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A formulation of multipole moments generalizing that of Thorne is proposed for the stationary,
vacuum region of spacetime surrounding a source of gravity, without assuming asymptotic flatness.
In this formalism, such a region of spacetime is characterized by four sets of moments, the internal

mass and current moments (those of the internal source) and the external mass and current moments

(those of the external universe}, which are read out from a de Donder coordinate expansion of the
metric density. These moments uniquely determine the vacuum region of spacetime. The interac-
tions between a gravitating body and an external gravitational field can be described in terms of
these moments, in c1ose analogy with Newtonian theory. A derivation, using the vacuum Einstein
equation alone, is given of the laws of force and torque for an isolated body acted on by an external
field. These laws generalize the results of Thorne and Hartle and of Zhang.

I. INTRODUCTION

The concept of multipole moments for curved space-
time is significant in many ways: Through analogy with
Newtonian systems, multipole moments can provide im-
portant physical insights into solutions of the Einstein
equations. Also, they provide a way to extract the infor-
mation carried in a metric. Indeed, in the stationary
spacetimes we are studying, we will show that the mul-

tipole moments contain all the information about the vac-
uum region of spacetime; the entire metric can be con-
structed from the multipole moments; in the words of
Beig, ' the multipole moments act as a "complete set of
variables for the state space. " In view of the success of
solution-generating methods for the stationary axisym-
metric vacuum Einstein equations, a scheme using the
multipole moments to classify and understand these solu-
tions is clearly desirable. Besides their use in analyzing
given metrics, multipole moments are also useful in con-
structing model spacetimes; we will give explicit examples
of this in this paper. Multipole moments are also valuable
in studying the structure of spatial infinity; indeed, the
Geroch-Hansen definition of multipole moments for sta-
tionary asymptotically flat spacetimes is intimately tied to
the structure of spatial infinity.

Many efforts have been made to define the multipole
moments of stationary asymptotically flat spacetimes.
The recent works essentially concentrate on two ap-
proaches. The first approach works in the conformal
completion of the 3-manifold of timelike Killing trajec-
tories and defines the multipole moments as symmetric
trace-free tensors at the point corresponding to spatial in-
finity. This approach was initiated by Geroch and Han-
sen and continued by many authors. ' The beauty of the
resulting definition is that it is completely geometric. The
only possible arbitrariness in determining the moments
comes from the choice of the conformal factor. But
Geroch (see also Beig') has shown that by introducing
into the definition terms involving the Ricci tensor of the
conformal space, an arbitrary change of the conformal

factor affects the multipole moments in exactly the same
way as translation affects the Newtonian moments. More
importantly, it has been shown that the moments so de-
fined have many of the properties which we would like
multipole moments to have.

By contrast, the second approach defines multipole mo-
ments as the coefficients of certain coordinate expansions
of certain metric functions in physical spacetime using
specially chosen coordinates;7' this generalizes the usual
procedure of reading the mass and angular momentum
from the metric. Thorne's formalism7 expands the metric
in asymptotically Cartesian and mass centered (ACMC)
coordinates, whereas Beig and Simon expand the Hansen
potentials~ in similar coordinates. At first sight it appears
that these formalisms have the unpleasant feature of de-
pending crucially on the choice of coordinates. Both the
Thorne formalism and the Beig-Simon formalism have
solved this problem by showing that the moments so de-
fined are independent of the coordinate system so long as
one stays within the chosen class of coordinates, that they
have a number of desirable properties, and that, in fact,
they coincide with the geometrically defined Geroch-
Hansen moments. ' Compared with the Geroch-Hansen
approach, these formalisms are closely tied to physical
spacetime, in the sense that (1) one can read the moments
diro:tly from the metric of physical spacetime as the coef-
ficients of a coordinate expansion, and (2) the formalisms
are fortified with algorithins which in a straightforward
manner reconstruct the metric from the multipole mo-
ments in terms of a series expansion. Hence they are rath-
er convenient for application to physical problems.
Thorne s formalism is also tied to gravitational wave gen-
eration, and has been used in a number of astrophysical
studies. ' On the other hand, the development of the
metric into series expansions creates problems: (1) Given
a metric that is a solution to the Einstein equation, is the
expansion in those specially chosen coordinates always
convergent? (2) Given a set of multipoles, under what
conditions will the expansions of the constructed metric
converge~ These questions have not been thoroughly in-
vestigated in either the Thorne formalism or the Beig-
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Simon formalism.
All of the formalisms discussed above deal only with

bodies in asymptotically flat spacetime. Can one also
analyze a system consisting of an isolated body in an
externally imposed gravitational field in terms of mul-

tipole moments'? This is the question that we want to
answer in this paper. Surely in Newtonian gravitation
such a system is well described in terms of multipole mo-
ments: from the expansion of the potential 4(V 4=0) in
positive and negative powers of the radial coordinate r
one can read off a set of internal multipole moments
characterizing the structure of the central body ( and its
gravitational field} and a set of external multipole mo-
ments characterizing the imposed external field (and its
sources). Then the gravitational interaction can be
described as follows. (i) The external l-pole field will dis-
tort the central body, and hence induce a change in the
internal / moment. (ii) The external I-pole field will cou-
ple to the internal / moment (both intrinsic and induced)
to produce a torque on the body, if their principal axes are
not aligned. (iii) The external (i + 1)-pole field coupled to
the internal l moment will produce an acceleration of the
body.

%'hat we wish to show in this paper is that the external
and internal multipole moments of a stationary vacuum
spacetime can be defined by a natural extension of
Thorne s formalism, and that the gravitational interaction
of an isolated body with an external universe can be set in
exactly the same language in general relativity as in
Newtonian theory. In the case of an asymptotically flat,
empty external universe (vanishing external moments), the
internal moments of the analysis reduce to those of
Thorne; and in the case of no internal body (vanishing
internal moments), the external moments are closely relat-
ed to those of Zhang.

The spirit of our analysis is rather different from that
of the recent work by Thorne and Hartle' and Zhang'
on the grav'itational fields of isolated bodies interacting
with an external universe. Briefly, they permit the gravi-
tational field to be slowly varying with time, whereas we
insist that it be stationary (except in Sec. III and Appen-
dix B below where we generalize to slow time variations);
they restrict attention to the lowest few multipole mo-
ments, whereas we consider all moments; and they regard
the moments as defined only up to an uncertainty deter-
mined by the effects of coupling of the body to the exter-
nal universe, whereas our moments are defined precisely.
%e will discuss these issues at greater length in the body
of this paper.

In Sec. II we make precise the kind of system that we
want to study and propose a definition of the multipole
moments for such systems; and we describe an algorithm
which enables us to construct the metric from a given set
of multipole moments (basically a repetition of Thorne's
algorithm for the asymptotically fiat case}. In Sec. III we
first investigate the constraints on the moments in gen-
erating a stationary vacuum spacetime, then we relax the
exact stationary condition to allow for slow time varia-
tion, and obtain the force and torque laws in terms of the
multipole moments. In Sec. IV we summarize and discuss
the results.

