotes a set of constant Dirac matrices satisfying
the usual anticommutation relations

(2.6)

Then, the Lagrangian density for a spin- —,
' field in

curved spacetime is given by

II. DIRAC EQUATION: FORMALISM

In this section we shall briefly develop the formalism of
the Dirac equation in curved spacetime. First, we intro-
duce at each spacetime point X a set of locally inertial
coordinates Pz. In terms of P~ the metric at X is simply

In any noninertial coordinate system, the metric is
related to g ~by

g„„(x)=V„(x)V~„(x)g p, (2.1)

where
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W(x) =&—g I —,
'

[QI "V„P (—V„f)1"P] m—~I, (2.7)

where

where H =a/a is the Hubble constant. Inserting (2.19) in
Eq. (2.12), this can be written as

(2.8)
(I '();+ —,HI —m)g(x) =0 . (2.20)

are the curved-spacetime analogs of Dirac matrices, and
satisfy the anticommutation relations

To solve it, we shall follow Ref. 16, using the separa-
tion of variables given by

I I ",I "I=—2g"" . (2.9) f(x)= f),(t)e'" *,
(2na) ~ (2.21)

g is the Dirac adjoint field, defined by

with

(2.10)
where fi,(t) is a four-component column matrix.

Substituting (2.21) into (2.20}, we obtain the following
differential equation for fi, (t):

P= i y— (2.11) y f),(t)+i yf i(t) —mf), (t) =0 . (2.22)

Variation of the action with respect to g yields the co-
variant Dirac equation

(I &V~ —m)Q(x) =0 . (2.12)

The internal product between two Dirac equation solu-
tions is defined by

(A (I()2)=i fx4)l ) 42~tr" (2.13)

which is Hermitian and does not depend on the Cauchy
surface X where the integration is carried out. 's

The energy-momentum tensor for the spin- —,
' field is

defined by

A priori, f),(t) could be any set of four functions of time
satisfying (2.22). However, it is well known that every
solution of the Dirac equation is also a solution of the
Klein-Gordon equation with a D'Alambert operator de-
fined by CI= —V;V'+ —,R, where 8 is the curvature sca-
lar. ' Because of the particular representation of Dirac
matrices we have chosen, when 0 is applied to fi, (t), two
independent differential equations arise: one must be sa-
tisfied by the first two components of fi, (t) and the other
by the remaining two. Then, without loss of generality we
can propose for fi,(t}a two-independent-variable function

2 5S V~ M
v —g Sg)'" detV 5V "

= ——,
' [ QI („V„)P+—(V(),g)I „)g] . (2.14)

Ai, exp i f Qkdt

+gexp i f Aptit
(2.23)

0
0 1

7 ='Vo=E
1 0

where cri are the Pauli

0 1 01=10'u2= i

matrices

—i 1

0 ' 3 0

0 o~
(2.15)

J

(2.16)

We shall use the following representation for the Dirac
matrices:

where A|, and Bq are two-component column matrices,
depending only on the momentum k, while Qk and Ak
are arbitrary complex functions of time, depending on the
momentum modulus.

So, replacing (2.23) into (2.22) we obtain a lineal alge-
braic homogeneous equation system:

kg
Op+ m ——'0'

Q

fi, (t) =0 . (2.24)

In this work we shall deal with a spatially fiat
Robertson-%alker universe, characterized by the space-
time interval The nontrivial solution is given by

ds 2=dt 2 a( t)(dx +dy +—dz ) .

Choosing the vierbein given by

(2.17)
(Qk+ m }(Ak—m) =k la (2.25)

V ()
——1, V'; =a, (2.18)

I =y, I'=a '(t)y',

OO
——0, OE ———,HI I E,

(2.19a)

(2.19b)

and the other elements equal to zero, we obtain that gen-
eralized Dirac matrices (2.8), and the spinorial affine con-
nections (2.4) take the form

Inserting this condition into (2.24), we obtain two in-
dependent solutions. As a complete base of Dirac equa-
tion solutions must consist of four spinors; two more spi-
nors must be found. We shall obtain them using the fol-
lowing property of the Dirac equation: If f),(t) is a solu-
tion of equation (2.22}, y2f' i,(t) is too. The demonstra-
tion follows immediately from conjugating Eq. (2.22) and
using anticommutation rules (2.6).
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It is interesting to note that even if in the Dirac equa-
tion (2.22), the electric charge does not appear explicitly
(we do not consider the interaction with the electromag-
netic field), we can call the former property charge conju-
gation' ' because in spatially flat Robertson-Walker
metric, it satisfies the usual properties which define it in

flat spacetime, '

However, if we consider more general metrics, where it
is not possible to use separation of variables, the preceding
demonstration fails to identify this property with charge
conjugation.

