
PHYSICAL REVIE%' D VOLUME 34, NUMBER 12 1S DECEMBER 1986

Gauge-invariant perturbations in anisotropic homogeneous cosmological models
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Perturbations in spatially flat anisotropic homogeneous cosmological models with arbitrary di-

mension N are classified into three types I, II, and III and gauge-invariant quantities are defined in

each type. Equations for them are derived for arbitrary anisotropic flat models. It is found that

density perturbations are described by two second-order differential equations, as in the treatment of
Perko, Matzner, and Shepley for the pressureless fluid. The solutions are obtained for approximate

Kasner-type anisotropic models and their characteristic behaviors are shown for the fluids with

nonzero pressure as well as the pressureless fluid. They are consistent with the counterparts of Per-

ko, Matzner, and Shepley for the pressureless fluid. The instability problem in a galuza-Klein mul-

tidimensional universe also is discussed.

I. INTRODUCTION

The present Universe is isotropic and homogeneous, but
at the early stage the Universe may have had no such
symmetries. Direct observational constraints to the devia-
tion from isotropy and homogeneity are brought by the
severe isotropy of the cosmic background radiation, but
the Universe can be anisotropic at times earlier than the
recombination time.

On the basis of the Kaluza-Klein theory, moreover, the
following scenario of the evolution of the Universe has re-

cently been considered by many workers the Universe
starts with a multidimensional spacetime whose dimen-
sion is N (~4), and the external three-dimensional space
always expands, while the (N —4)-dimensional internal
space contracts and is compactified due to quantum ef-
fect. At the stage before compactification, the Universe is
considered to be very anisotropic. If there really are these
highly anisotropic stages in our Universe, it is necessary
to investigate the behavior of the perturbations, because
they are closely connected with the problems of the for-
mation of galaxies and cosmic background radiation. If
their growth and damping rates are derived, we shall be
able to constrain the freedom of the scenario and the ini-
tial conditions.

The perturbations in anisotropic models have so far
been studied by several authors. They showed that, as
the volume of the anisotropic model increases, the density
perturbations grow faster than those in isotropic models,
and that density perturbations couple with tensor pertur-
bations, contrary to the case of isotropic models. Howev-
er, most of them treated the perturbations using the syn-
chronous gauge condition. As was already well known in
isotropic models, unphysical perturbations appear togeth-
er with physical ones and it is difficult to discriminate
them from physical ones except for the pressureless fluid.
In isotropic models we could avoid the unphysical pertur-
bations by adopting a special gauge such as the comoving
gauges or using the gauge-invariant formalism introduced
by Bardcen. Recently Abbott, Bednarz, and Ellis have
derived the gauge-invariant theory of perturbations in a

II. BACKGROUND MODELS

The metric of spatially flat anisotropic homogeneous
models is expressed as

EB =g~pdx dx

=e "[—dv +y,b(i)dx'dx ]

with

(2.1)

y„=exp[2P, (i.)], g P, (~)=0,
a=1

(2.2)

multidimensional anisotropic universe, ~hose background
space is a product of two homogeneous spaces. In their
treatment geometrical objects such as scalars, vectors, and
tensors are constructed in each space and the idea of the
"gauge invariance" corresponds to the transformations
within each space. In this paper we shall define gauge-
invariant quantities in the total space and treat systemati-
cally physical perturbations in anisotropic models. Be-
cause the dimension N of spacetime is arbitrary, our
theory can be applied to multidimensional Kaluza-Klein
universe models. It will be shown that the obtained re-
sults are consistent with those in the work of Perko,
Matzner, and Shepley for the pressureless fiuid and the
behaviors of the solutions for the fluid with nonzero pres-
sure are rather different from those in the pressureless
case,

In Sec. II the background models are shown and in Sec.
III the perturbations are classified into three types accord-
ing to transformation properties and gauge-invariant
quantities are defined. For simplicity the direction of the
wave vector k, is specified, so as to be one of the X—1

axial directions. In Sec. IV the perturbation equations are
derived in arbitrary flat models, in Sec. V they are solved
in approximate ordinary Kasner models, and. in Sec. VI
the behaviors of perturbations in a Kaluza-Klein model
are examined. In Sec. VII concluding remarks are given.
In Appendix A perturbed components of the Ricci tensor
are shown and in Appendix B the derivation of the densi-

ty perturbations in the pressureless case is shown.
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and y,i, =0 for a&b. Here a,p run from 0 to N —1, a, b

run from 1 to N —1, r is the conformal time, and the
cosmic time t is related to ~ by dt =e '"d~. In this paper
the Universe is assumed to be filled with a perfect fiuid.
Then the Einstein equations