II. MVI.TIPOI.E MOMENTS FOR STATIONARY
SYSTEMS

We begin with a brief discussion of the systems to
which our formalism applies and the situation where this
formalism is most useful. We consider a stationary sys-
tem with a gravitating body located in an external
universe. Surrounding the world tube of the body (the re-
gion of spacetime which either has T&„+0 or is inside a
horizon) there is a region of spacetime satisfying the vac-
uum Einstein equations. Call this region D. %e shall de-
fine our multipole moinents in terms of coordinate expan-
sions of the metric density, which is a solution of the vac-
uum equations in D. It does not matter whether D ex-
tends to spatial infinity or not; in particular, no asymptotic
flatness is assumed. Indeed, if we assume the spacetime to
be asymptotically fiat, then our external multipole mo-
ments will vanish, and our internal moments wi11 trivially
reduce to those of Thorne. Where there are gravitational
fields generated by external sources, we will have an addi-
tional set of moments, the external moments, to character-
ize the structure of the vacuum spacetime. Also, we need
not make explicitly the assumption that the gravitational
field is weak in D. However, in general the concept of a
multipole expansion of a field is useful only when the
field is smooth enough that it can be characterized by the
first few terms of the expansion and the higher multipole
moments can be neglected. In the same sense, the mul-
tipole expansion that we shall construct will be useful
mainly for an "isolated" body in an external universe, for
which the multipole expansion converges rapidly. We use
the word "isolated" in the sense of Thorne and Hartle
the external material is distant enough that it generates a
Riemann curvature tensor near the central body having
length scales 9P, W &&L,M where 9F is the radius of cur-
vature of external Riemann tensor, W is the inhomo-
geneity scale of external Riemann tensor, M is the mass of
the central body, and L is the length scale (size) of the
central body. (The separation into external and internal
quantities will be made precise in Sec. III8. For the dis-
cussion here precise separation is not necessary. ) For such
a body there exists a "buffer" zone in the vacuum region
D, at a typical radius r with (M,L) &gr &g(&,9F) In.
this buffer region, the multipole expansion typically is
dominated by the first few moments, and the multipole
formalism is most useful here.

A. The construction of the stationary vacuum metric
in terms of muitipole moments

Following Thorne, our formalism is built on a de
Donder coordinate system. %'e assume that there is a sin-
gle coordinate system which satisfies the de Donder gauge
condition in the vacuum region D (though the origin of
the coordinate may lie outside D}. The structure of the
spacetime in this vacuum region is given by a tensor field
h I'", which is related to the metric density by

~a@ + ggap ap i ap

rt ~=diag( —1, 1, 1, 1), g =det(g„„) .
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HhaP = haP—oo+haP JJ
—1——6'WaP,

and the de Donder coordinate condition is

(22)

From g„„it is straightforward to determine h "",and vice
versa, provided the metric is nondegenerate. %e assume
that the metric satisfies this requirement throughout the
paper. In the following discussion we sometimes make no
differentiation between g„„and Ii ""and refer to both of
them loosely as the metric. The Einstein equation in de
Donder coordinates reads

Here a,P=0, 1,2, 3;i,j=1,2, 3; commas denote partial
derivatives; and indices on all quantities except g"" and
g„„are raised and lowered with the flat metric ql p (which
permits us to interchange upper and lower spatial indices
according to convenience). The summation convention is
used not only when one index is up and the other down,
but also for latin (spatial) indices when both are down.
The 8'

p in (2.2) is given by

W p=( —g)r'p '+ (h „„jip" hp—„„h""). (2.4)

~00,0 ~Oj,j~ ~j0,0 ~jk, k (2 3) Here tap"' is the Landau-Lifshitz pseudotensor:

g)&ap(LL) gap ~imp gai
gpss + &gapg 8Jv

gpss

(g"—g„.sp",,8"',.+gp"g„.() ",,{)"',.)+g~g "pc",.()p",,

The integrability condition for Eqs. (2.2) and (2.3) will be
particularly important in later discussion; it is the Bianchi
identity, which in de Donder coordinates read

e"~.=o.
We shall now describe a systematic way of constructing

the solution h„„ofthe Einstein and gauge equations (2.2)
and (2.3), in terms of expansions. This is essentially a re-
petition of the analysis in Ref. 7, except for the contribu-
tions coming from the "external field. " We present this
construction in detail here since the formulas will be re-
ferred to frequently later.

%e start by writing
(2.10)=—=timelike Killing vector .

axo
"p=XG'&'p

p=1
(2.7)

Hence all BIBt give zero. For p =1 we have, from (2.8)
and (2.9),

where G is a "nonlinearity" bookkeeping parameter,
whose numerical value can be set to one. Then for each
order in p, we have, from Eqs. (2.2) and (2.3),

1

XaP, kk =0 (2.11)

(2.12)

+-,'(2g"gP" gP—g~)(2g„g, g, —g-)8"',.T(",& ~ (2.5)

where WP p is a polynomial in y~q„(q &p) and its first two
derivatives. These can be regarded as the defining equa-
tions for yp&„. Throughout this paper we consider only the
solutions of the Einstein equation which admit such
"post-Minkowskian" expansions. ' This assumption
amounts to requiring the metric to be obtainable to arbi-
trary accuracy by iterating the linearized solution. It is
physically reasonable to expect that in the weak-field
buffer region, all solutions admit such an expansion.

Next we specialize to the stationary situation. It is
clear that we can always choose de Donder coordinates
such that

700,0 VOJ',j ~ 7j 0,0 Vjk, k ~
P. P.

OyP p
—16n8'P p(y——~q„;q

. &p),

(2.8)

(29)
The general solution to Eq. (2.11) is, in symmetric trace-
frce (STF) tensor form

00 1 00

Uoo=g As'A, ~A,
—+g ~'A,XA,

1=0 1=0r
(2.13)

OJ X Jpq pAi
l=r

+ Jpq pAi

00 1+ g @jAi i~Ai
1=1

++jAi i+Ai i
+ g

1=0

1
~APjAi +~AiX( jAi }r

L

(2.14)

00 1UJ=Q &ij@'A/A, —, +&ij@"AP'A,
1=0

00
1+g ~ijAi 2dAi &

+~ijAi 2XAi
1=2

00 1 00 1+g &pq(j +i}PA i)qA +~pq(j +i}PAi PqAi 2 P g ~Ai &(ii)j}Ai
&

+~Ai &(ixj}Ai
1=2 /=1

00 1 00 1+g SPAi &~ (i )pjq} i&qAi+u pAi &~pq(iXj}qA &i+ g ~AidijAi +~Ai+ijAi
1=1 1=0

(2.15)
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Here we adopt the conventions of Refs. 14 and 15 that (i)
all indices between () are to be symmetrized and made
trace-free, and (ii) a caret over a tensor indicates that all
its indices are to be symmetrized and made trace-free. All
other conventions follow Thorne, I namely, (iii) a sequence
of l indices is denoted by SA, =S...,, . . ., , (iv)

ital script letters denote symmetric trace-free tensors,
3F A,

=&A,
=At (,,, . . . ,, ), and (vi) e,jk is the alternating

(flat-space Levi-Civita) symbol. One can easily see that
the U's given in the form of Eqs. (2.13)—(2.15) satisfy the

Laplace equation. (A thorough discussion of the proper-
ties of the I/r' part of these solutions and their relation-
ship to various kinds of spherical harmonics is given in
Ref. 7; the r part follows trivially. See also Pirani' for
STF tensors. ) Note that BA,(1/r)=BA, (1/r), and that

there is no need to set a caret on those Xz, that are con-

tracted into an STF tensor. The structure of the terms in
Eqs. (2.13)—(2.15) should be clear.

To obtain y„„, we substitute the U' into the stationary
de Donder gauge condition (2.12) and arrive at

/=0

7 oj=g
/

r

1

r

1
&jW &PA, ,

,qA/
J

+M+ Xg

CQ (N
1

+&jpqpA XqA + g «jA XA )+g
/=1 /=0 ~&J

(2.16)

(2.17)

00

Xij=g(~rjA, 2XA, ,)+ g(&pq(j&I)qA, 2XPA, ,)+ g
/=2 /=2 /=1

'r

XqAi, &pq(idj&pAi

00 1 1~A ili A '+ g ~A ~i'dA +~A (ii) ')A
r/=1

X P X
l(2l 1)

(2.18)

i.e., without leaving de Donder coordinates, we can gauge
y„'„into the form (the superscript "new" has been dropped
and we have renamed the coefficients)

7'oo=g( 1)',~—
A,

—
/ o I! I r , ~,

4(2l —1)!!+ g li @AiXAi ~

/=1
(2.21)

ce
1

1 oJ X (l 1)i Jpq PAi
/=i +

4l (2l 1 )ii

Jpq pAi i qAi (2.22)

1
y~j

——0 . (2.23)

We call WA and P'A the internal mass and current l-
I I

The forms of these terms will be important both in build-
ing the metric from multipole moments and in identifying
multipole moments from a given metric, as we shall see.

