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%'e present approximate solutions to the equations of motion for a ray of light in the Kerr metric

which are correct up to and including second-order terms in I jr;„and a/r;„, where m and a are

the Kerr mass and spin, respectively, while r;„ is the distance of closest approach. %'e use these

expressions to investigate the multi-imaging aspect of the gravitational lens effect.

I. INTRODUCTION

The aim of this paper is to examine the effect that a ro-
tating black hole would have on the appearance of a dis-
tant object should it be interposed along the line of sight.
A single source has infinitely many images, consisting of
the direct rays, i.e., the ones that pass farthest from the
black hole and which are therefore least deviated, and the
rays which orbit the black hole, once, twice, etc., and then
reach the observer. Here we only concern ourselves with
the direct images as these are the ones which are most
likely to be observed since they are least deformed and
hence most intense. '

The equations of motion in the Kerr metric were de-
rived by Carter. 2 He did this in the Kerr-Newman coor-
dinate system. These equations have been transformed to
Boyer-Lindquist coordinates for simplicity by a number
of people including Wilkins and Bardeen. We use
Bardeen's version of the equations of motion which are
expressed as integrals which can be reduced to elliptic in-

tegrals, as our starting point. Unfortunately these prove
to be inconvenient to work with and computationally ex-
pensive. However, since the direct images have relatively
small deviations, we solve these equations up to and in-
cluding second-order terms in rn/r;, and a/r;„, where
tti and a are the Kerr mass and spin, respectively, while

r~, is the minimum value of r along the ray's path.
For most astronomical calculations these new equations

should suffice as even first-order corrections are difficult
enough to observe. The reason that our calculations in-
clude second-order terms is that spin comes in only at this
order, and our original interest was in the effect of spin.
Thus the effect of spin could be observable if the devia-
tion was sufficiently large that the second-order terms
give a significant contribution to the first-order terms.

In Sec. II we present and solve the equations of motion
up to and including second-order terms in I/r;, and
a/r;, . In Sec. III we indicate how these expressions may
be combined with numerical integration to get excellent
results for rays whose paths suffer relatively large devia-
tions. In Sec. IV we use the equations derived in Secs. II
and III to investigate the multi-imaging aspect of the
gravitational lens effect due to a rotating black hole.

II. SOLVING THE EQUATIONS OF MOTION

The form of the Kerr metrics in the Boyer-Lindquist
coordinates is given by

slil 8dsi=~dri+p2d8 + [a dt (r —+a )dttt]

where

(dt——a sill 8df )
p'

and

p =r +a cos8

h=r —2mr+a

The constants m and a are, respectively, the mass and
spin parameters of the Kerr metric with
m=fm

f
& /a /.

The equations of motion for a ray of light in the
Boyer-Lindquist coordinates (r, 8, ttt, t ) are

r dr 8 dg
(2)+[R(r)]'" +[8(8)]'" '

rr A, +2mr(a —A, ) s A, cot 8
+b,[R (r)]' +[$(8}]'

where

r r (r +a )+2amr(a —k)
dr

+b,[R (r)]
a 2cos~

+[0(8)]'

R(r)=r[r(r +a2}+2a rn] 4amrk-
—(r i—2mr )A,

2 —hg

8(8)=rl+a cos 8—A, cot 8 .

The parameters A, and rl are constants of the motion
which will be discussed later. The integrals are along the
path of motion.

Suppose a ray of light originates at the source with
coordinates (r„8„g„t,), passes by the black hole and ar-
rives at the observer's coordinates (r„8„$„t,). Along
this path the r coordinate ranges from r, to r;„, to r„
while 8 ranges from 8, to 8m;„or 8 through to 8,.
These are relevant integral paths. The sign of [R (r}]' is
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chosen to be positive if we are integrating from r to r,
and negative otherwise. Similarly the sign of [8(8)]'/2 is
taken to be positive if integrating from 8,, to 8, or 8,
and negative otherwise.

For large r, (r, g, p) can be thought of as spherical polar
coordinates. Converting these rectangular coordinates in
the usual way, define the observer to be at
(r, sing„0, r, cosg, ), i.e., set P, =0. Defiiung the tangent
to the ray at the observer to intersect the plane x =0 at
the point (O, a;,P;/sing, ), it can be shown that

tr„8„$,)
source

(r., a., y.)
observer

r, sin 8,$,2 2

sinB, +r,cos8, 8,

r ~8
(8)

s n0+ ocos8 l9

Here 8, means (d 8/dr )
~ „, and P, means

(dP/dr)
~
„„.Therefore with the aid of Eqs. (2) and (3)