1GI=RI —,5—pR = aTp—

Dp—:+ — (N —2)

v=—+ — (N —2)
cf

D

1//2

1/2

(2.11)

are expressed as

N —1

(N —1)a+ g (P, )

a=1

respectively, and satisfy the relations

[(N —3)E+(N —1)P]e, (2.3)
N —2

and

dp +Dv =

(2.12)

a'+(N —2)a i= (E P)ei—
N —2

(N —2)aP, +P, =0,
E+(E+P)(N —1}a=0,

(2.4)

(2.5)

(2.6)

From Eq. (2.9) we get the relations

ra = (1+yirr),

where the energy-momentum tensor is given by
T""=(E+P)u"u"+Pg"" and E and P are the energy
density and the pressure, respectively. Elimination of a'

from Eqs. (2.3) and (2.4) gives

rpi =p( —1+yr"),

and

(2.13)

aEe = ——gP, —(N —1)(N —2}a
C

(2.7) e KE = y(y+ 1)r" [1+y(y —2)r ] . (2.14)
N —2

and, if P/E= const ( = c, ), we get from Eq. (2.6)

E~exp[ —(1+c,2)(N —1)a] .

pi=pi= ' ' =p~

l4+i=p~+i= ' ' =pa+D
(2.8)

~here d+D=N —1. Later we shall consider the case
given by Eq. (2.S) at the stage near the singularity. Near

the singularity e, e ', and e + are expressed by the~1 ~d+1

multidimensional Kasner solutions in the lowest-order ap-
proximation. The next-order terms depend on the equa-
tion of state. Their approximate expressions are shown in
the case P/E= const:

ea 1/(N —2) 1+ Y @+O(gr)
N —2

(2.9}

An overdot denotes differentiation with respect to r and
G =ir/(Sir) is the N-dimensional gravitational constant.

The exact solutions for Eqs. (2.3)—(2.6) were derived by
Lorentz-Petzold' for various equations of state in the
case when p, have only two different values, that is,

III. CLASSIFICATION OF PERTURBATIONS

In isotropic homogeneous models the perturbations of
metric components and fluid variables are uniquely classi-
fied into three types scalar, vector, and tensor
perturbations —and the three types of perturbations are
decoupled geometrically and dynamically. In anisotropic
models they are coupled in a complicated manner because
of the shear motion of the background. Accordingly the
geometric classification due to tensor analysis which is
conserved for time evolution is not possible in the aniso-
tropic case. In this paper we consider the classification of
the perturbations due to their transformation properties.
The method we adopt is as follows. First, we divide all
gauge transformations into those of two types whose gen-
erators are scalarlike and vectorlike. Second, we classify
the perturbations into three types —I, II, and III, so that
the perturbations of type I are closed for scalarlike
transformations, the perturbations of type II are closed
for vectorlike transfonnations, and the perturbations of
type III do not change in these transformations. Third,
we define in each type the invariant quantities corre-
sponding to each transformation.

The gauge transformations are expressed as

r=r+g =r+T(r)Q(x'), (3.1)

where

Here p and v are defined by

(2.10}

x '=x'+P=x'+L (r)Q'(x')+L'(r)Q(x'), (3.2)

where T(r) and L (r) are arbitrary functions of r generat-
ing the perturbations of type I, and L'(r) are functions
generating those of type II. Because the space is flat, we
use the plane-wave harmonics, that is,
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X —1

Q(x')=exp i g k,x'

and Q'(x') is defined by

Qa(x ') = —k 'Q (x') ~ '= ik—'k 'Q (x'), (3.3)

where a vertical bar denotes the covariant derivative with
respect to y,b(~) in Eq. (2.1),

N —1

k'= g kk'

and k'=y'"kb. A vector L'(~) is orthogonal to a wave

vector k„ i.e., k,L'=0. It should be noted that k' is not
constant in time, while k, is constant, so that the har-
monics such as Q'(x') is not constant in time.