Next we make use of the "residual" gauge freedom to
make what is remaining in y„„assume a form close to
that of the Newtonian potential. Under a gauge transfor-
nlatlon, 7'Ji~ transforms as

ri'."'"=ri'.+0,,.+0;, n, A, . — (2.19)

With a g& satisfying

(2.20)

I

pole moments, and 9'A, and CA, the external mass and

current I-pole moments. The choice of normalization fac-
tors will be obvious later. Note that we have put in a re-
scaling of the spacetime coordinates to remove the con-
stant parts from goo, i.e., to make the coordinate-
independent part of goo equal to —1; and, as a result, the
summation for the external moments begins at l = 1.

For this definition of multipole moments to make
sense, we have to make sure that there is no more gauge
freedom left. This is guaranteed by the following
theorem.

Theorem l. For any stationary second-rank tensorial
solution of the flat-spacetime wave equation (i.e.,
Cly„„=O,B,y„„=O), if Bjy„j=0, then there exists a
unique y"'"""with the form given by (2.21)—(2.23) which
is related to y„„by the gauge transformation (2.19) with
B,g„=O. The proof of the theorem is straightforward and
we omit it.

Equations (2.21)—(2.23) define the multipole moments
to 6' order. What about the general nonlinear situation
where we include in h„„ the terms of order G", with
n ~ I'? With the y&„given by Eqs. (2.21)—(2.23), we can
generate yP&„by the following algorithm.

Algorithm A. (i) From y„'„ofEqs. (2.21)—(2.23), calcu-
late W„„as the O(G ) part of Eq. (2.4). (ii) Invert the

p =2 case of Eq. (2.9) (with vanishing time derivatives) to
obtain

y~p ———16m 5 ' 8'~+ U~p, (2.24)

where 6 8'„„denotes a special solution and U„„satis-
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fies V U„„=O. (See Appendix A for the construction of a
special solution; however, the algorithm does not depend
on how the special solution is constructed. ) (iii} Next
make use of the freedom of U„„to require y„„to satisfy
the stationary gauge condition c}jy„j=0, i.e.,

ajU„', —16~aja-'W „',=0. (2.25)

(Sometimes this equation will have no solution. We will
discuss this point in detail in Sec. III.) This requirement
determines U„„partially; the undetermined parts of U„„
have the forms of (2.16)—(2.18). (iv) Now use the gauge
freedom of Eq. (2.19) to guarantee that there be no such
Laplace-free and divergence-free terms in y;j, and that the
only such terms in yoj have the form given by Eq. (2.22).
Then the freedom in U„„amounts to a free choice of the
G -order multipole moments. That this can always be
done is guaranteed by theorem 1. Therefore if we are
given the 6 -order moments, the y„„ is uniquely deter-
mined. (v) In the same way, we can obtain h„„ to arbi-
trary order in 6; and the structure at arbitrary order will
be such that the mass and current moments to that order
are given by the Laplace-free terms in boo and hoj, i.e., by
terms of the form of Eqs. (2.21) and (2.22). All terms
having different structure, i.e., different combinations of
N„, and r in boo, ho;, and hoj come from the nonlinear

coupling of these multipole moments. The mathematical
formulas needed in algorithm A are given in Appendix A.
Examples of the construction are given in Appendix B.

8. The general structure of the metric generated

What kind of structure will the metric generated by al-
gorithm A have? We make the following observations.

(i) Logarithmic terms It is we. ll known that in de
Donder coordinates the metric often contains logarithmic
terms, cf. Refs. 7 and 14. In algorithm A, a logarithm
will be produced in inverting the Laplacian operator for a
source with the structure (Laplacian-free function}/r .
Further iterations of such a logarithmic term give loga-
rithms raised to integer powers. In general the power of

I

ln(r) can be p [ef. Eq. (2.9)] after p iterations. However,
all the logarithmic terms in de Dander coordinates in pre-
vious studies ' are connected with dynamical effects,
e.g., tail phenomena„phase shifts, propagation on wrong
characteristics, etc. This makes us suspect that there may
be no logarithmic terms generated in the present station-
ary case. Indeed, Blanchet and Damour' (see also Ref. 7)
have shown that there will be no logarithmic terms gen-
erated in the case of a stationary vacuum spaeetime which
is asympt, otic flat, i.e., without the external universe. On
the other hand, when there is only the external universe
and no internal body, it is also easy to see that there will
also be no logarithmic terms. In the region of considera-
tion (vacuum, stationary spacetime with nondegenerate
metric), h„„satisfies an elliptical equation. Rearranging
Eq. (2.2) gives

(j}'&a,a,h„„= 16~( —g)t „"„'—h.„„h—,"j'. (2.26}

On the left-hand side g
j is positive definite. The right-

hand side is an analytic function of h ~ and its derivatives.
[We see this by rewriting g"'g~ in t~i""' as g""(gp )
which is analytic in h„„since det(g "}=det(g„„)+0.]
Thus, by Morrey's theorem, ' the solution of Eq. (2.26) is
analytic in the coordinates. Hence h„„ is a real analytic
function of the coordinates and contains no logarithmic
terms. Next we ask, in the case where there are both an
internal body and an external universe, will the coupling
of the internal moments and the external moments pro-
duce logarithmic terms? We have checked explicitly that
in W„„(cf. Sec. III 8) all dangerous terms of the form
(Laplacian-free function}/r cancel exactly with each oth-
er. Moreover, in all the 6 to 6 cases we have spot
checked, we also find miraculous cancellation. Therefore
we conjecture that any metric generated as a post-
Minkowskian expansion [cf. Eq. (2.7}]by algorithm A wiH

contain no logarithmic terms.
The absence of logarithmic terms is not necessary for

the algorithm to work, but it certainly makes the formula
cleaner and the formalism nicer to work with.

(ii) General form of the metric. The h„„generated by
algorithm A has the following form:

i4 1 " 4(21 —1)!!
hoo= g( —1}'—,~A, — +g

0 l! ' r, A, i, l! +,gg (MA, NA, )r
m I

(2.27)

Oj g( }
l 1}i jpq~pAi

& g l 1 i ~jpq+pA& pqA& &
+ gg (~ijkjAiNkA }r+ i+1' m I

(2.28)

h = XX(~ gANA, + &A, &.Ni &A, +~ANNA, + &A NA &ij)r
m I

(2.29)

The terms in [ ] are the multipole-moment terms ("mul-
tipole terms") which we use to generate the metric,
whereas the term in I I are those generated from the
coupling of the moments ("coupling terms"). (In this pa-
per we will always break any functions of the coordinates
into sums of the form cont sXNAr or constXN„, r

X [polynomial in ln(r)] if there are any ln(r). ) By
"Laplaeian-free term, " we shall mean terms having the
structure N„r' or NA /r"+". Note that the "multipole
terms" are "Laplacian-free. " In the couphng terms,
WA, , SPA, ,&A, , S'A, ,P A, , SA, , are either STF constant
tensors or STF constant tensors times a polynomial in
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ln(r). In the coupling terms the summations on m and I
run over all integers which do not produce a term that is
both Laplacian-free and divergence-free; i.e., the
coupling-term sums contain no terms with the forms
(2.16) and (2.17). [We have gauged the Laplacian-free and
divergence-free terms away in step (iv) (and its higher-
order counterpart) of algorithm A, except for terms of the
form (2.22), which are multipole terms rather than cou-
pling terms. ] Next we note that in (2.27)—(2.29) the oc-
currences of e;Jk in h„„are determined by time-reversal
symmetry; i e , .aX. at" —(arat), hpp hpp, hp; —hp;,
and h&j ~A'j which implies

~AI~~Ai~ @Al
~@Hi~ ~A(~ ~A(» @A(

~

Wpp~ Wpp, Wpj~ —Wpj, W,~~8;j .