The solution base obtained can be written as

0k+m
Qk+Ak

' 1/2

k o

a(Qk+m)

exp —t f Akdt,
—&kx

(2tra) ~i (2.26a)

—k~g
'

Q„'+m '" a«k+m)

k+Ak

exp i f akdt
—Ik.xe(2~a)'" (2.26b)

where A,k ——ReAk. These spinors have been normalized according to the internal product (2.13).
However, spinors (2.26) are a formal solution; in order that they be solutions of the Dirac equation, the functions Qt,

and Ak must satisfy the following differential equations:

iQk Qk +iH—(Qk+m)+iuk =0,
t Ak Ak2+iH(A—k

—m)+iud ——0,
(2.27a)

(2.27b)

k 2

wk = +ma2 (2.27c)

In fact, only one of them is necessary, because the other function can be obtained using expression (2.25).
It can easily be seen that Eqs. (2.27) admit a simple solution only in some particular cases, as when we consider a

massless field or a static universe. Nevertheless, it is possible to develop a solution of (2.27} in a power series of the
metric and its derivatives, i.e., the adiabatic solution, which up to second order results in

~(2), . 8 m m R 1 m m 0 1m 1m 5m
Ok =+WI, 1+7 + + 2 2 2 3 4Wk 2wk 2Wk 6 Wk 4Wk 4Wk Wk 8 Wk 2 Wk 8 Wk

(2.29a)

Ak = +Wk 1+1(2) . H
Wk

r

m m R 1
+ + 2 +

2Wk 2Wk 6 Wk

m m 0 1m 1m 5m
4Wk 4Wk Wk 8 Wk 2 Wk 8 Wk

(2.29b)

Note that in the flat-spacetime limit, spinors (2.26)
reduce to the usual base, ' as the solution of Eqs. (2.27)
have the limit Qk ——Ak =iuk, so that we can identify gi",

with spinors characterizing particles with both spin pro-
jections and 1(i,

' with the corresponding antiparticle ones.
In this way, associating

where the similarity with the flat-spacetime Dirac field is
clear.

Finally it is convenient to state the charge-conjugation
property mathematically, ' as we shall use it later. %e
define

0 0 0 1

2 4
(2.30) 0 0 —1 0

C —y2 —0 1 0 0, C =1. (2.32)

we can expand the field as

P(x, t) = g g [bi, ,ui, ,(x, t)+di„ug, (x,t)],
+s k

P(x, t) = g g [bi„,ui„(x,t)+di„ui„(x,t)],
(2.31}

A=(Wi Pi' A' 4~), (2.33)

If we consider a matrix Pi„whose columns are the spi-
nors (2.26) ordered as
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it can be shown that the following property is valid:

(2.34)

and the matrix

) 6 ) 6 ) 6 ) r( )

4'k '=(haik' 4'ik' Ak' Ak'» (3.6)

Cgk ——P 'k, Cgk ——g'*k . (2.35}

If it is developed for each column, the transformation
of the spinors under charge conjugation is obtained:

so that (3.4) can be written as

7p jG
(3 7)

These relations are similar to those obtained in flat-
spacetime case.

III. QUANTIZATION OF THE DIRAC FIELD

Until now we have made a purely classic study of the
Dirac equation. However, as our main interest is the par-
ticle creation effect due to the expansion of the universe,
it is necessary to quantize the Dirac field. To do that, we
transform into operato'rs the coefficients in expansion
(2.31) and adopt the usual anticommutation rules:

I bk„bk, I =5„5(k—k'},
(3.1)

Idk„dk, I =5 5(k—k'),

and all other combination of operators anticommute, bk,
and dk, are particle and antiparticle creation operators
and bk, and dk, are the corresponding annihilation
operators.

