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Homogeneous cosmos of Weyssenhoff fluid in Einstein-Gartan space
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The role played by the spin of matter in homogeneous Godel-type universes is investigated. It is

shown that the region of parametrization m &40 for solutions of Einstein s equations with fluid

and fields (as obtained by Rebouqas and Tiomno) can be extended io rn~ ~ 4Q', in Einstein-Cartan

space. Properties of the solutions are examined and a comparison with related works is made.

I. INTRODUCTION

In recent years an increasing interest has been focused
on spacetiines of the Godel type. 'z These spaces have the
line element written in cylindrical coordinates as

ds =(dt Hdrtr) —dr D—distr
—dz—

where D and H are functions of r alone. For homogene-
ous spaces these functions must satisfy

D"/D =m = —p =const,

H'/D =20 =const,
(2)

a prime meaning d/dr. Although the possibility exists
for —oo &m &+ ao, solutions of Einstein's equations in
the presence of fluids and fields were obtained only for
mi&40z. The aim of this paper is to find physical
sources for homogeneous Godel-type spaces in the region
m &40; preliminary and essential results are contained
in Ref. 3.

Three nonequivalent classes of homogeneous solutions
are possible for Eqs. (2) (Ref. 2), according to whether
D"/D is a positive (m ), zero, or a negative constant
( —p'):

closed timelike curves (not geodesics); in other words, it
allows for the possibility of an observer to make a round
trip and, under proper acceleration, return to the starting
point at an instant prior to the moment of departure.
Such a violation of causality is made possible essentially
because the ordinarily negative metric coefficient g&&(r)
assumes positive values for some range of values of r in
the Godel universe. Indeed, when mG ——20G &0 the
coefficient g~~

H2 D——is —negative only inside the
cylindrical region enclosing the z axis and having radius
rG given by sinh (QGro/V 2)=1. The cylindrical central
region r & rG-1.25/

~
QG

~

is called the causal region of
the Godel universe, while the region lying beyond r =re
is called noncausal.

An examination of the occurrence of causal and non-
causal regions in the homogeneous Godel-type universes
of all three classes given by Eqs. (3)—(5) seems
worthwhile.

In the trigonometric class (5) we have g~~ &0 whenever
4tan (p,r/2) &p /0 . A causal region is then the cylin-
dric central region with radius R given by the minimal
positive root of

R =(2/p )arctan(p, /
~

20
~
);

(+ ): D =m 'sinh(mr),
(3)

such a causal region is surrounded by a noncausal cyhn-
dric shell with thickness

H=(40/m )sinh (mr/2),

(0): D =r, H =Qr

( —): D=p, 'sin(p, r),
H=(40/p )sin (p, r/2) .

(4)

(5)

It is customary to take the hyperbolic expressions (3) as
standard expressions for the metric coefficients of homo-
geneous Godel-type universes and say that the second
class (algebraic) corresponds to m =0, while the third
class (trigonometric) corresponds to negative m (or imag-
inary m =i@,with p real). In all classes 0 is a real num-
ber, and represents the uniform angular velocity, or rota-
tion of the material. %'ithout loss of generality, the real
constants m in (3) and p in (5) are both taken as positive.

The prototype of homogeneous universes with rigid ro-
tation is Godel's cosmos, which in our notation corre-
sponds to the ease mG ——2QG ~ 0. Godel's universe per-
mits a remarkable possibility: namely, the existence of

T =2m/p —2R .

Causal and noncausal cylindric shells with thickness 2R
and T, respectively, are next encountered going outwards
in an alternate infinite sequence. Novello and Rebouqas
proposed rotating fluids with anisotropic pressures as pos-
sible sources for these universes.

The models of the algebraic class (4) are simpler to
describe: now g&&

———(1 Qr )r, so th—e central
cylinder with radius r =

~

0
~

is causal while the entire
outer space is noncausal. A physical source for this
spacetime was discovered by Som and Raychaudhuri,
who called it "critical."

Finally, the universe models of the hyperbohc class (3)
have g~ &0 whenever 2tanh(mr/2) &m/~ 0 ~. Since
tanh(x) is bounded to 1 for positive x, two subclasses can
be distinguished according to whether m is less or greater
than (20). In the first subclass (m & j20() the situa-
tion is similar to that of the preceding algebraic class:
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there is a central cylindric causal region with radius

r, =(2/m)arctanh(m/~ 2Q
~
), 0(m (4Q, (8)

surrounded by the outer noncausal space which extends to
the radial infinity; for Q fixed we remark that the radius
(8) of the causal region increases with m, and becomes in-
finite when m =

~

2Q
~
. In the other subclass

(m &
~

2Q
~

) the situation is identical to that of
m = ~2Q ~: the entire space is causal in the section
t =const.