For simplicity we consider in the following the case in

which the vector k, is in an axial direction of x' (a= 1 to
d} or x (a =8+ 1 to 1+D). Then without loss of gen-

erality we can express it as k, =5, ', so that k'=e '5;
and k =e

I.et metric perturbations be h p(xr). The differences
of their perturbations due to the transformations (3.1) and
(3.2) are

iap Rap —e il'ap ~

~.p=e "«;p+&p; »
where a semicolon means the covariant derivative with
respect to the background metric gap. The explicit forms
ofb, pare

them. Here G~' is transverse and traceless, i.e.,
G~b y =0, Gab k =0, and Gab k =0. Under the
transformations (3.1) and (3.2) the gravitational-wave per-
turbations are invariant. They are, however, indispensable
here, in order that the perturbations of this type may be
dynamically closed and decoupled from the perturbations
of the other types. This situation will be explained in the
next section. The variation of the other coinponents is

A —A =T+aT,

8 —8= —kT+I. — I.y,bk k

2k

Hr Hz. —kL———,

41=—A —H~ —aH~, (3.10)

42:8+kHM Hz'Ik . (3.11)

Here it is interesting to notice that two traceless tensors
appear i Eq. (3.9): k, kblk (N —1—) y, b nd y,b.
The latter is proportional to the background shear tensor
a,b. From the two tensors we can construct a traceless
transverse quantity. This suggests that the type-I pertur-
bations are closely connected with the gravitational-wave
perturbations. In the isotropic case in which y,b=5,b,

y,b
——0, and G,'b' ——0, Eq. (3.9) is reduced to Bardeen's

corresponding expression by the use of HI defined by

so that the following two other invariant quantities are
obtained:

d,uu/Q =—2(T+aT),

~IQ= ik, k ' kT—+L — Lyb, k "k'

2k

(3.4)
aHM =Hi +(N —1) 'Hr

and 4~ and 4z are related to 41 and 42 as

4~ ——ak

+i «. y.by"L—.»
~. bQ/=2«y. b+ y.b)'f—

(3 5) and

4g =@i+(+2/k) a+4 /ik .

+2 L (k Lb+kbL }—.
ka b

A. Type-I perturbations

(3.6)

For fiuid variables also we take up the energy density
contrast 5e(~)Q and the velocity perturbations
5u'=u u(~)Q' which are closed for the transformations
with T and L. Here u (=e ) is the zeroth component

of the background N velocity. Because 5e 5e =ETand—

hop ———2e ~AQ,

&o.= —e 8Qa

k, kb l ~ (1)

k
Hr+«y. b+ 2 y.b»bi+Gab Q

(3.7}

(3.8}

(3.9)

These metric perturbations include not only the com-
Ponents [A (~), 8(v), Hz-(~}, and Hbr(v)] corresPonding
to density perturbations, but also a component [G,b (~)]
for the gravitational-wave perturbations associated with

The metric perturbations which are closed for the
transformations with T and L are

u —u= L+y,bk'kb(2k ) 'L—,

the following gauge-invariant quantities corresponding to
them can be defined in the same way as in the isotropic
case:

——k (u —8),5e E
F. E

U, =U —k Hz .—1

{3.12)

(3.13)

Here e is equal to the density contrast in the comoving
gauge.

B. Type-II perturbstions

The metric perturbations which are closed for the
transformations with L' are
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ho, ———e i8, (r)Q ,

h,b
—e' k ][k,Hb(~)+kbH, (~)]Q,

where

(3.14)
which are traceless and transverse. This type consists of
only free waves, while the waves associated with density
perturbations are included in type I. The metric perturba-
tions are expressed as

H k, =O.
(3.15)

h.b
2——e "G."'( r)Q,

where G,'b' satisfy the relations

G(3)a abG(3] Oa =V ab

(3.18)

(3.19)

Because the variations of 8, and H, given by Eqs. (3.5)
and (3.6) are

and

(3.20)
8, 8,—= L, +—2PaL, ,

H, —H, =—I.ak,
the gauge-invariant quantities are

]P, —=8,—yab(H /k )

IV. PERTURBATION EQUATIONS

Equations for metric perturbations are derived from the
perturbed Einstein equations

or (3.16} 5G p =5R p
—

—,
' 5p5R—= x5Tp— (4.1)

]P'—=y' ]Iib 8' (H——'/k—)

From Eq. (3.15) we get ]P'ka =0.
For the corresponding velocity perturbation

5u'= u U'(r)Q with U'k, =0, we obtain the relation

V —V

so that the invariant vector is

Vs =V —& (3.17)