' I/i [O(g ))i/2
+cos8o

r,

FIG. 1. The polar coordinates (r, g, p) are defined by the axis
of rotation. The a-P plane is perpendicular to the line passing
through (0,0)—the position of the black hole, and the observer.
Point (a;,P;) is the observed position of an image of the source,
while (a„p,) is the projected position of the source onto the a-p
plane along the line through the source and the observer. It can
be shown that lim 0(a;p;)=(a„p,). All projections are car-
ried out in the absence of the mass.

rn/(A, +v))'/ or a/(A, +r))'/ cj are real numbers, and
the summation is over all possible first- and second-order
terms. To obtain the coefficients, we evaluate R(r;„),
drop third- and higher-order terms, and then set the result
to zero to find that

l

s1619'
g 1

A + g
0

fo

[0(g )]i/2

[8(8 )]1/2
+cosg,

I'0

(g2+ )i/2 1
rn 3m

(&'+rj )'" 2(A,'+ rl )

+r, (P; +a; cos 8, )'/

[P; +a; +(r, P;cotg, ) ]'/— (12)

0

where the + sign is the sign of 8, and the approximation
excludes first and higher orders in rnrm;„ /r, . The
minimum value of r is determined by R(r). Since our
rays are not captured by the black hole, 8 (r) has four real
roots, the largest of which is r;„. Since for 8, =m./2 and
large r„a;= —A, and p; =+& rl, we expect for small de-
flections, r;„ to be of order (A, +rl)'/ . Thus, we solve
for r;„by supposing that

rm;„=(A, +rI)'/ 1+gcjx/
)

where x& «re the first- or second-order terms in

By definition a; and P; are the coordinates of the posi-
tion of the image projected along the tangent to the ray at
the observer onto the phne through the black hole and
normal to the line connecting it with the observer (see Fig.
1). They are observable quantities and are related to the
constants of the motion iL and rl, as can be seen from Eqs.
(9) and (10). In fact we can rearrange Eqs. (9) and (10) to
get l(, and rl as functions of a; and P;. We find that

—r, sinB, a;
[P;2+a +(r, —P;cotg ) ]'/

2am A,

(g2+ ~ )3/z
(13)

Since we are interested in the gravitational lens effects of
a black hole which has been interposed somewhere in be-
tween us and a distant luminous object, we have that
R {r)=r for r =r, and r =r, . From Eq. (13) onward =
will be taken to mean = up to and includinII second-order
terms in rn/(A, +tl)r' /zand a/(A, +rl)'/, as well as,
where relevant, first- and second-order terms in rm;„/r,
alid rmin/ro ~

From a computational viewpoint it is important to keep
track of the contributions to the integrals by the r;„/r,
and r ~/r, terms. These contributions become redun-
dant if they are less than the third-order terms in
rn/(k +rl)'/ and a/(A, +rl)'/, which is more probable
from a physical point of view. On the other hand, it is
useful to leave them in, so that we can check our expres-
sions in the hmit as rn, and therefore a, goes to zero.

Substituting {13)back into (5) we find that R(r;, )=0.
For the extreme Kerr black hole, a = rn, it is interesting to
note that in the special case where the ray of light stays in
the equatorial plane, P;=rl=0, and with A, =

~

A, ~, that
r;„=A, rn is indeed th—e exact solution for the distance
of closest approach, i.e., 8 (A, —rn) =0. This is surprising
as no such simple solutions for r;, exist in the
Schwarzschild case.

Now we are in a position to evaluate the left-hand side
of (2). With the above assumptions we have
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dr ~ dr rs +o
+[+(r)] "min [g (r)] r r

Defining x=r;„/r, f( x)= rl(I+ x )/(/i, +q a—), and we have

(A, —a) +g
k+q —a

x +x+1
x+1

2
min [g (r)]

2 1

(g2+ a 2)1/2 O

(1—x ) 1+ f(x)+ g(x)
rmin m111

2 dx a2 m 3'
2 2 1/2 2 1/2 2f g + 2g

(A, +q —a ) 0 (1—x ) 2r;„2r;„Sr;,
So by evaluating this integral

dr 1 3a 2g 15m 4m Sma A,

+[g (r)]1/2 (g2+~ a2)1/2 4(g2+~)2 4(g2+~) (g2+~)1/2 (g2+~)3/2
Ps + l 0

Next, we need to find the maximum or the minimum value that 8 takes along the ray s path. This we find by solving
e(8)=0. We find that

a
cos8min/max 1+ 2 2 (15)

2(A, +rl)

where the positive sign corresponds to cos8;„and the negative sign corresponds to cos8,„. Since

8, =+[8(8,)]' /[8 (r, )]'/ Eq. (10) implies, for sufficiently large r, or 8, =m /2, that the sign of P; determines wheth-

er 8 attained 8;„or8,„. If 13; is negative then 8 must have reached 8,„, otherwise, 8,„. Evaluating the right-hand

side of (2) we find that

18 1 a A,1+
+[(~)(8)]1/2 (g2+rl a2)1/2 2(g2+2))2 f do'

a g1+ cos cr
2(A, +rl)