Rebouqas and Tiomno investigated the influence of
electromagnetic and massless scalar fields on the width of
the causal region of hyperbolic universes, Eqs. (1) and (3);
they found that a sourceless electromagnetic field induces
a reduction of the ratio m/

~
Q ~, which implies contrac-

tion of the causal region, then going to imaginary m's

through m =0. On the contrary, the sourceless scalar
field with uniform gradient added to the rotating fluid
contributes to enlarge the causal region; in the limit where
only the cosmological constant and the scalar field are
present, then the condition m =

~

2Q
~

is at most reached
and the noncausal region is exactly excluded, as said be-
fore.

Looking for physical realizations of the situation
mz ~4Q, we investigatixl the role played by the spin of
matter in the disposition of causal/noncausal regions in
homogeneous Godel-type metrics of all three classes, Eqs.
(3)—(5), and hereby report our findings. To incorporate
the spin into a geometry of spacetime we took for granted
the Einstein-Cartan-Sciama-Kibble theory, ' and used
Hehl's approach. In this theory a Lagrangian is postu-
lated which takes into account the spin properties of
matter and fields in a twofold way: {i) in the spin depen-
dence of the Lagrangian of matter and nongravitational
fields themselves; (ii) in the form of the connection I"„"„by
imposing the existence of an antisymmetric tensor part
I"~"„„)usually interpreted as a torsion as it appears as a tor-
sion term in the covariant derivatives. The variation of
I {„„1leads to a relation of it with the spin quantities. For
a Weyssenhoff fluid with sinn density s&, and four-
velocity p at a point this is I I„„)——s„„u~.

II. %EYSSENHOFF FLUID AS A SOURCE
OF GODEL- TYPE MODELS

In Weyssenhoff fluids the antisymmetric spin density
s„„and the four-velocity ui' satisfy s„„u"=0. The
dynamics of these fluids was extensively studied by
Halbwachs, under the special relativistic Lagrangian for-
malism.

In general relativity, a Lagrangian for spinning fluids
was proposed by Ray and Smalley, ' who found, aside
from the usual (zero spin) energy momentum of perfect
fluids,

zo'p»=(E+7)"pu» pS'p»

u u V~(u~s»p —u»s~y) +V~(s~»u ) =0 . (10)

In the same spirit as above, Eq. (10) is the equation of
motion for the spin density s„„ in the presence of the
gravitational field. Forgetting the interpretation of the
manifold as a spacetime with metric g„„and torsion I („„)
which lead to Eqs. (9) and (10), we may consider Eq. (9) as
the Einstein equation for a Riemannian space with metric
g„„generated by a source formed by a fluid endowed with
spin which, besides being acted upon by the gravitational
field g&„[Eq. (10)), is itself a source of g&„[Eq. (9)). We
shall analyze the properties of spacetime homogeneous
Godel-type solutions of these equations in the light of
the Raychaudhuri- Thakurta —Rebouqas- Tiomno classifi-
cation. '

We assume the fiuid to be at rest in the standard refer-
ence system of Eqs. (1) and (3), so we set u =50; we also
assume that the spin is parallel to the z axis (only the
component s„~ survives) and that it is homogeneous
(s,p "~ is constant), so we set

s„~{r)=sD(r), s =const .

With these assumptions all terms in Eq. (10) are zero,
while the independent field equations in (9) are

G,'=3Q —m =p —s —4sQ,

6,"=——0 = —p+s2+2sQ,

(12)

(13)

purely metrical approach, while Amorim' further en-
riched the fluid by endowing it with electric charge and
magnetic dipole moment.

The Einstein-Cartan theory of gravitation is an at-
tempt to relate the torsion S&„i' of spacetime to the spin
density s„„of the material content. For Weyssenhoff
fluids this relation has been obtained as S„„~=s„„ui'by a
large number of authors and in a variety of methods's z'

(see, however, Refs. 22—25 and the references contained
therein for alternative descriptions of spinning fluids).