As in an expanding Universe, there is no invariance
under time translations, the creation and annihilation
operators are time dependent.

The vacuum state associated to a given spinor base is
defined by

bk 10),=0, d„'10),=0, Vk (3.2)

and the corresponding Pock space can be constructed as
in Minkowski spacetime.

If we define the vacuum state at time vo I0), , it will

not be annihilated by annihilation operators defined at
time v:

bk I
0), &0, dk I

0),,&0 . (3.3)

In the general case in which we choose a base (()k satis-
fying the Cauchy data Ilk on a surface X; it is possible to
calculate the density of particles created in the interval
(~o,r) as a function of the Universe evolution a(t), its
derivatives, and the Cauchy data IIk. This is achieved by

expanding the Dirac field in the bases ((tk and pk, defined

by the Cauchy data IIk and IIk', respectively, with the cor-
responding creation and annihilation particle operators as-
sociated to each Cauchy surface:

&G &O 'G &G &G &G~ ~G &G~

(tk (('ikti ik+02kti2k+(('3kti3( —kl+'AIP4( —k) ~

(t'k 0 iktt ik +4'2k~ 2k + (t'3k' ~3( —k) +04k+ 4 —k)

(3.4}

In order to simplify the notation, we introduce the
column operator

On the other hand, the base pk can be expressed as a
linear combination of spinors (2.26):

Pk(x, t) =1(k(x, t)A k, (3.8)

As pk and pk are two complete solution bases of the
Dirac equation, there is a "Bogoliubov" transformation
which relates them:

0k=0k'ak(&o &) (3.10)

The matrix transformation ak(~0, ~) can be calculated
using (3.8}, (3.9), and (3.10}:

'Gt
ak(~o, r) =IIk Pk(x, ro)gk(x, v)IIk . (3.11)

We see that matrix ak(ro, v) depends on the Cauchy
data in X ' and X' and on the evolution a(t) and its
derivatives evaluated in vo and ~.

The matrix ak(ro, ~) has two very important properties:
(a) It is unitary as it transforms an orthonormal base in
another orthonormal base

—1 .Ak=Qk (3.12)

(b) the charge conjugation fixes some relations between
the coefficients of the matrix ak. It can be proved from
(3.10) and (2.33) that

CO,kC=O,'' k . (3.13)

Developing this expression, we obtain the following re-
lations that reduce the number of independent elements of
ak

O 41k 14( —k)~ 42k 13( —k) ~

31k +24( —k)& 32k +23( —k) &

21k 34( —k) +22k 33( —k)
lf

+11k 44( —k) 42k 43( —k)

(3.13}

Property (a) is valid for any metric and property (b) fol-
lows when it is possible to define the charge-conjugation
operation with property (2.33).

Now, we can deduce the relation between the creation
and annihilation at times ~o and v, replacing the Bogo-
liubov transformation (3.10) in (3.7)

where Ak is a matrix constituted by all the coefficients of
the transformation. It can be calculated in terms of Cau-

chy data IIk by inverting expression (3.8):

2k=/k(x, r)llk . (3.9)

~2k

Q 3(

04(

(3.5)

t f 0
ak =ak(ro, ~)ak . (3.14)

Using this relation, we can compute the density of par-
ticles and antiparticles created by an expanding Universe
in the interval (io, r) If the vacuum .state is defined with
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the Cauchy data in vo, then

=
I
II»I

I

'+
I Iz~is I

'

,,& o
I &zi, I

o &,,= I ~zz~ I

'+
I ~~zs I

'

~ & o
I &Is I

o &. = 1~4z~ I

'+ 1~3m I

'

, &o
I &~i, I 0&,,= I iz4is I

'+
I
I 3lk I

'

(3.15)

where relations (3.13) have been used for the last two.
From (3.15), we see that the creation of particles is due

to the matrix elements not in the diagonal blocks, i.e.,
those which mix particles and antiparticles. Note also
that

,,& o
I
x'I„

I
o),,=,,(o I x4„ I

o).. .

,,(0 I
zvz'„10)„,=,,(0 I

x,„ I 0), .
(3.16)

TIN ik; QI"f In'——/ . —

Replacing (2.31) and (3.1) in (3.18) we obtain

(3.18)

&0
I TOO

I
o& = Q g ( —ik;u„, l'u„, —mu„, u„, ) .