1—,, ~+arctan 1+, , coto,
a 'g

(A, +rl —a )'/ 4(A, +rl) 4(A2+rl)2

2

+arctan 1+ 2 2 coto,
4(A,2+ rl )2

where a is defined by
1/2

a k
1 + 2 2

coscT,
+7/ 2(A,2+rl)2

and where the positive sign corresponds to the path where 6I attained 8, and the negative sign corresponds to the path
where 8 attained 8

Equating (14) and (16), and using (17) we find that
' 1/2

cos8, = —cos8, cos5+ sin5 —cos28,i'+~ (18)

15m m 4m . Srnal, 2 1/2 rs+ro
2 + —A, +'q

4 )1.2+q (g2+ q)'/2 (a2+ 11
)3/2 r, r.

The above equation is correct provided that (9, is not too close to 8;„or8, in particular, we must have that
pro E [ (

5 (,m. —
(
5

) ]. This ensures that the ray takes the 8,~8;,/, „~8, path, assumed above, as opposed to say the
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8x ~8min/max~8max/min~8o «8s ~8o paths.
Now we consider the P integral. Equation (3},with the assistance of (2), can be rewritten as

& a(2mr —aA ) s A d8df'+
+h[R(r)]'/ +sin 8[8(8)]'/

With a considerable amount of effort using methods employed above, it can be shown from evaluation of Eq. (20) that

2
' 1/2

4ma A,5csc 8o
+ +, 1+5cot8, csc8, 2

—cos 8,(12+rl )
'/2

(20)

(21)

where 5 is defined as above. Here it is the negative sign that corresponds to the path where 8 attained 8 and the posi-
tive sign for the 8;„path.

Finally we solve Eq. (4). Since the greatest contribution that the integral involving 8 can make is of second order, it
turns out that this contribution is independent of whether 8 attained 8;, or 8, and even 8, . In particular using the
same transformations as in the evaluation of the right-hand side of Eq. (2), it can be shown that

f 8 2 2-a cos8 d8 n ala
2

(22)
+[0(8)]i/2 2 (g2+)2/2

To solve the integral involving r in Eq. (4) we use the same transformations that we used to solve the left-hand side of
Eq. (2}, to get

r (r +a )+2amr(a —A, ) d
dmin 4am',

dp p +2m ln
h[R (r}]'/2 '

2&, r min

15711+
2~min

Qg 2m
. 3

2p min Pmln

~min

Therefore adding the integral from r;„
. 2

min 1 1
~s +~o +

2 l'g

to ro as well as Eq. (22},we find that

4rsro 15mm' 2m
. 2 +2m 1—

fmin 2~min ~min

r

~min 1 1+
2 rs ro

(23)

III. LARGE DEVIATIONS

From past experience with Schwarzschild black holes
we know that the deviation of a ray of light is small
whenever the ratio m /r, is small. In the Kerr case this
is still true; however, a new factor plays an important part
in the size of the deviation. Now the sign of X as well as
m/r;, determines the size of the deviation. This is most
evident in the equatorial plane as the effect of spin is most
apparent there. Assuming that a =

~

a ~, a positive A, cor-
responds to a ray traveling with the spin, which is there-
fore not as greatly deviated as the ray with negative A, ,
which corresponds to a ray traveling against the spin. As
a result, we find that the accuracy of our approximations
in the previous section depends on the sign of A,. This is
easily seen when substituting the approximate value for
r m into R (r}. We find that R(r;„}is much closer to 0
for positive A, than for negative A,. Similarly, any of the
integrals approximated above which have terms propor-
tional to A, are more accurate for positive I, than for nega-
tive A, . Fortunately the integrals involving {9 have A. ap-
pear as A, only, and furthermore, have higher-order terms
with integral powers of a /()i, +g). Thus the approxi-
mations of these integrals remain good for relatively high
ratios of mlrm;„and are independent of the sign of A, .

There is another more significant source of error which
comes in the evaluation of 5. The value 5 is obtained by
equating Eqs. (14) and (16) and setting 5 to be equal to the
sum of the arctangents. When these equations were

equated we saw that the "large" m/()t, +rl —a )' terms
canceled on both sides leaving us with a small result for 5.
Since the absolute error of Eq. (14) is of third order and is
particularly large for negative A, , the relative error in 5 can
easily become unacceptable. If this occurs then Eq. (14)
should be evaluated numerically, something which can be
done quickly using Gauss-Jacobi quadratures and even
quicker using the method of Elhay and Kautsky, ' where
successive approximations use nodes already used in pre-
vious approximations. Thus the new 5 becomes the nu-
merical integral minus the term proportional to ir of Eq.
(16), and then Eq. (18) may still be used to give remark-
ably good results.