C. Type-III perturbsiions

The perturbations of this type are automatically gauge
invariant, and give free gravitational-wave perturbations

I

The perturbations of this type give the free rotational per-
turbations which do not couple with the perturbations of
the other types.

and the fluid-dynamical equations are from the equations
of energy-momentum conservation

5(Tp )=0. . . (4.2)

In the following the perturbation equations for gauge-
independent variables are derived by the use of Eqs. (4.1)
and (4.2). For fiuid motions only the adiabatic perturba-
tions are assumed. The components of the Ricci tensor
are given in Appendix A.

First we take up the equation

(4.3)

to which only type-I perturbations contribute. Sy the use
of Eqs. (Al)—(A3) ip Appendix A this equation is reduced
to

r

[(N —2}a—p(k)]k@2— (i]l —1)ap(k) —gpb 4]—[g+(2l])}' 3)ag]—=e aEe
I

(4.4)

where

X —1

p(k)—= g p k k /k

and g is defined by

G(]la

Next we consider the relations obtainable from Eq.
(4.1):

l

where

l( ), ——5, —k, k /k2.

To Eq. (4.5) only type-I perturbations contribute, to Eq.
(4.5) type-I and -III perturbations contribute, and to Eq.
(4.7) only type-II perturbations contribute. Accordingly
we obtain froin Eq. (4.5)

42+ k e]+ [(N —2)a —p(k) ]42
X —1

p(k)(4]/k —@i)=0 . (4.8)
k

k kb5Ra 5R, =O, —
N —1

l(m)kb5R, =k'l(m)b5R, =0,

(4.5)

(4.6)

(4.7}

Now let us express the components of transverse trace-
less metric perturbations Gb" and Gb "as

(i) (i)b a
G(mn) =Ga l(m)l(n)b/(l(m)l(„) )

with i=1 and 3, where G~~„]——6['„'~] and

l( )—= (l( ).l( ))'" ~
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Equation (4.6} is an inhomogeneous differential equation

for traceless transverse metric perturbations with type-I
perturbations as a source term. Of those metric perturba-

tions 6(~„) should be connected with the source term and

6( '„) should be independent of it. Because in Eq. (4.6)
the source term vanishes for m&n, 6( ) with m&n(1)

vanishes and the following equation for G( ) is obtained
from Eq. (4.6) with m =n:
6(~ )+(N —2)aG(" )+k26('"

)

The solution 6„, is formally expressed in terms of the re-

tarded Green's function as

6„,= dx'D„, x,x' I x'

From Eq. (4.6), moreover, we obtain the following
homogeneous equation for 6( '„) which is independent of
41 and 42.

6 ( '„)+(N —2)aG ( '„)+k 6( '„)

where

1 ~

=(4)—k@2) P( )+ l3(k), (4.9)
N —2

+2(P( )
—~( )}6( )=0

' (3) (4.11)

N —1

~(m) = g Pal(m)ul(m) ~l(m)

Equation (4.9) shows that 6("„)is indispensable in type-I
perturbations, because they are not closed dynamically
without it. For k, =5, ' we have the relations

6(11) 0~ (d 1}6(22)+DG(d+1,d+1)
(1) (1) (1)

This equation describes free gravitational-wave perturba-
tions. The last term in Eq. (4.11) vanishes for
1&m &n &d or d+1&m &n &d+D =N —1.

From Eq. (4.7) we get equations for type-II perturba-
tions

k, [4' b+ (N 2)a%' b]—+kbr „[4"+ (N 2}a)p']—

4= gP 6( ) =(d 1}(P(1) ~(d+l)}6(22) (4.10)

—2(Pb —)(3, )(k, q) —k %', ) =0

from which the following equation for )I(' is obtained
The unique solution of Eq. (4.9) can be obtained as a
Fourier component of the retarded solution 6„,of

6+(N —2)aG —V 6 =F,
where

N —1r'a. ab—= g e 'a.a. ,

+[(N —2)a+2(p+ —p(k))]% =0 .