In the present paper we use the semiclassical model of a
spin fluid, as prescribed by Halbwachs, Hehl, von der
Heyde, and Kerlick, Arkuszewski, Kopczynski, and Po-
nomariev, ' and Prasanna. ' Such a model has been wide-
ly used in systems with given spacetime symmetries, "
despite an inconvenience it bears. ~

Consider a Weyssenhoff fiuid with density p, isotropic
pressure p, four-velocity u, and spin density s ~, satisfy-
ing u~s p ——0; the symmetric Einstein-Cartan field equa-
tions with Sn 6 =c = 1 are'

G"„=(p+p s~s ii—)u"u„—(p —,'s is fi)P„'—

+(g ~+ u u ~)V~(u "s„p+u ~i'p),

where 6 is the Riemannian Einstein tensor and V'~ is the
Riemannian covariant derivative. Also from Ref. 13, the
antisymmetric equations for the Weyssenhoff fiuid may
be written as

a metrical contribution linear in the spin density, 6,'=—0 —m = —p+s (14)
cT~»= —(g +u u )(s~u»+s~»u~) p ~

Vaidya, Bedran, and Som" obtained solutions for fluids
with sourceless electromagnetic fields under this elegant,

where the terms in sQ arose from V~(u~„s„~ ) in Eq. (9).
As already shown in Ref. 3, Eqs. (12)—(14) are still

valid for inhomogeneous Godel-type spaces; then the
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quantities s, m, and 0 depend on the radius r, submitted
to one constraint s +Q =const.

Returning to the present case of homogeneous spaces,
we have five constants (p,p, s,m, Q) satisfying three rela-
tions only; as only two parameters are independent, we
write the soluti. on as

p=p =(Q+s), m =2Q(Q+s) . (15)

One immediately sees from (15) that the density p is
non-negative, and that we are dealing with stiff matter
(p=p), as for the Godel universe with pressure and the
cosmological constant A=O (Ref. 2). One also sees that
all positive and negative values for m are possible
( —00 &m &+00), the sign of m depending solely on
the value of the ratio s /Q (thus m ~

&& 0 if s /Q &&—1).

pG=pG=QG (mG =2QG ) .2 2 2 (16)

In a gedanken operation we now impress spin s into the
matter of the Godel universe, with the proviso that the
density p of the fluid is kept unaltered in the process
(p=pG). From (15), we see that necessarily also the pres-
sure p and the combination 0+s =QG are held constant
in the process. The metric parameters Q and mi= —p~
then depend on the fixed value of QG and the variable
value of the spin s according to

Q=QG —s, m =—p =2QG(QG —s), QG=coilst .

(17)

For future reference we rewrite the critical radius (8) now
in terms of fixed QG and variable s, for 0 & m i & 4Qi,

r, =
~

v 2/QG
~
(1—s/QG) '~ arccoth(2 —2s/QG)'~,

(18)

while the widths 2R and T of the causal and noncausal
regions, Eqs. (6) and (7), are written, now for
pl = —p (0,2= 2

2R =
i
2v 2/QG

i
( —1+s/QG)

)& arccot( —2+ 2s/QG )' (19)

7 = ~2v 2/Q, ~( 1+x/Q, )-'"—
&( arctan( —2+ 2s /QG )

' (20)

where the minimal positive values of the functions arccot
and arctan are to be taken.

The plan of presentation of our results is as follows: we
take Godel's universe and insert spin s initially with the
same sign as the Godel rotation AG, and describe the evo-
lution of the system while the ratio s/QG increases from

III. EFFECT OF THE INTRODUCTION
OF SPIN %PITH FIXED 0+s

To get a clear picture of the influence of the spin upon
the metrics we shall compare our system containing spin
with a similar, but spinless system: namely, Godel s
cosmos. In the spirit of the present paper, the ingredient
of Godel's universe is taken as spinless stiff matter with
uniform rotation QG, satisfying

the value zero to + oo. Next we start again from Godel's
solution and introduce spin, but now with the opposite
sign; we describe the system while the negative ratio
s/QG then changes from zero to —oo.

A. Case s/QG &0

Godel's universe has a central, causal region with radius
rG-1.25

~
QG

~

'. Upon insertion of small spin s with
s/QG & 0 the rotation

~

Q
~

diminishes, m & 0 decreases
[see Eq. (17)], and the radius r, of the central causal re-
gion increases [see Eq. (18)].

For increasing s/QG &0 the region of causality is en-
larged more and more, until it becomes infinite when
s/QG ———,'. At this stage the rotation Q has been reduced
to QG/2, half of the initial value, being equal to s. Also
p=p =QG . This is the geometrical system (m~=4Q2)
first found by Rebouqas and Tiomnoi as generated by a
scalar field in empty space, with cosmological constant
A&0. Here, however, there is a material background with
a non-null vorticity, while in that case it is not simple to
justify that the vorticity calculated from the field of ve-
locities u ~=50 represents a real rotation of the Universe.

We proceed, increasing the ratio s/QG & —,'; the rotation

~

Q
~

continues to decrease, and the space remains causal
in all its radial extent.