+s k
(3.19)

Note that only antiparticles contribute to the VEV.
Actually, we are searching the state that minimizes

(0
I Too I

0)"". However, the quantity that must be sub-
tracted from (01 Tuu I

0) to renormalize it is a local quan-
tity, independent of

I 0) . So, (01 Tuo I
0 ) and

(0
I TOO I

0) " will have the same minimum. ' The ex-
pression that must be minimized results from replacing
spinors (2.26) into (3.19):

So, particle-antiparticle pairs with opposite spin projec-
tions are created.

In order to compute explicitly the density of particles
created (3.15), we must know the Cauchy data which de-
fine the vacuum state and we need to determine the spinor
base (2.26), taking some solution of system (2.27). As it is
a generic base, we can choose the adiabatic one, i.e., ob-
tained from replacing the series (2.29) into (2.26).

In respect to Cauchy data, we can take the adiabatic
development up to a given order; so particle creation be-
gins in the next adiabatic order. There are also other cri-
teria to define the Cauchy data. In this work, following
several authors, ' ' we shall consider those which
minimize the energy vacuum expectation value defined by

«IE
I
» = f, «I T„.I

0&"'"n"d~",

where dX" is the surface element of the Cauchy surface
X, ri ls a ilIlltaI'y vt&tor normal to X and (01 Tpv I

o}
means the energy-momentum tensor VEV is renormal-
ized.

We shall now find the vacuum state which minimize
the energy VEV. The Tuu of energy momentum tensor
(2.14) is

The Cauchy data, Qk and Ak, which minimize this
quantity are

&k =+k &k =+~a .ME ME (3.21)

It can be noticed that they agree with those obtained by
Najmi and Ottewill using another formalism.

Replacing solution (3.21) into (3.20), we obtain the ener-
gy VEV

(0
I
E

I 0) = —+ 2tuk,
k

where the minus sign has been chosen in (3.21) in order
that 1t I", be positive-frequency solutions and
negative-frequency solutions.

(3,22)

IV. VACUUM STATE AND PARTICLE PRODUCTION

In a series of works, Castagnino et al. ' ' introduce
the idea of the vacuum state definition using the coin-
cidence of a local property (singular structure of DeWitt-
Schwinger kernel) with a global property (energy minimi-
zation). This idea is motivated in the Einstein semiclassi-
cal equation, since its source, the energy-momentum ten-
sor, is generally composed by terms corresponding to par-
ticle creation depending on

I aq I, which are global by
nature (they depend on Cauchy data given in a surface X)
and by local terms resulting from its renormalization. 'z
These local terms depend on the metric and its derivatives

up to fourth adiabatic order. So, the local property is
necessary in order that the vacuum expectation value of
energy-momentum tensor be renormalizable. The usual
renormalization technique consists in subtracting the
energy-momentum tensor (Tq~)Ds constructed with the
DeWitt-Schwinger kernel G I (x,x') up to fourth adiabat-
ic order from the energy-momentum tensor computed us-

ing the kernel Gi(x,x'), corresponding to vacuum state

I
o&, i.e.,

&o
I
T„(x)

I

o&""=&0
I T„.«)

I
o& —

& T„.&DS (4»
Then, if in the coincidence limit x —+x', G, (x,x')

behaves like Gi (x,x') the vacuum expectation value ofDS

energy-momentum tensor turns out to be renormalizable.
As this is a necessary condition, we shall demand that lo-
cal property must be satisfied in these terms 'As t.he
basis corresponding to the kernel GI (x,x') up to fourth
adiabatic order can be constructed using the adiabatic
basis, 's the Cauchy data for Qq and Ak functions defined
in (2.23) must be those given by the adiabatic expansion
(2.29).

As Gi(x,x') can approximate GI (x,x') in the limit
x~x' in different ways, local property is not enough to
define the vacuum state. The reason is that only analytic
terms in the geodesic distance between x and x' in
GI (x,x') can be computed; and as it is known nonana-
lytic terms are also necessary to define the vacuum
state. ' Therefore, we need another property in order to19,2

complete the vacuum determination. So, we introduce a
global property, the minimization of the energy, a global
quantity. In agreement with Refs. 8 and 10, the quantity
we have taken as energy in (3.17) is

(olT Io)=
a g Ak+Qk

(3.20) &o IH I
o&""=f, «I T

I
(4.2)
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where X is a Cauchy surface (i.e., the "time" associated to
the defined vacuum). The vacuum state

~
0)x related to

surface X will be the quantum state that minimizes the
energy (4.2).