Remaining components of Eq. (4.1}are

k'5R, = —xk'5T,

(4.12)

(4.13)

N —1

F(r,x)—= g fdk, 4, —k4,
and

l( )58, = zl( )5T, . — (4.14)

1 ik x
X P(m)+

2 P(k) From Eq. (4.13) we get

k [(N —2)a —p(k)]4) — (N —2)(a' —a )+gp, 42 kg=a(E+P)e —u, (4.15)

and from Eq. (4.14)

k 4'=2(E+P)e u,'. (4.16)

Moreover the equations of continuity and motion are derived as follows. First from the zero and k' components of
Eq. (4.2) we obtain two equations for type-I perturbations,

(N —1)c, ae~+( I+c,—)[k@2 (N —1)a@)]—
2

+ k +(N —1) 2ap(k)+ gp, + —,(N —1)(1+c,2)a 2

2N —2

X [g—[(N —2)a —p(k)]C ) I gP, —(N —1)(N —2)a =0, (4.17a)

us+(a+f3(k) }us =k [@)+k [C'2+(a+@(k))@2]] + c, e
—1 kE

E+p s m

and from the 1(~) components the equation of motion for type-II perturbations,

(4.17b)
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U,'+ a+2P, + U,'=0.
E+P (4.18)

Equation (4.18) can be derived also by inserting Eq. (4.16) into Eq. (4.12).
For type-I perturbations we have four equations (4.8), (4.15), (4.17a), and (4.17b). If we eliminate u, from Eqs. (4.15}

and (4.17b), we get

e ' ' e ' '(E+P) ' k[(N —2)a —P(k)]4) — (N —2)(a —a )+gP,

=k[@i+a@2/k+(C)2/k) ]+k(E+P) 'e cg k[(N —2)a —P(k)]@i

By use of Eqs. (4.8}and (2.3)—(2.7), Eq. (4.19) is reduced to

4) ——kc, 42+(I —c, )[g'+(N —2)ag)/[(N —2)a —P(k)] .

(N —1)aP(k) —gP, 4) [g+(2N——3 }a(] . (4.19)

(4.20)

Moreover, using Eqs. (4.9) and (4.20) we obtain an equation for g:

g+ t 3(N —2)a —A( 1 —cz )/[(N —2)a —P(k)]]g'

+[k +(N —2}[a+2(N—2)a ]—Aa[(N —2)(l c, )]/[(—N —2)a —P(k)]]g=k(c, —1)A@i,

where A, is defined by

1&=(d —1)(pi) +D(pd~)) — (p(k))N —2

In the present case we have

(4.21a)

(4.21b)

Next eliminating 4i from Eqs. (4.8) and (4.20), we obtain the second-order differential equation for 42.

4'2+[(N —2)a+yP(k)]42+ k c, +(N —2) (y/2 —1)a +(N —2)(2—y)aP(k)+(y —l)P(k) ——,(1 c, ) gP,—
C

+(1 c, )yp(k)A, /[(—N —2)a —p(k)] 42 ——J, (4.22)

k [(N —2)a P(k)]J= ( 1 —cz—}[A/+ (N —2)8$],

X —1 A(1+c, ) (N —2)(a'+aP(—k))
A = —k + p(k) —3(N —2)a+2p(k)+

N —2 (N —2)a —p(k)

N —1 y4i (N —1)(a+aP(k)—)a8=——a+ )t)}(k) k +p(k) —3(N —1)a +2 ap(k)+
(N —2) N —2 (N —2)a —p(k)

Equation (4.22) describes density perturbations together
with Eqs. (4A), (4.10), (4.17a), and (4.21). A more con-
venient one of Eqs. (4.4) and (4.17a) can be used for the
derivation of e

The invariant variables and equations to be solved in
each type are shown in Table I.

V. SOLUTIONS OF PERTURBATION EQUATIONS

It is difficult to derive even for a simple equation of
state analytic solutions of perturbation equations in the
previous section. Here we derive the approximate solu-
tions for two extreme cases ( kr) ~& 1 and ( kr) ~~ l. As
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TABLE I. Classification of types and equations.

Type
Physical

properties

Density
Perturbation

Invariant
variables

+2
&m Us

Equations

(4.4), (4.8), (4.15),
(4.17a), (4.171),
(4.20), (4.21), (4.22)

Gravitational
~aves induced by
density perturbations

(1)6 (mm) (4.9), (4.10)

Free rotational
perturbations

(4.12), (4.16), (4.18)

Free gravitational-wave
perturbations

(3)
G(mn) (4.11)

the background model we use a model with P/E=c nots,
which is shown in Sec. II, and take only the lowest-order
terms, unless the higher-order terms are necessary.