When s/QG ——1 the rotation Q is zero, and we have

p=p =s . As already remarked by Arkuszewski,
Kopczynski, and Ponornariev, ' the combinations

p ff—p —s and p, rr =p —s behave as effective energy
density and effective pressure, respectively. Universes of
this type, with the ingredients p,p, s alone, were studied by
Prasanna " when both p,ff and p,ff vanish, the spacetime
is Riemann-Christoffel flat. In a sense, Einstein-Cartan
models obtained from Einstein solutions solely with this
correspondence are trivial; the models considered in this
paper are nontrivial due to the sQ terms in Eqs. (12) and
(13). To our knowledge, these are the only nontrivial solu-
tions found so far.

We next increase s/QG to a value a little larger than 1;
the rotation Q is small, and its sign is now opposite that
of s and QG. This is a region of transition from the m
to the p, case: from (17) we see that m is negative now,
so we prefer to use p, =2QG(s —QG) and the correspond-
ing trigonometric expressions (5}. The central causal re-
gion is a cylinder with a large radius, R
=ir/[2QG(s —QG}]'ri. The cylinder is surrounded by a
much thinner noncausal region, with thickness
T=4~ QG

~

', going outwards, successive causal regions
with large thickness 2R alternating with noncausal re-
gions with thickness T are encountered.

With increasing values of s/QG & 1 the values of 8 and
T both decrease, but R diminishes faster than T; in other
words, the predominance of the causal regions over the
noncausal ones diminishes. The rotation

~

Q
~

is increas-
ing, with Q having a sign opposite to that of the spin s.
When s/Qg ———', the widths 2R and T become equal
( =n/~ QG

~
), whi. le for s/QG & —', the noncausal regions

predominate (T &2R). As always, the central region is
causal.

Finally, for large positive values of s/QG the rotation
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B. Case s/Qg ~0

In the same spirit we now return to the spinless Godel
universe with rotation QG, and introduce spin s now with
sign opposite to that of QG. From (17) one sees that m
is positive for all values of the negative ratio s/QG, so the
hyperbolic expressions (3) for the metric coefficients are
used; in all circumstances we have a central causal region
with radius r, given by (18), while the outer space is non-
causal and extends to the radial infinity.

When s/QG ——0 we have Godel s universe, with critical
radius =1.25

~
QG

~

'; for QG fixed and ever decreasing
values of the negative ratio s/QG the radius r, of the sin-
gle causal region shrinks monotonically. For large values
of negative s/QG it behaves as ~0~ '=~s

~

', thus
coinciding with the radius R of the thin central causal re-
gion encountered when s/QG~+ 00. Such a coincidence
is not accidental: with QG fixed, the geometries of the
two limiting cases s/QG~+ 00 both tend to one and the
same spacetime, the "critical" solution mentioned by Som
and Raychaudhuri, Here, however, this solution is pro-
duced in absence of electromagnetic field and the fluid
has spin.

IV. EFFECT OF THE INTRODUCTION
OF SPIN WITH 0 FIXED

The remark made at the end of the preceding section is
made clearer if we study the evolution of the spacetime as
we insert spin s into Godel s universe while keeping in-
variant the rotation 0 (instead of keeping unaltered the
combination 0+s =QG as we have done so far): with
0=const we rewrite (15) preferably as

p=p =0 (1+s/0)
mi=20 (1+s/0) = —p

(21)

and now study the variation of p=@ and of m = —p as
functions of s/0.

A. Case s/0&0

We start again from Godel's universe, for which s =0,
p=p=Q, m =20, r, =1.25~0~ ', and insert spin s
initially with sign opposite to that of the rotation 0; in
the process, the value of the rotation 0 will be kept in-
variant. From Eq. (21), for decreasing values of the nega-
tive ratio —1 & s/0 & 0, the density and pressure (p=@)
diminish; also the value of positive m diminishes. %'ith
0 flxed and positive rn decreasing, Eq. (8) says that the
central causal region shrinks along this phase of the pro-
cess; the region is surrounded by an infinite noncausal
space.

From Eq. (21), when s/0 reaches the value —1, then
m vamshes, as rn the Som-Raychaudhurl solution; the
radius of the single causal region is reduced to

~

0
~

~
Q

~

also becomes large, and 0 has a sign opposite to that
of QG and of large s. The noncausal regions are now
thin, T=~2n. /(sQG)'~, but the causal regions are much
thinner, R=

~

s
~

'. This completes the description of
systems with positive ratio s/QG.