In preceding work it was shown that there is a
good vacuum state in every case where it is possible to
find a quantum state that satisfies simultaneously local
and global properties. The way in which this coincidence
is satisfied leads to the definition of different kinds of va-
cua: weak vacuum, when developing one or both proper-
ties for high energies (in powers of w& ') we have coin-
cidence to the lower order, and strong vacuum, when both
properties are satisfied for all adiabatic orders.

Many interesting properties have been proved following
these ideas: between two weak vacua the density of parti-
cles created and the energy density are finite for spin-0
particles in arbitrary metrics depending on time. ' lt has
also been found that the only strong vacua are trivial Kil-
hng vacuum and the conformal vacuum, which are gen-
erally accepted in the literature. The spectrum of created
particles between two strong vacua is an exponentially
damped one, "as it approaches zero faster than any power
of k in the limit k~ ao. For massive spin-1 fields in a
spatially flat Robertson-Walker metric the results are
similar to the spin-0 case for the transverse-polarization
modes, ' while for the longitudinal-polarization mode it

I

was necessary to impose the condition ci =0 in the times
where the density of created particles and the energy den-
sity are evaluated in order to obtain finite results.

In this work we obtain a different kind of result in the
case of spin- —,

' particles. The Cauchy data corresponding
to local property (2.29) are an adiabatic expansion, while
those corresponding to global property (3.21) coincide in
its exact expression with the first adiabatic order of (2.29).
Therefore, in this case we can define a weak vacuum for
any universe evolution, and it is defined by the energy
minimization Cauchy data. It is interesting to note that
in the scalar case, ' this criterion for weak vacuum defini-
tion in arbitrary metrics led to the Robertson-Walker
metrics and fixed the metric coupling constant at the
value g= —,'. This value is known as "conformal cou-
pling" because the Klein-Gordon equation turns out to be
invariant under conformal transformations in the non-
massive case. Similarly, for spin- —, fields, the coincidence
of local and global properties to the lowest order do not
impose any condition; this is related to the fact that the
Dirac equation is always invariant under conformal
transformations in the m =0 case.

In order to estimate the density of particles created be-
tween two weak vacua, we need to calculate the aq matrix
elements appearing in (3.15). They can be obtained using
expression (3.11). The block of interest results:

r

31k +32k k3 k
' 1/2

(wk'+m)(Qk' +m)(wk+m)(Qk+m)

1 1

T0 To
AI, +m 0+m

k T

I+ 2, , exp i k t exp —i mkdt
a, (Qk+m)(wk+m) . 'o . . 'o

1 1 1

a' Q~'+ m mI', +m a, (Qk+m)(wk +m)
exp —i kt expi +~t

(4.3)

As to zero adiabatic order, Qk and Ak coincide with wk [see (2.29)] all the aq elements in (4.3) turn out to be null and
therefore there is no particle creation to the lowest order. Considering the following adiabatic order, we obtain for N&i„
N2I„NIi„and N4g that

k m,,(0 i
X„'

i 0)„,=
16(wk') (wk) (wI', +m) (wk +m)

H (r)(wk m)(wl,
' m)w—k'—

~(r)(wk)'

T

exp —2i ukdt
0

(wk')

H(vp) (wk m)(wk+m)wk-
a (rp)

(4.4)

(4.5)

So, for high energies it behaves as

,,(0 ( &„~0), - izk'.
Then, the density of particles created N (~p, v )

= J (0
~

Ni',
~
0),,d k results finite.

In this calculus we have used only the first nontrivial
order of the adiabatic expansion; nevertheless the results
are valid in general, because the upper adiabatic orders
have higher k powers in the denominator, and so they add
fin1te terlils.



34 QUANTUM VACUUM DEFINITION FOR SPIN-I' FIELDS IN. . .

%ith respect to energy density, we shall see that it is re-
normalizable in those evolutions with H(ro) =0, but the
energy-momentum tensor results are nonrenormalizable,
as we shall see in the next section.