In the evaluation of {(}, the integral containing r may
give poor results for negative A, . In this event evaluate the
integral numerically, add the result to Eq. (21) and replace
the4ma/(A, +g) termby (n/2)a A/(A, +21)

Another advantage of this technique is that we are no
longer limited to large values of r, and r, as these are ab-
sorbed in the nmnerical evaluation.

IV. NUMERICAL INVESTIGATION

%'e assume that our black hole is an extreme Kerr black
hole, i.e., ) a

~
=m. Without any loss of generality we

choose a =m and $,=0. The choice of 8, is not arbi-
trary. For simplicity and maximal effect of spin we take
8, =n./2. Equations (18) and (21) now home
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FIG. 2. Regions in which (a&,P;) correspond to sources whose

rays suffer "large" deviations. Bardeen's region is calculated by

setting 8, (r) =R(r)=0.

FIG. 4. Sources within these regions have two observable im-

ages, those not vrithin these regions have only one.

cos8, =+sin5
A'+~

' lj'2

(24)
r, r, sin8, sing,

Cts
r, —r, costI), sin8,

(27)

along the line through the source and the observer, see
Fig. 1. Thus

where

4m A,5
(go+ ri) '~ (25)

r, r, cos8,

ro —pg co+g s1118'
(28)

15m m 4m 8m A,

(g2+ )1/2
Ps7o

We next need to choose r„r„and m.
As stated earlier we are mainly interested in the effect

of spin. Since spin appears only at second order we re-
quire relatively large deflections. However, we project the
position of the source and the image onto the same plane.
So that the sources and their images will not be too far
apart we choose a relatively small value for r, . We also
take r, =r„as the deflection is maximal if the deflecting
object is between the source and the observer. The follow-
ing diagrams (cf. Bray ) were generated by choosing
m =a= —,

' and r, =r, =14.
Having chosen all the necessary parameters we proceed

as follows. The plane of Fig. 1, which is parametrized by
a and P, is considered as a fine grid. Each point of the
grid is a possible position of an image. This point (a;,P;)
is used to define A, and g via Eqs. (11) and (12). These are
then put into Eqs. (24) and (25) which yield 8, and P, .
The position of the source is projected onto this plane

It is not difficult to show that in the limit as m ~0 the
source position and its image positions are the same, as
expected.

This calculation is done for every point of the grid
which is not "too far away" from the central point (0,0).
In particular, the following diagrams were generated with

ll«i Pi)ll & 10.
Points (a&,P;) in the neighborhood of (0,0) correspond

to rays which suffer "large" deflections. These calcula-
tions were done using the numerical integration technique
described in Sec. III. In the diagrams we defined a ray to
have a large deflection if either

~ ~(n&, P;)—(a„P,)
~ ~

& 8, or
if the angle 8 does not vary as 8,~8;„& -+8, . The
latter condition assigns large deflections to rays which or-
bit the black hole or are captured by the black hole. Fig-
ure 2 shows the regions in which the rays suffer large de-
viations for both the Kerr and Schwarzschild black holes.
The Kerr region is comparable with the region due to the
black hole being illuminated by an extended light source
whose angular size is larger than that of the black hole
(see Bardeen ).

A point (a;,P;) is considered to be an observable image
of a source if the ray did not suffer a large deflection.
This definition of an observable image is borne out by Fig.
3, where the image corresponding to rays with large de-
flections is quite small and therefore is less likely to be ob-
served. Figure 4 shows the distribution of the number of
observable images as a function of the position of the
source. For contrast we compare the results for the Kerr
black hole with those for the Schwarzschild black hole.

FIG. 3. Images of a source near the boundary of the Kerr re-

gion of Fig. 4. Note that the image on the left-hand side, which
corresponds to rays with small deviations, is amplified. On the
other hand, the image on the right-hand side, which corresponds
to rays with large deviations, is diminiShe, and therefore is less
likely to be observed.

ACKNOW LEDGMENTS

The author wishes to thank P. Szekeres for some valu-
able discussions, as well as S. Elhay for his assistance with
numerical integration techniques. The author is also
grateful to the Computing Centre of the University of
Adelaide for the use of their facilities.



372 IGOR BRAY 34

'C. T. Cunningham and J. M. Bardeen, Astrophys. J. 183, 237
(1973).

~B. Carter, Phys. Rev. 174, 1559 (1968).
3D. C. %'ilkins, Phys. Rev. D 5, 814 (1972}.
~J. M. Bardeen, in Black Holes, edited by C. DeVA'tt and B. S.

De%'itt (Gordon and Breach„New York, 1973).
5S. Eihay and J. Kautsky, Aust. Comput. Sri. Commun. 6, 15-1

(1984).
6I. Bray, Mon. Not. R. Astron. Soc. 208, 511 (1984).