[see Eq. (8)], and the noncausal space still extends to the
radial infinity. However, the density and pressure now
vanish, so the spin alone would be responsible for the
geemetry of spacetime. The possibility of a universe en-
dowed with spin solely is somewhat disturbing; a spinless,
electrically charged material has been proposed as a possi-
ble source for this "critical" spacetime.

%e now arrive to the point we wanted to discuss: the
abrupt transition from the case s/QG ———ao to the case
s/QG ——+ ao for QG finite and fixed. In the present se-
quence of situations with 0 fixed, it corresponds not to an
abrupt, but to a smooth transition from the case
s/0= —1+a into the case s/0= —1 —e (with e small
and positive). This is a region of transition from the m
case to the p case. When s/0= —1 —e the density and
pressure in Eq. (21) are small, p=p =e Qz, and the cen-
tral causal region has radius (1—e/6)

~

0
~

' as seen
from Eq. (6) with p =2e/0 . However, the previously
infinite noncausal space now has a finite, though large
thickness [Eq. (7)]: T=m(2!e)'~

~

0
~

'. Beyond the
noncausal region, new causal regions =2

~

0
~

' thick and
noncausal regions =4.4/

~
~eQ

~

thick now develop in al-
ternation.

For completeness, we also describe the evolution of the
spacetime while s/0 decreases from —1 to —ao. With
the rotation 0 fixed and the ratio s/0 decreasing from
—1 to —ao, the density and pressure (21) both increase
from zero to infinity. The value of p, = —m also in-
creases from zero to infinity. The thickness 2R of the
causal regions (6) and T of the noncausal regions (7) both
decrease, and both tend to zero when s/0~ —Oo. How-
ever, T decreases as fast as

~
s/0

~

', while 2R decreases
simply as

~

s/0
~

'~; as a consequence, the entire space
tends to be causal in the limit s/0~ —oo.

B. Case s/Q&0

With the rotation 0 finite and fixed, the transition
from the case s/0= —oo to the case s/0=+ ao again
seems abrupt, since it demands that the spin s changes
from an infinite value to the infinity of the opposite sign.
However, the cases s/0=+ oo correspond to one and the
same spacetiine, if one assumes that 0 vanishes instead of
that s diverges. For vanishing 0 we have p, p, and s as
sole physical variables, a problem studied by Prasanna
the universe with 0=0, p=p =s is fiat, in the sense that
the corresponding Riemann-Christoffel tensor is null.
This is easily seen from Eq. (15); m~ vanishes when s is
finite and 0=0; with m and 0 both null, the line element
(1),(4) is Minkowskian in cylindrical coordinates. Actual-
ly the result is trivial, as p,ff

——p,~——0=0; thus this
universe is "effectively" empty.

%e now describe the system while the ratio s/Q de-
creases from + co to 1, with the rotation 0 finite and
fixed. The density and pressure (15) decrease from 00 to
p=p =40; the parameter rn (15) is positive and )40,
so the entire space is causal [see Eq. (8)].

The transition froin the case s/0=1 to the case
s/0=1 —e (with e positive and small) is interesting: a
noncausal region develops from the radial infinity until
r, —

~
20

~

'Inc '. The density and pressure are continu-
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ous in the transition.
Finally, when s/0 changes from 1 to zero, with the ro-

tation 0 finite and fixed, the quantities p=p decrease
monotonically from 4Q to 0 . The value of m is posi-

tive, but is less than 4Q and is decreasing; as a conse-

quence, the radius r, of the central causal cylinder shrinks

to rG-1.25
~

0
~

', the critical radius of Godel's
universe. %e have thus returned to the original spinless
situation (s =0}.

V. FINAL REMARKS

The present paper is a specialization of a previous work
of ours, valid for inhomogeneous spaces; such a speciali-
zation, with restriction to homogeneous Godel-type
spaces, makes easier the analysis of the gravitational pecu-

liarities of the intrinsic spin.
In a recent paper, Bedran, Vaidya, and Som con-

sidered a metric similar to (1), but with g =g~ = G—(r)
instead of —1; their spacetime is thus not of the Godel
type. In the liiniting case of vanishing pressure and spin
they recover van Stockum's solution, while setting 6 =1
the system becomes of the Godel type and the equations
of Ref. 3 are reobtained.

Still more recently, Smalley applied the self-consistent
formulation' of the spin fluid to the Godel cosmology.
Differently from us and from Bedran, Vaidya, and Som,
however, he inserted the spin without changing the
metric. In the process, he found that the cosmological
constant became slightly more negative, and that the mag-
nitude of the angular velocity remained unaltered but the
sense of rotation was flipped 180'.
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