Note that there are no time-symmetry changing opera-
tions in forming W&„ from h&„[cf. Eq. (2.4)]. We let
n =(the number of hpj or its derivatives in a term in

W„„)=(the number of Sq, ) + (the number of C~ ). Then

clearly n is even in Wpp and Wj, and odd in 8'pj. Since
there is an E'j'k associated with each current moment and
since the product of two e&jk can be reduced to a set of
Kronecker 5's, we conclude that there is exactly one e;Jk
in Wpj and hence in hoj, and no e;Jk in Woo and W~J and
hence in hpp and h;J.

(iii) The choice of G. Here we note that the choice of
the expansion parameter 6 in Eq. (2.7) is of no signifi-
cance for our definition of multipole moments. 6 can
have any numerical value and the metric generated by al-
gorithm A will still satisfy the Einstein equation. Besides
the requirement that to 6 order the metric should be
Minkowskian, we are free to choose 6 to be any small pa-
rameter arising in the specific problem we are dealing
with. In most cases a convenient choice for our multipole
study is to choose all multipole terms to be of order G.
This makes all higher-order terms in 6 come only from
the nonlinear coupling of the multipoles (coupling terms).
We will make this choice throughout the rest of this paper
unless we specify otherwise.

(iv) The reading out of moments from a given metric.
From the general form given by Eqs. (2.27)—(2.29) we can
read out the multipole moments for a given metric
without first going through the generation process. As-
sume that a suitable metric (stationary, vacuum, admit-
ting "post-Minkowskian expansion" } has been given in ar-
bitrary coordinates. Pick a de Donder coordinate system,
and transform the given metric to this system. (In general
it is a very hard task to transform a metric into a de
Donder coordinate system exactly. However, in most
cases we need only the first few moments and do not need
an exact transformation. We will give an example of this
in the following paper. '

) In general the h„ thereby ob-
tained will contain Laplacian-free and divergence-free
terms in the "wrong" places. In this case, use the remain-
ing gauge freedoms to get rid of the offending terms and
bring the metric into the canonical de Donder form Eqs.
(2.27)—(2.29); and from this metric read out the multipole
moments. In the next subsection we will show that the

multipole moments so obtained are unique (i.e., indepen-
dent of the chosen de Donder coordinate system), up to
Newtonian-type transformations among themselves in-
duced by Euclidean-type translations and rotations of the
coordinates.

C. The residual coordinate freedom

It is obvious that with the requirement that the h„
takes the form (2.27)—(2.29}, our coordinate system is
much more restricted than simply being stationary and de
Donder [Eq. (2.3)]. Indeed we can easily show that the
coordinate freedom has been restricted to Euclidean
motions, i.e., to the freedom of choosing the origin of the
coordinates and the orientation of the axes.

Suppose we have two metric densities
g'" (x') =g"' h'""(x—') and gl'"(x) =g"" h"'(x—).
Both h '""(x') and h" (x) are in the required form of ex-
pansions Eqs. (2.27)—(2.29). We choose, for convenience,
the parameter 6 in such a way that all the multipole terms
in g " are linear in 6 and all nonlinear terms are coupling
terms [see the discussion in point (iii) of Sec. II B].

Suppose the coordinates are related by

x'"=x"+Af"(x') . (2.30)

[We only have to consider infinitesimal transformations,
i.e., keep the calculation to A,

' order and drop all terms
with I,"(n &2) since finite transformations can be built by
e-folding infinitesimal ones. Since both t and t are tied
to the Killing vector, we have f" independent of t ]Next.
we expand f"(x') in G, and obtain

f" f"+Gf"+—6'f" + " (2.31)

The metric densities are related to each other by

[rid" h'&"(x")]= —L&~L "g[g ~ —h~(x')], (2—.32)

where L" =(dx'i')I(dx ) and L =
~

det(L" ) ~. From
(2.30}—(2.32) we obtain, to 6 order,

fo"'"+fo"'" n""fo',k =o '— (2.33)

and, to 6' order,

h'""(x)=h""(x)+A,h ~(fp" 5"tt+fo" pP' &" 5"ttfo k)—
+Gg(f v,pl+ f P v ~/Lvf k

) (2.34}

and likewise to higher order in G. From Eq. (2.33) we im-
mediately know that

fp ——const,

fp' ——Killing vector fields of Euclidean 3-space
(2.35)

=e~jkCil x +d

where to and d' are constant vectors. Next we look at the
case of 6' order Having alre. ady studied and understand-
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ing the 6 -order freedom, we set f0"=0. Then (2.34) just
represents a gauge transformation. However, theorem 1

tells us that our choice of the forms of y""and y'"" leaves

no gauge freedom and hence we have

f /l, v+f Y,P ~(kvf k () (2.36)

which gives again the Euclidean motion as in (2.35). Us-

ing this argument repeatedly, we see that to arbitrary or-

der in G, the freedom is no more than choosing the origin

of the coordinates and the orientation of the axes. Hence

we have the following important result.
If ii&„ is in the form (2.27)—(2.29), the most general

coordinate freedoms are Euclidean motions (2.35).
We well know from Newtonian theory that under a Eu-

clidean motion the multipole moments of a body mix

among themselves (e.g., a displacement (~ couples to the
mass W to produce a change in the mass dipole moment

~j——Wgj). In an analogous manner the Euclidean
motions described above will cause a mixing of our mul-

tipole moments among themselves. Aside from this mix-

ing, our moments are uniquely determined for any given

vacuum stationary region of spacetime D.

D. Relationship of the multipole moments to their sources

In Newtonian theory the multipole moments read off
from 4 are related intimately to the internal structures of
their sources. In general relativity integration over the
source may not always be meaningful (e.g., for a black
hole}. In the case of our present analysis, our de Donder
coordinates might not always be extendible into the interi-
or of the source (even if there is no spacetime singularity),
unless the material source is gravitating weakly enough.
Therefore, we do not in general have something which
corresponds to a Newtonian integral over the source.
However, if gravity is weak enough that we can use
linmrized theory (approximation of order 6'), we have
[by including the material stress-energy tensor in Eq.
(2.4)]

III. THE LAWS OF FORCE AND TORQUE

(3.1)

x —x' (3.2)

with

~'U5j —= U0j, kk =o ~'Ufj = +fJ,kk =o (3.3}

A. Constraints on the multipole moments
for a stationary spacetime

We begin by asking the question, if we specify a set of
moments, does it always generate a stationary spacetime'?
There are two problems that may arise. The first problem
is that the expansion of Ii"" generated by algorithm A

may not converge. In general relativity, this problem is
much more serious than in the corresponding Newtonian
expansion due to the nonlinear coupling. %e wi11 not try
to solve the question of what the requirement is on the
multipole moments such that the algorithm gives a con-
vergent series but will merely restrict attention to sets of
multipole moments which do so.

The second problem is also well known. Given a set of
moments, it is straightforward to generate a solution to
Eqs. (2.2). However, this solution may or may not satisfy
the time-independent gauge condition [Eq. (2.3} plus Eq.
(2.10)],.so that it may or may not be a solution of the sta-
tionary Einstein equations. %'e will now examine this
problem.

We look at step (iii) of the algorithm for the generation
of Ti"'. The question is what are the constraints, if any,
on the multipole moments such that we can find a homo-
geneous solution U„„ to Eq. (2.25), thereby making h&„
satisfy the gauge condition? Suppose we have generated
Ii „„to order p —1 and are now trying to carry the algo-
rithm to order p. Since h&„ is to all orders explicitly time
independent, we have to find UIIj and U&& such that [Eq.
(2.25)]

3 g =f T00rN(g)d x

P~jg =f e~(jXg )xp( —T~)d x

(2.37)

(2.3S)

ext
QAi f TOO 1+1 (2.39)

Xjg, f e~(jXg, )nq( ———T0 ) j,d x,ext (2.40)

where T&„and T&"„' are the material stress-energy tensor
for the interior body and the external universe, respective-
ly. Notice that we have chosen the normalization factor
in Eqs. (2.21) and (2.22) or Eqs. (2.27) and (2.28}, so that
Eqs. (2.37)—(2.40) have the "expected'" form. The physi-
cal meaning of the multipoles is clear in these formulas.

where D is a i =const hypersurface in D, the vacuum
spacetime sandwiched between the internal and external
sources. First we notice that the second terms of Eqs.
(3.1) and (3.2) are V2-free, i.e., they are scalar and vector
harmonics, respectively, as guaranteed by the integrability
condition [Eq. (2.6)]. Therefore they can always be ex-
panded as in Eqs. (2.13) and (2.14). It is easy to show that
all terms of the form (2.13} ean be obtained from the
divergence of the vector harmonic U0j except for a term
of the form (i) 3/r. Likewise any term of the form (2.14)
can be obtained from the divergence of the tensor har-
monic U~j, except for terms having the form (ii} C;/r and
(iii} e(~39&(1/r) ~. Therefore, for possible failure of the
construction of y~„(the pth-order part of h„„},we have

only to search for terms with these forms (i)—(iii) in the
differentiated integrals of Eqs. (3.1) and (3.2).