Finally, we shall study the condition for the existence
of a strong vacuum. To have a strong vacuum, Cauchy
data (2.29) must coincide with (3.21) to every adiabatic or-
der. As the expression (3.21) coincides with the first order
of (2.29), we deduce that we shall be able to define a
strong vacuum only when all the upper orders in (2.29) are
null.

It can be seen that the conditions that satisfy this re-
striction are as follows.

(a) m =0. In this case, Dirac s equation is invariant
under conformal transformations. The resulting vacuum
is known as conformal vacuum and is usually accepted in
the literature as the adequate vacuum in the nonmassive
case.

(b) a =const. In the static case we have the trivial Kil-
ling vacuum.

Only in these two cases we can define a strong vacuum
continuously for all time. In both cases the vacuum ob-
tained is the generally accepted one and is in complete
agreement with the strong vacuum obtained for spin 0
and spin 1 using this criterion.

We can also study the existence of a strong vacuum at a
given time. This can be useful when we work with in-out
models, so it is particularly interesting to investigate this
point in the remote future ( t~ ao ) and in the limit t~O
In both cases we shall restrict the study to evolutions
a(t)=t (for O~a ~1, the most relevant cosmological

evolutions are included) and we shall study the conditions
resulting for the exponent.

(1) Remote future: It can be seen that if the exponent
a~O, then all the upper adiabatic terms in (2.29) ap-
proach zero in the limit t~ 00.

(2) Singularity: In the hmit t~0, all the upper adiabat-
ic terms in (2.29) became null if a & 1.

Consequently, we conclude that for a ) 1, we can calcu-
late the density of particles created from t =0 to t = oo

between two strong vacua, and it is finite. In addition, its
spectrum is exponentially damped as can be seen in Ref.
10.

V. RENORMALIZATION

In this section we shall study if the weak vacuum, de-
fined through energy minimization gives an energy-
momentum tensor VEV renormalizable using the usual
techniques. As it is the Einstein equation source, its re-
normalizability is a very interesting point:

Gp +Agq„+aHq'„'+I3H~„' ——( Tq„)"". (5.1)

First, we shall find the expression of
(0

~
T„„(x,r)

~
0), . The vacuum state associated with the

base which minimizes the energy in ro,
~
0), , is in general

a particle state at time r, we shall call it
~
nk, n k; ),. As

we are studying fermions, for a given value of k and s, the
particle and antiparticle numbers, n and n', can only take
the values 0 or 1. Using (2.31) and (3.18), the Too com-
ponent, energy density results:

( nk gnk',
I Too

~
nk, nk', ) = g Nk g( —ikjttk, I Qk g

—mttk gitk, )+ g ( —Nk, + 1)(—tkJUk, I Uk, —mUk, Uk, ) .
k, s k, s

Substituting the spinors (2.26) and the energy minimization conditions (3.21) we obtain

(5.2)

& nk. ink, s I Too Ink, ink, s )=, g(Nik+N2k+N3k+N4k)wk +2wk (5.3)
(2ma)

where Nki are the particle and antiparticle number operator VEV in the state
~
nk, nk, ), given by (4.4). The last term

which appears in (5.3) is (0
~

Too
~
0). The first term shows that each particle or antiparticle with mass m and momen-

tum k contributes to the energy with wk. Repeating the former calculation the other energy-momentum components we
obtain

1 k;2 1 k;, (0
~
T„(x,r)

~
0),,=. , g (Nik+N2k+N3k+N4k)

(2na) g ~k ~ g Nk

(5.4)

It is easy to see, substituting (4.4) in (5.3) and (5.4) that these quantities diverge. The divergent terms are

2 m H('ro)H(~) d k m H (7) d kdiv, ,&0~ T~(x,r)
~

0)„=— 3+ 3
(2m a) (2na)'4 o wk' (2na)'4 o wk3

'

div, (0
~
T;;(x,r)

~
0), =- m'H(ro)H(r) - d'k m2H2(r) I- d'k

3(2ira)' o a' wk (2~a)'l2 o wk' (2na)'l2 o wk3

(5.5a)

(5.5b)

It can be seen from (5.5) that the energy-momentum tensor VEV has quartic and logarithmic divergencies. The last
appear in two terms: one proportional to H (r) and another one proportional to H(r)H(ro). The latter can be eliminat-
ed when we consider evolutions with the initial condition H (ro) =0.