A. Density perturbations

e~ = r "(@t)p[1+0((kr) )],= }()+I) (5 2)

where (4t)o is a constant and Eqs. (2.10) and
(2.13)—(2.15) were used.

The other solutions, in which 4t, 42, and g are com-
parable in Eq. (4.4},are derived by assuming the forms

For the type-I perturbations there are four independent

solutions, since we have two second-order equations or
fourth-order equations. and

g= r'[1+0((kr)') ]

(5 3)

N —32+ p (@t)okr[1+0((kr) )],

and

One of the solutions is obtained when g and 42 are
higher order compared with a4~ with respect to ( kr):

=(~ )o+0((kr) ), g=(4~)or '0((kr) ),
(5.1)

where a and g are constants. First for a+1&0 we get
from Eq. (4.20)

@&
——(1+I )-'(a+1)-'

&& [(1—c )(u +1)+g(1+@)c,]r"+'+const .

(5.4)

Using Eqs. (4.8) and (4.21a) we obtain

N —2
(1—p, )(1—c, ) a+1+ (1—p2)(l —c,~)[g—1/(1+p)]=0

N —2 (5.5)

p, (1—c, )x

I+@ x+p(c, 1)—
a+1=y .

Then we get from Eq. (5.6}
(5 6)

&= —n /(1 —V'),

(5 8)

(5.9)

where

N —1a+1=— x .
W —2

Eliminating g from Eqs. (5.5) and (5.6}we obtain

x [x —(1—c, )]=0, (5.7)

and substituting Eqs. (5.3) and (5.4} info Eq. (4.4) we ob
tain

« = — (1 p) 'rr '+con—stXr '. (5.10)
X —2

This constant is the same as the one appearing in the ex-
pression for @& in Eq. (5.4) and can be included in the
former solution in Eq. (5.1). Accordingly we get

whose nonzero solutions are x = 1 —c, , so that &m ~&D (5.11)
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In the case a + 1=0 (or x =0), it is necessary to derive

the higher-order terms with respect to (kr) and rr, in or-
der to get the nonzero values of e . Here let us put the
solutions in the form

gO+kl~ @1 @10+@11

@'2=@'20+@'2)

(5.12)

and

'+G r" ', g, =b&+'+G, r "+r+',

410——(p, + 1) '+6err,

@„=b(@+1)'v "+ +6 r"+"+

420——GgV "+~

C „=2br4'+'+G, P+"+',

(5.13)

where b—= ——,(@+1} . The constants 6; (i =0—5}are

determined so as to satisfy Eqs. (4.8), (4.20), and (4 21}.
For 60 62 and 64 we get

where gl/$0, 411/410, and 421/420 are -(kr) . The
solutions for Eqs. (4.8), (4.20), and (4.41) are easily derived
in the lowest order with respect to (kr} and g, @„and
42 can be expressed as

e„= r ~ '-+r ~ '-+r(64lnr+H4},1

@+1

~+1
p+1

+r"+ +r(Gglnr+H5) .

y(y+ 1) N —2
(5.18)

(p+1)~ N —1

py'(y+ 1)

(lu+ 1)'

Their derivation is shown in Appendix B. For e it is
found for the above values of 6; and H; that

e~ ~r "+ (lnr+const) . (5.19)

Accordingly the solutions of the last two types are ex-
pressed as

The constants 6 and H (i =0—5) are determined
similarly so as to satisfy Eqs. (4.8), (4.20), and (4.21). As
a result we get the values of 60, 62, and 64 of quite the
same form as those in Eq. (5.14):

p, —1
60——y (y+1)—1

p+1

60 ——y (y+1)—1
p, —1

@+1 e =r '&+ "(d, +d2lnr), (5.20)

y(y+1) N —2

( +1)2 N —1

64 ——tuy'(y+ 1)/(p+ 1)',

(5.14)

where d 1 and dq are constant. Thus the solutions for e
consist of four components: (5.2), (5.18), and (5.20). They
are consistent with the result of Perko, Matzner, and
Shepley in which the cosmic time t is used. In terms of t
Eq. (5.20) is expressed in the pressureless case as

and the derivation of 61, 63, and Gs is shown in Appen-
dix B. For e it is found from Eqs. (4.4}and (5.13) that

e ocr &+z

e ~t "&+'""(d',+d,'lnt),

where d 1 and dq are constant.