Consider, first, dangerous A /r terms in the differential
integral of {3.1), which can be written as
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W)j(x') W)j(x')

j bn +Im

im2 +1 r)
(3.4)

J ( —8'$j)djx'= I ( —WIoj)nJ
r' dQ' . (3.5)

Notice that despite the appearance of r', the integral is
independent of r', as guaranteed by c)j WIij =0. Next we
notice that the vector field W(j can always be expanded
as

+ f e~~np 3P q„, ,(r)N„, ,], (3.6)

Here we have expanded 1I
~

x —x'
~

in terms of sym-
metric trace-free tensors. The 3'J, are defined in

Thorne; see also Appendix A. Immediately we notice an
interesting feature: If there is only an external universe
and no internal body, then r& is always r' and no 1Ir
term can appear [i.e., there are no dangerous terms of
types {i) above]. It is also easy to see that if there is no
external universe (i.e., all external moments are zero), the
integral is also zero. We hence look at the case where
both a central body and an external universe exist. The
coefficient of the 1Ir term is given by the following in-
tegral over the "inner" surface d;D of D (the intersection
of a t=const surface and a 2-surface bounding the central
body's world tube).

f~

~ i!~ ~
r
~j ~I III

I 3 I ~~ ~e;~i( —W/j')n~njr' dQ'=0 . (3.8)
8;8

This time we can find no symmetry requirement to force
the surface integrals to vanish. We shall evaluate these in-
tegrals in the next subsection in terms of the moments and
show that in order for the spacetime to be stationary, the
moments are constrained.

As Newtonian theory would suggest, additional con-
straints on the moments for a stationary spacetime are ex-
pected when both internal and external material are
present. The question is, do these constraints have the
correct physical origin~ %'e give a positive answer to this
question in the next subsection.

It is clear that once the stationary gauge conditions
[(2.8) plus (2.10)] are satisfied there will be no further
complication in the construction of the metric from the
multipole moments, so we conclude this section with the
following result.

Given any set of multipole moments, assuming that al-
gorithm A generates a convergent series, the metric gen-
erated as a post-Minkowskian expansion (2.7) will satisfy
the stationary vacuum Einstein equations (2.8), (2.9), and
(2.10) to order ji in the region D if and only if Eqs. (3.7)
and (3.8}are satisfied up to that order.

where N'„, , lP z, , and 9tq, are STF tensors depending only

on the radius r. T indicates taking the transverse part [cf.
Ref. 7, Eq. (2.25b)]. On the other hand, from the time-
reversal symmetry considerations of Sec. IIB, we know
that Woj has exactly one e,~ in each of its terms. There-
fore in Eq. (3.6} only the last terms inside square brackets
are nonzero. Inserting this result into Eq. {3.5) gives zero.
Hence we have no constraints arising from BjyIij =0.

The search for dangerous C;Ir and e~&~{1Ir)q
terms in (3.2) proceeds similarly. Again, if there is either
no internal body or no external universe, there is no con-
straint. Otherwise the constraint requires

—Rg) n)
r* 0'=0 (3.7)

8. Force and torque laws and related discussions

When the constraints (3.7) and (3.8) are not observed
(i.e., the stationary gauge condition is violated) there will
be a time-evolving momentum and angular momentum;
and these give us the laws of motion and precession (force
and torque laws) for the central body.

Let us consider the case where we are given a certain set
of moments, Wz, , 9'z, , P'z, , and Ãz, each of order G.
Let 6 be small, so that we will keep terms only up to 6 .
To construct a metric satisfying the Einstein equations to
order G, we proceed according to algorithm A. To order
6,W&„ is given by

2 3 1 1 & 1 1 7 1 1—16w&oo = —
2 3 oj,kook, j 2 Xoj,k Voj', k+ 8 Yoo, kÃ00, k (3.9)

—16~~o =zoo, kr o,k —zoo, kook,
2 1 1 1 1 (3.10}

1 1 1 1—162r$V(j = —
4 (XooiYooj 2 ~ij Yoo lYOO, l)+(3 om, iYom j 2 ~iJXom, loom, l)

1 1 1 1 1 1 1 1 1+(Yol kroj, k Yolk) okj ) (Yojkrok i 2 8ij, Yol, kYok, l ) (3.1 1)
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4(2/ —1)!!
/(/ 2)I I —1 I —1

(3.12)

After inserting y&„of (2.21)—(2.23) into Eqs.
(3.9)—(3.11), we can carry out the Poisson integration and
determine the homogeneous term U;J that makes y;J ~

zero, as described in the algorithm A. (In appendix 8 we

carry out this process explicitly. } Then, as discussed be-

fore, when we come to terms of the form Ã;Ir and
e~9f~(1/r) ~, we are stuck. We have

nk
y,j,————H; —2e,jk&,.r r

with

~ " (2/ —1)!!~i g (/ 1)I AI 1 I 1l=l

(2/ —1)!!X (/ 1 )I
iab aAI

1
bAi

4/ (2/ —1}!!
(/ 1 11

~iab @aAI I~bAI
J ~

(3.13)

(The reason for this notation will be clear shortly. ) No
choice of time-independent homogeneous term can annul
this. Therefore to satisfy the gauge conditions Eqs. (2.3)
we are forced to include terms in ypp and ypj which are
explicitly dependent on time, and the resulting Ti&„read,
up to order 6,

r r

IIIi "
I41,

" 4(2/ —1)!I
hpp ——4 +4 W, +9',— + g( —1) —KA — +g, "BA,XA, +coupling terms,

r 2 r i i /. r
(3.14)

/ipj
—— 2'~(P—'p+W~t) R;t-—

r2 r

1 " 4/(2/ —1)!!
,

"
ej~ WzA, ,X&A, , +coupling terms,

l =2 + ' i1IAI I i —1 +
h,/

——coupling terms .

(3.15)

{3.16)

[The coupling terms are time-independent terms of order
6, contributed by the coupling of moments through 8'„„
as discussed in algorithm A. In addition, in hpp there is

an extra coupling term 2na P, so—that /ipp will still satis-

fy Eq. (2.2) after the inclusion of the t2 term. All these
coupling terms have a combination of NA, and r~ dif-

ferent from the explicitly given "multiple terms. " Their
general structure is shown in Sec. II8, and they are com-
pletely determined by the multipole terms. Thus, they
carry no extra information and are not interesting in the
present study. ] The /i„„of Eqs. {3.14)—(3.16) gives us a
metric satisfying the Einstein equations to order 62. We
note that this metric is accurate only for a finite duration

of time; i.e., t can be at most so large that P, t or P~t
become of order 6', otherwise the higher-order iterations
can no longer be considered small. From Eqs. (3.14) and
(3.15), we clearly would identify the multipole moments
of the internal body at time t to be

mass dipole= J!! +H, —,'2
current dipole=&z+Pzt,

where W, and W~ are the "given" values of the moments
at time t =0. In other words, since

momentum=(rate of change of mass dipole moment),

we have

(rate of change of momentum of the internal body)

d
(dipole moment);

t2

=9';[given by Eq. (3.12)],

(rate of change of current moment);

=P';[given by Eq. (3.13)] .