In order to see if expressions (5.5) are renormalizable, we shall use the adiabatic regularization scheme. ' We shall
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subtract from (5.5) the energy-momentum tensor VEV constructed with the fourth adiabatic order expansion of the fields
modes, so the renormalized quantities are

(5.6)

The symbol
~

indicates that only the terms up to fourth adiabatic order in (T„„)must be taken into account.
However, as it can be seen in (5.5), the divergences in ( T„„)correspond to terms up to second adiabatic order. So it is

enough to calculate (0' '
~
T„„(x)

~

0' ') ~, because we shall show that its divergences are not the same that which appear
in (5.5). And the remaining divergences corresponding to second adiabatic order cannot be canceled with terms corre-
sponding to &0'"

~
T„„(x)

~

O'4')'4'.

The Too component can be obtained by substituting (2.29) in (3.20):

Ptl(0' '~ Too ~0' ')
~

= —2 f d k wk+ —,
' f d k (take m—i)Hi(~)

(2na ) Nk

The divergent terms are

(5.7)

div&o'"iTooio"') i'=, -2 f d'k~1, + —.
' f d'k

(2m a) Nk
(5.8)

(5.9)

We see that the divergences in (5.5a) cancel those of (5.8} if we consider evolutions satisfying the condition H(v 0)=0.
(0'"'

~
T;;

~

0'"')
~

"can be obtained substituting the expansion (2.29) in the expression

&
(~) (~)) ~ ~ k' (+k++k'+2m)

(0 T [0 )i
a k'la2+(0k+m)(QI", '+m)

Up to second adiabatic order, the result is

&0"'~ T- ~0"') ~'= '
. ——f " f d'k—"+

(2ma) 3 iak a Nk Nk Nk Nk Wk

m 8
i (uk m)—

4 Nk'
(5.1D}

The divergent terms are

(0(2)
i
T

i
0(2))

i

& f f d3k
(2ma) 3 k a Nk' 4 Wk' 6

(5.11)

Comparing the expression (5.5b) and (5.11), we see that
even taking the condition H(ro)=D, the divergences do
not cancel exactly, but they differ in the quantity
——,'(Rl6) f d k(m hok). So, the energy-momentum
tensor VEV obtained with energy minimization criterion
is not renormalizable using the standard techniques.

This result is in agreement with that obtained by Najmi
and Ottewill, who worked with the singularity structure
of the energy minimization propagator G~( , xx)
= ( [QM (x ), /sr(x ') ]) and showed that the energy
momentum tensor trace has divergences which are not of
the same form as the Hadamard structure. They found
that the discrepant term is a logarithmic divergency pro-
portional to 8 /6, bke the one obtained in this work.

The alternative method used in this section for studying
the renormalizability of the energy-momentum tensor
leads to simpler calculation and gives the possibihty of a
direct generalization to the case of more complex metrics.

V'I. CONCLUSIONS

From the results obtained by the implementation of lo-
cal and global properties, we see that for any universe evo-
lution a (r) a weak vacuum can be defined and it coincides
with the one defined using energy minimization. On the
other hand, it is only possible to define a strong vacuum
in everytime in the nonmassive case (conformal vacuum)
and when a (t) =const (KiBing vacuum). In these eases,
the vacuum states obtained are the ones usually accepted
in the literature. We have also found some evolutions in
which it is possible to define a strong vacuum asymptoti-
cally in the future and in the singularity.

On the other hand, we have computed the Bogoliubov
transformation coefficients between two energy minimiza-
tion bases, and using them we have proved that the densi-
ty of particles created is finite.

Finally, we have calculated the energy-momentum ten-
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sor VEV with energy minimization Cauchy data and we
have proved that it is nonrenormalizable comparing its
divergences with those of (0' '~ T„„~O' ')

~

(adiabatic
regularization). This result shows that if we accept stan-
dard renormalization techniques, vacuum state definition
through the energy minimization requirement leads to
physical quantity expectation values in those states which
are not finite.
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