(5.21)

The fourth solution can be derived in a similar way to
the third one. When we put

40+41~ @1 @10+@11

2 (k~)z~) g

First we assume 1& c, ~0. Then there are the follow-
ing two different types of oscillatory solutions:

and

+2=@20+@2I

(5.16)
exp i J kdr (5.22)

14,0
—— 1nr+ rr( G2lnr+ Hz ),

p+1

Inr-b +2 1

p+1 @+1

(5.17)

+r "+2+r(63lnr+H3),

as in Eq. (5.12), their components are expressed as

$0
—r 'lnr+ rr '(60lnr+ HO ),

g, =r 1'+'b lnr — +&+'+"(Gllnr+Hl ),1

@+1

40+ kl @1 ~10+@11

+2 +20+@21 ~

(5.24)

exp ic, Ikdr (5.23)

C2

where (in'), (in@1 )', and (1n@2)' are —1/r.
Oscillatory solution l. To get the nonzero values of e~

it is necessary to derive g', 4„and 42 to next-order terms
with respect to (kr) ' and r" Let us express t.hem as
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where g)/go, 4 „/4)o, and (I)2)/42o are —1/(«). Then
the lowest-order solutions with respect to (kr) ' for Eqs.
(4.20}—(4.22) are

So=exp[ 2 P(k) —z (& —2}a]

~'(o=ko/[(N —2)a —P() )]

g) ————()M+1)r "/ '/ [1+0(rr)],
8

—3p/2 —3/2[1+O( r)]
8

—3p/2 —3/2[1+O( r}]

For e~ we obtain from Eq. (4.4)

e ~e exp ifkdr
~ =const'-'~/2-'/2.

(5.26)

(5.27)

—p/2 —1/2

p+1

X [1+[—,'()M —3y) —y(y —p)/(@+1)]rr], (5 25)

42P ——t410 .

This expression is independent of c, , and in the case
e, =0, it is consistent with the counterpart which is de-
rived for l(i=4 in the formalism of Perko, Matzner, and
Shepley.

Oscillatory solution 2. Substituting Eqs. (5.23) into Eqs.
(4.21) and (4.22) as in solution 1, we obtain

The second-order solutions whose derivations are shown
in Appendix 8 are and

—CP2
k

(5.28)

N —1 22C)2+(3)2 p(),)+—(l(l —2)a+ (1—c, }p(k) ———k
X —2

1 —c,
~ ~

(l(i —2)a —p, k)

(5.29)

Solving these equations, 42 is determined:

—(y —p -1)/2~2

For 4) we get from Eq. (4.20)

@1 LCs +2

(5.30)

(5.31)

C. Gravitational-wave perturbations

Free gravitational-wave perturbations 6( '„) are ob-
tained by solving Eq. (4.11).

Case 1. 1&m &n &d or d+1&m &n &N —1. For
k7 «1

and from Eq. (4.4)
—(2y —1 —p)2 (5.32)

G( '„)-fdre ' ' =lnr+const,

and for k~~&1

(5.36)

8. Free rotational perturbations

Type-II perturbations represent free rotational pertur-
bations. The time dependence of u,

' is determined by Eq.
(4.18):

2p, —[1—{N—1)c ]/(N —2)
for a =1, . . . , d,

—2v —[1—{N—1)c ~)/{N —2) (5.33)
for a =d+1, . . . , N —1 .

GI~„)-(kr) '/ exp i fk dr (5.37)

G I~„)+[1—2(l2+v)]r 'G( „)+k G( '„)——0. (5.38)

The amplitude in Eq. (5.37) is r "+")/ for k, cc5, ',
which decrease with r, except for v= l.

Case 2. 1&m &d and d+1&n &X—1. Equation
(4.11) is

It is found that u,
' and u,

+' increase with time, if p &0
and v~0, respectively. This is because the scale factor
exp(a+p, ) decreases with time in these directions.

(p' are obtained from Eq. (4.16}:

The solutions are, for kr ~g 1,

G(3) P(P+v)(mn)—

and, for kr»1,
(5.39}

.-.u —1 2(~(ki —~. )
e

so that for kb ——5b'
T

where a is the same as in Eq. (5.33).

(5.34)

(5.35)

G( '„)-v +"(kr) '/ exp i fkdr (5.40)

The amplitude changes as ~{" "/ +" for k, ~ 6, ', which
increase generally with ~.