This is why the symbols H; and W;, with the dot denot-
ing the time derivative, are used. (For some relevant dis-
cussions, see Sec. 8 of Ref. 7.)

Some comments on the laws of motion and precession
as given by Eqs. (3.12) and (3.13) are in order now. Al-
though the calculation of the 6 -order terms does not re-
quire the assumption of a weak field, Eqs. (3.12} and
(3.13) are good approximations to the laws of force and
torque only when the contributions of 6 - (and higher-)
order terms are negligib1e. That is, we require that there
exist a weak-field region (buffer zone, cf. Ref. 12) in the
spacetime under consideration, with typical radius r so
that the 6'-order quantities WA, lr'+', ZA r, P'A Iri+',
and Ã z,r are small, and we imagine our calculation to be

carried out there. Notice also that we have placed no con-
straints on the central body; i.e., it can have a strong field,
or even be a black hole. As long as it is isolated enough,
the force and torque laws are given accurately by Eqs.
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0

H;= —f pV;4d x,
5;= — e(ykXJpV kid X3

(3.17)

(3.18)

where 4 is the external universe's Newtonian potential
(goo= —1 —2@+ ' '

The results of Thorne and Hartle'i and Zhang' are ex-
pressed not in terms of the external multipole moments

Bz, and 4'z, , but in terms of the curvature produced by

the "external universe, " which they define in terms of an
asymptotic expansion (cf. Ref. 12). In their way of
separating out an external universe, there are uncertainties
in the definitions of the mass, momentum, and angular

(3,12) and (3.13). Notice that this is exactly the same situ-
ation as is treated by Thorne and Hartle' and Zhang. '

Thorne and Hartle' have considered only the case
W~= B~=4' =0 (i.e., mass-centered and inertial coordi-
nates}. They derive the leading term ( I =2) in Eqs. (3.12)
and (3.13). Zhang derives the next corrections (1=3},as
well as terms that entail time derivatives of the rnultipole
moments and thus vanish for our quasistationary situa-
tion. If we denote the time scale of variation of the mo-
ments by T, in our analysis we have thrown away contri-
butions to the force and torque laws which are of order
(1/T)6. [If the time rate of change of the multipole mo-
ments results solely from the gravitational interaction,
1/T is at most of order G and the contribution to the
Zhang's time-derivative laws' to 9'; and P'; will be at
most of order 6 which is beyond the accuracy of (3.12)
and (3.13).]

Equations (3.12) and (3.13) determine the force and
torque to first order in the moment-moment coupling for
an arbitrary central body in an arbitrary external gravita-
tional field; arbitrary in the sense that both the central
body and the external gravitational field can have arbi-
trary multipole moments. With our present formulation,
it is straightforward, though tedious, to civy the calcula-
tion to higher order in 6 (but zero order in 1/T).

It has been argued by Thorne and Hartle that the force
and torque laws for strongly relativistic bodies, in terms
of multipole moments, should be the same as for a nearly
Newtonian body with negligible self-gravity (cf. Ref. 12,
Sec. IC). Indeed, when P'z, ——0 and Cz, ——0, Eqs. (3.12)

and (3.13) reduce exactly to the formulas we would obtain,
from Newtonian theory,

momentum for the central body, which become precise
only in the limit of vanishing external universe. In the
present analysis, all the moments, including the mass as
the monopole moment, the momentum as the time deriva-
tive of the mass dipole and the angular momentum as the
current dipole, are uniquely and unambiguously defined.
Of course, one can always question whether this specific
choice of definition is desirable. To this end the formulas
(3.12) and (3.13) which agree exactly with the Newtonian
expressions again support a positive answer.

With the present definition of internal and external mo-
ments, we can define exactly an "internal spacetime" and
an "external spacetime" corresponding to a given physical
spacetime with a given set of internal and external mo-
ments. Suppose that from the stationary vacuum metric
of a given physical spacetime we have read out the mo-
ments (Sec. II 8). We then pick out the external moments
and use algorithm A to construct from them a stationary
metric. This we call the "external spacetime" or "external
universe. " Likewise we define the "internal universe" cor-
responding to the physical spacetime; and we can then use
our formalism to discuss in an exact fashion the gravita-
tional interactions between the internal and external
spacetimes.

With this definition of internal and external spacetime,
we can write down the force and torque laws to order 6
(i.e., to the leading order in moment-moment coupling) in
a geometrical form in a way analogous to Eq. (1.11) of
Ref. 12. We refer to the coordinate system where Ti„„
takes the form (3.14)—(3.16) as the "instantaneous rest
frame" of the central body at t =0. We separate out from
the exact spacetime metric at t =0 a metric of the central
body (built with Kz, and 5 „,) and a metric of the exter-
nal universe (built with Bz, and 4'„,). The force and

torque laws will be written down in terms of a set of 4-
vectors and 4-tensors, living at the origin of the external
universe and defined as follows. (i) The 4-velocity of the
central body is defined as the unit vector U in the direc-
tion of 8/Bt (ii) H"=W. U" is the 4-momentum of the
central body, W being the body's mass, i.e., its internal
mass monopole moment. (iii) Wn, , An, , Bn, , and Ãn,
are 4-tensors orthogonal to 8/Bt and with nonzero com-
ponents in the body's instantaneous rest frame given by
W~, ,Aq, , Bq, , C'z, where a; =1,2, 3;co& ——0, 1,2, 3. Then

to order 6, we have

(3.19)

41 (21 —1)!! @pn,
e„@~X 5 (3.20)

where e& ~ is the I.evi-Civita tensor and semicolons
denote covariant derivatives, in the external universe.

To be able to integrate Eqs. (3.19) and (3.20},we have to
provide information on how the moments change (except
the monopole and dipole moments). This requires the
specification of the equation of state of the material mak-

I

ing up the body and the external universe, as in general
they are distorting each other and changing each other' s
rnultipole moments through gravitational interaction.
(For more discussion of this point see Ref. 12.}

The present formulation suggests a way to define a rig-
id body in general relativity. If the body evolving forward
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in time in a quasistationary external universe changes only
its mass dipole moment and current dipole moment, and
all the other moments have values that can be related to
those at t =0 by a rotation and translation, clearly we
would like to say that the body is rigid. That is, a rigid
body does not develop induced rnultipole moments. Note
that the force and torque laws for such a rigid body can
be obtained to arbitrary accuracy by the quasistationary
calculation carried to higher order in G. It ~ould be in-
teresting to study how this notion of rigid body relates to
the usual definition of constant proper distance between
adjacent rnatter elements.

Although the present derivations of the force and
torque laws are presented in terms of the secular changes
in yoo and y+ which are forced into existence by the
gauge condition, this actually amounts to a calculation of
the integrals

(3.21)

(3.22)

as discussed in Sec. IIIA. Since we have identified R;
and P'& as the change in momentum and angular momen-
tum of the central body, W~J has the physical meaning of
a stress 3-tensor. By B„W&"=O,WO' is the energy flux
and W is the energy density of the gravitational field.
Indeed, repeating the same line of argument as that which
leads to (3.21) and (3.22), we arrive at

(3.23)

where M is the time rate of change of mass M =W of the
central body. In our quasistationary approximation, (3.6)
gives M=O. Therefore, our identification of multipole
moments has led us also to the identification of W"" as
given by Eq. (2.4) as the gravitational stress-energy tensor
in our spo:ial de Donder coordinate system (de Donder
coordinate condition plus certain choice for fixing the
residual gauge freedom). Note that this 8'""differs from
the Landau-Lifshitz pseudotensor by two additional
terms.

To summarize, our present treatment of a stationary or
quasistationary spacetime produces a very Newtonian-
type picture: the gravitational field is characterized by a
scalar potential boo and a vector potential hoj, determined
by the mass moments and current moments, respectively„
evolving in a flat background with a nonlinear interaction
between them; the gravitational interaction between gravi-
tating bodies can be described in terms of the coupling of
the multipole moments of boo and ho&, and associated
with this interaction there is a stress-energy tensor con-
structed from the gravitational field at quadratic order
and higher.

Of course, we would not expect this picture to be useful
in a highly dynamical situation, where no timelike Killing
vector or nearly timelike K.illing vector exists.

IV. DISCUSSION AND CONCLUSION

In this section we will first summarize the results of the
preceding sections and then discuss some of the remaining

issues. We have studied the structures of stationary vacu-
um spacetimes, without assuming asymptotic flatness, in
terms of de Donder coordinate expansions in a way that
can be regarded as a natural extension of Thorne's formal-
ism. We have succeeded in identifying some parts of the
metric that carry all the information about the vacuum
spacetime, namely, the multipole terms. Out of these we
can read the multipole moments characterizing the space-
time. There are four sets of moments: internal mass mul-
tipoles Wz, , internal current multipoles Wz, , external

mass multipoles Bz,, and external current multipoles 4'z,
characterizing, respectively, the central body and the
external universe. In particular, the mass, the momen-
tum, and the angular momentum of a body in an external
universe are defined precisely in terms of the internal
monopole and dipole moments. We have constructed an
algorithm so that all other parts of the metric can be
determined in terins of the multipole moments (alogo-
rithm A). We have given explicit examples of this con-
struction for the first few lowest moments (Appendix 8).
We have discussed the general structure of the metric ob-
tained from the algorithm and we have given a prescrip-
tion to read out the multipole moments for given station-
ary vacuum spacetimes. We have derived, using the vac-
uum Einstein equation alone, the force and torque laws in
terms of the multipole moments in quasistationary situa-
tions. These laws generalize the results of Thorne and
Hartle' and of Zhang' to arbitrary / poles. These laws
are completely analogous to the Newtonian case even
though the central body can be strongly gravitating. Re-
lated to these laws of motion and prceession is an expres-
sion for the gravitational stress-energy tensor in our de
Donder coordinate system.

We now turn to the remaining issues of the develop-
ment. An important problem is to establish a criterion for
the convergence of the series in our algorithm for building
the metric from the coupling of the multipole moments.
This is a generic problem common to all studies using
series expansions. ' However, it is also intuitively clear
that in the buffer region (if it exists, cf. Sec. II) and for
physically reasonable choices of the moments, the algo-
rithm will generate convergent series. It is only of
academic interest to prove it rigorously for the weak-field
case.

Throughout the paper we have considered only metrics
which are expandable in post-Minkowskian expansions in
de Donder coordinate. ' It is almost certain that there
are stationary vacuum metrics which lie outside this class.
It would be illuminating to find out explicitly what kind
of solution is not expandable. However, it is again intui-
tively clear that in a weak-field buffer region, for which
our formalism is intended, the linearized theory will pro-
duce the leading-order result and the metric can be ob-
tained to arbitrary accuracy by iterating the linearized
solution.

We have chosen some very specific coordinate condi-
tions to study the geometric structure of the spacetime.
How much of our study just reflects the choice of the
coordinate conditions'7 How geometric are the multipole
moments we have defined? This question will best be
answered if we can find a coordinate-independent ap-
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proach leading to the same set of moments. Indeed, when

the spacetime is asymptotic flat, the external moments

(B„,,C'„,) vanish and the internal moments (Wq, ,P'~, )

reduce to those of Thorne, i.e., they are the same mo-

ments as defined by the Geroch-Hansen geometric ap-
proach. It would be desirable to have a study along the
lines of Geroch and Hansen for spacetimes which are not
asymptotic flat, i.e., spacetimes with both internal and
external moments. Is it possible to invent some treatment
that "folds up" the buffer zone to one point A analogous
to the "point-at-infinity" A in Geroch's approach'?

We have mentioned that in the Newtonian theory the
three types of gravitational interactions, namely, the force
and torque on and the distortion of a body in a gravita-
tional field, can all be described in terms of multipole mo-

ments in an elegant way. We have shown in Sec. III that
multipole moments in general relativity are useful in

determining force and torque. The effects of distortion in
terms of multipole moments will be studied in the follow-

ing paper' using a model problem of a Schwarzschild
black hole in an external gravitational field.
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APPENDIX A

In this appendix, we write down some useful formulas
for symmetric trace-free tensors which are required to
carry out algorithm A. As in other parts of this paper, we
adopt the notation of Ref. 7. We will not repeat any for-
mula vrhich has already appeared in that article. Blan-
chet' also gives a collection of useful formulas for STF
tensors.

1. Expansion formulas

One useful expansion formula is

(Al)

Here JI ——j~j2 jI and XJ, ——nj, nj, nj, . Repeated in-

dices are to be summed unless otherwise stated. The O'J,

with —l (m (l form a basis for the (2l+ 1)-dimensional
vector space of STF tensors; for their definition see Ref.
7, Sec. IIC.

A useful formula for the contraction of STF tensors is

~l ~l B/ Bl
1 (2l + 1)!!

& &(!

(A2}

The proof is trivial.
For breaking up the STF combination of N„, we use

1 2
li? =n lil — 5 li? . . . . . . +l} ' I 2l+I ' { I'''~* —1

+1'''Nl (2l 1)(2l+1) ~ ' {' 1'''~ l~ +I'''~' l~ +I'' ~l}5 N.
s=1 S (S

2. Differentiation formulas

The following formula is often used:

Bg,
———( —1)'(2l —1)!!

It can be shown that

I N{x;}N&g )X{/ }dn=41rIO(K/, A,B„},

3. Angular integration formulas

(A3a)

min{ m, n)
1

Io(Ki,A~,B„):— C(m, s)C(n, s}s!l!5(A~,A, C, )5(B„,B~,Cg )5(Ki,A~,B,),
(l +m +n +1}!! (A3b)

m!
C(m, s)= ',

,
5(A,B )=5,,b, 5,,b,

' 5, b (A4)
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Similarly,

f N(x, &N(g &N(a &n dQ. =4mI((K(, A,B„,j), (ASa)

min(m, n)
1Ii«( Am. B.j)= „l!C(m, s)C(n, s)s!

1+m +n +2)!!

x [5(A,A, C, )5(B„,B„„C,)5(K&,A,B„,j )

+(m —s)5(A~,JA~ g )Cg) 5( 8„,8„,Cg)5(K&,A~ g )8„,)

+(n —s)5(A~, A„,C, )5(8„,jB„, )C, )5(K&,A,B„, &)] . (ASb)

Also,

f N(x, &N&g &N(a &ngnJdQ=4nI2(KI, A~,B„,i,j),
min(m, n) I

Iq(KI, A,B„,i,j ) = i!C(m, s)C(n, s)s!
(1+m +n +3)!!

(A6a}

x I5(A,A, C, )5(B„,B„,C, )[5(K(,A,B„,ij )+5(EI,A,B„,)5; ]

+ (m —s)5(A~,jA~, &C, )5(B„,B„,C, )5(Kl, iA~ ~,8„,)+(exchange i j)

+(n —s)5(A,A, C, )5(B„,jB„, ~C, )5(K&,iA,B„, ~)+(exchange i j)

+ (m s)(m——s —1)5(A,ijA, 2C, )5(8„,8„,C, )5(KI,A, 28„,)

+(n —s)(n —s —1)5(A,A, C, )5(B„,ijB„, ,C, )5(K(,A 8„, ,)

+(m s)(n —s)5—(KI,A~ —~ tB~ —~ i)[5(A~, EA—~, &C, )5(B„,JB„, )Cg)

+5(A,jA, ,C, )5(B„,iB„, ,C, }]j. (A6b)

These complicated formulas can be easily understood:
In f dQ, the integral is zero unless all n, are contracted.
In Eq. (A3), this means that the largest / is given by
m +n, so that N ~~, ~

can be contracted with

N&„&N&a &. Smaller i are possible: some a; can be con-

tracted with bj. Hence we have the sum over s. In Eqs.
(A4) and (AS) more terms arise since the indices i and j
can be contracted freely with KI,A,B„and among them-
selves.

4. Solution of Poisson's equation

The three formulas (A3)—(AS) take care of all the an-
gular integrations that may ever be needed to carry out

I

the algorithm for calculations up to G2 order. Indeed
the calculation of b, 'W„„ is straightforward with these
formulas. Here by b, 'W„„we mean a special solution to
the Poisson equation

V Ap„——~p„
Solving this equation is the most involved part of the al-
gorithm.

The Poisson equation appears in the algorithm in the
following forms, and only in these forms to G2 order.
(For higher-order calculations, the reductions to these
forms are sometimes tedious. ) The specific solutions given
are precisely the Poisson integral, except in the cases of
lnr terms where we have chosen simpler expressions:

~ '(Q&~ &I&a„&N~ Na„r'}= QI.(ip)Io«& A»—.}N&x,&Q&~ &I&a. &
(AS)
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'(Q&„&I&s &N„Ns nor~)= —g I„(lp)I)(K),A,&„j )N& x&Q&g &I&a
1=0

(A9)

'(Q&„&I&i) &N„Ni) ijr )=—g I„(lp)I2(K(, A,B„,i j)N&x, &Q&»I&i) &
.

I=o

Here Q„and Iz are arbitrary constant tensors, and

(A10)

1
otherwise .

2+@—I

lnr if l +p +3 =0,
—lnr if 2+p —I =0,

I,(l,p}= -
r +~X

I

With the foregoing formulas, each step of the algorithm is
straightforward, though sometimes tedious.

APPENDIX 8

nb 1ym=~b +4@anar YOj =0 Yij ='0,
r 2

n~nb
yoo ——140,&b

r

(82a)

(82b)

In this appendix we give ji„„to first order in the cou-
pling of multipoles, for the lowest few multipoles. With
the formulas in Appendix A and 8'„„as given in Sec.
IIIB [Eqs. (3.9)—(3.11)], the calculation is straightfor-
ward. It is also clear that to first order in the coupling we
can separate the discussion into two moments at one time.
Since only the coupling of external moments with internal
moments gives rise to interesting resu1ts, we wi11 not 1ist
the terms that arise from internal-internal or external-
external coupling. Some expressions for internal-internal
couphng can be found in Refs. 9 and 15.

The requirement that h„„ take up the forms
(2.27)—(2.29) has greatly restricted the coordinate free-
dom. After these restrictions, we have left only the free-
dom of choosing the origin of the coordinates and the
orientation of the axis (i.e., a Euclidean motion, see Sec.
II C). We could have used this freedom to make our coor-
dinates be mass centered, i.e., W;=0. Ho~ever this re-
sults in no substantial simplification in our treatment. In
fact 3; behave just like other multipoles but with a
simpler structure. Hence it serves as a good example for
studying the general behavior of multipole moments.
This point will be clarified by the following examples.

(a) For B with Jr;,
1 1 ]

Yoo ~ +4+anar~ Yoj —0~ yij —0 ~

r
(8 la)

yioo=14B.Jrn. +~0. , r'+
I ~B.n. },

r

2. t 2
y();

———~B;—,y;j=25ijQa&n, —4Jr B(;nj) .

(8 lb}

(8 lc)

The terms with t are forced into h&„by the gauge condi-
tion (see the discussion in Sec. III). From these terms we
can read out the force on the central body, which arises
from the failure of our coordinates to be locally inertial
with respect to the external universe (B;+0). The term
in [ } in yoo is forced into existence by Eq. (2.9) and the
presence of the r term. In later expressions, terms in I
have the same origin.

(b) For B, with ~b,

2=yoi= 2 , —(&i—~b &b~—}nb
r

= —2E,jail ( estab SaJ b ),
r

2 na lib +(i nj)na
y;1 =25,JJra Bb r r

~a u—25"IJ

(82c)

(82d}

From the yo; term we can read out the torque on the cen-
tral body, i.e., the increase of the body's orbital angular
momentum with respect to the coordinate system, which
results from the acceleration of our coordinates with
respect to the external universe (B;&0) together with the
failure of our coordinates to be mass centered in the body
(J;&0). The term in [ ] is a homogeneous term, i.e., Vi

free, which is forced into existence by the gauge require-
ment [step (iii) of algorithm A]. In later expressions,
terms in [ ] have the same origin.

(C) FOr Ba With&ah,

ngnb 1 1

yoo
—~ab i +4Banar yoj =0 yij =0

r

n~nbn,
yoo =21&a~be zo~ =o

r 2

n, nbn, nbnc
y,', =35;,&.~b. , ~b &( nj)

r r

(83a)

(83b)

nb nb
25;J B,&,b ~

—+2Bb&,
&r r

(83c}

1 ]
yoo ——~—+6&~nanbr, y()J

——0, y;J =0,
r

(84a)

In this case we have no time-dependent term. Indeed,
only when the external moxnent has the same number or
one more number of indices than the internal moment, do
we obtain secular evolution.

(d) FOr Bab With W,
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rQQ —21Babaf nanbpy YQi (84b)

r(~j ——35(~d Babnanbr —6J Bu((nj)nu&+ 6' B,j& ~

%e again will write down only those terms which arise
from the coupling of internal and external moments (A
with 4;, P'; with Yj):

(e) For B,b with W„
na 1 1

roo —~a +6@abnanbr» Aj 0~ Yijr
(85a)

n (an'b )
roo= 4—&.~b r

2 n, t
YOi=«bq&q~nk+~iap «p~u& ~.»

r 2

(87b)

(87c)

r00=21Pubic nu nb nc

nbt 2

+69'b, W, + [ 6&—b,&,nb J,
r

(BSb)

2 n, anb 1
y;, =8&'„'(p(; nj) 45—;,p', 4'b +45,jÃ,p', —.

r r r

2.ro = —12&a~.—
r

(85c}

6Ia Ba (inJ )+6&'a (j&l')na

(f) For Qub with Jp;d,

(85d}

2
rij 35ij +ab~cnanbnc ~b@a(inj)nunb 6@ij~ana

The time-dependent term arises because our coordinates
are rotating relative to the local inertial frames of the
external universe with angular velocity V, and the
body's angular momentum P'„refuses to rotate with
them (it insists on remaining inertial}.

(h) FOr (JC,P;) With Tub,

na nb 2 1 1

Yoo ~ab +6@abnanbr ~ roi O~ rojr 3

63 nanbncnd
'YOO = @abed2 r

(86a)

(86b)

zoo=4 r
nq 2

roi —2ei~~p i 48i~ )Iu ~n (anq }P
r

(Bga)

2 nest
ro = «pq— , (&q»-~.b»

r
(86c}

n, nb 1 1
X + 35;,9,b/—,b 69,(;X—)),—r

2= nanbn~ 9 1
Yij 9~bc@a(inj) r 2

+ 5j@ b~cdnanbncnd r

nb nan
~abaca(inj) 3+ij~ub +6+a(i~j)br r

r()0= —16@~Xonb 24 bP—nonbn

t2—12nb, V~X', + [ 12nb @~X,I,
r

y(); 24m,~C——~Wn, npr +244',jP', —,a

2
}ij 12(~a+a{jni) @a(i~j)na+ @ij bwana }

+6(2P'b iuu(i"j)nu "b 5ij@ab~—cnanbnc ) .

(88b}

(88d)

nq
roi ——2E(pq &p 2Ejpq Ãp nq 1' 'f

r
(87a)

(86d)

The time-dependent term in yo; is due to the torque pro-
duced by coupling the body's quadrupole moment, W,b, to
the quadrupole mass moment (electric part of Riemann
curvature) of the external universe, B

(g) For (W, A;) with V;,
1Xoo=4~-
r

The time-dependent terms are due to the force on the
body caused by coupling of its spin angular momentum
P'u to the external universe's curvature.

With these examples, it is clear that the algorithm A

can be used easily to construct model spacetimes. The
metric in the weak-field region can be written down in a
straightforward manner once the multipoles of the chosen
spacetime have been specified. For example, for a Kerr
black hole in an external universe (say, a quadrupole
external gravitational field), the metric can easily be writ-
ten down showing explicitly the precession of the angular
momentum of the hole. ' This is the subject of an accom-
panying paper.
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