Gravitational-wave perturbations 6{
"

) associated
with the density perturbations are expressed by use of g,
as in Eq. (4.9c).
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A. Density perturbations

For (kr) «1,
e =a) r '+a2~ +v '"+"(a3+a~lnr),

and for (kr) »1,
b ~—3(p+1)I2eikrl(@+1)+b r—(1—p)/2e'~s" ) +

&m=

where a; and b; are constant.
If d=3 or D=3,

or

+ 3

(N —2)(N —4)

' 1/2

respectively. In Table II these powers are shown for a
moderate total dimension %=10. It is found that, as r in-
crease, the perturbations with the powers 2((M + 1) grow,
and as ~ decreases, those with the power —1 grow. Oscil-
latory perturbations grow only as ~ decreases.

B. Rotational perturbations

(u~ &u~ ) ~(t,& ),
((pl (pd+)) (r—1 —I —2(p+v))

VI. INSTASILITY OF A KALUZA-KLEIN UNIVERSE
MODEL

Kaluza-Klein multidimensional universe models were

proposed by Chodos and Detweiler' and later by Sahdev
and others. In this section we discuss the instability of
the multidimensional models at the final stage expressed
approximately by the time-reversal Kasner spacetime, in
which the total volume decreases with time g. In these
models the space with x' of a =1 to d and the space with
x' of a =d + 1 to X—1 are called "external" and "inter-
nal" spaces. Since the external space becomes our present
space after the compactification of the internal space, the
dimension of the external space is d =3 (or D= 3), and the
internal dimension is D =N —4 {or d =N —4), where
X&4 is assumed. If the internal space is closed, the
periodic condition must be imposed and the wave number

k, takes discrete numbers. If the two points with the
coordinate distance r are identified, we have the relation

k, r =2n m ( n is an integer), so that k, take discrete values
2nn/r

As for the background models, the time-reversal Kas-
ner solution is derived from the ordinary solution by re-

placing v with ~0—v without changing parameters p and
v. In the same way the perturbation equations and their
solutions in the approximate time-reversal background
can be obtained from those in the ordinary background by
replacing ~ by ro r, ra—by (7p 7)—ix, an—d TP+b by

('ro 'r)—Pab-
Now let us exemplify the behaviors of the perturbations

in the most interesting case when the Universe is radiation
dominated [c, =1!(N—1) and y= I] and the dimension
d or D of the external space is 3.

TABLE II. Dimensions and powers in the Universe with
X= 10.

0.50
—0.50

0.25
—0.25

0.25
—0.25

0.50
—0.50

As ~ increases or decreases, one of u,
' and u,

+' always
grow, while, as r decreases, (I)' and q( +'

((u & 0) increase
and %~+' ()(2 &0) decreases.

VII. CONCLUDING REMARKS

On the basis of transformation properties the perturba-
tions in anisotropic models were clarified into three types
and the equations for gauge-invariant quantities in each
type were derived in the case of c, =0 and 1 & c, & 0. The
equations for the type-I perturbations which include den-

sity perturbations consist of two second-order equations
and there are four independent solutions, which are con-
sistent with the results of Perko, Matzner, and Shepley for
e, =a.

In Sec. VI it was shown that in a Kaluza-IGein model
many perturbations increase as ~ approaches 7p (or r ap-
proaches 0). How large their final values are depends on
the initial condition and how nearly r is close to so before
the coinpactification. Unless the perturbations are
smoothed out at the stage when the internal space is com-
pactified and the external space becomes Friedmann type,
the remarkable isotropy of the cosmic background radia-
tion may impose severe conditions upon the initial condi-
tion and the evolution of the multidimensional universe at
the precompactification stage.

In this paper we were confined to a simple case in
which the wave vector k, points to the axial directions. If
it points to general directions, our formulation will be
modified and the behaviors of perturbations will be com-
plicated, because there appear more mode couplings. In a
future work we will take up the formulation of perturba-
tion theory in this general case.

The behaviors of derived perturbations may be due to

C. Gravitational-wave perturbations

For (kr) «1,
(3) (3)

G(11)~G(d+1,d+1) ~ln~ ~

G(3) 2(@+v)
(1 d+1) tx. T e

For (kr) »1,
G(3) G(3) —(1+p)/2eikr/(p, +1)

(11)~ (d + 1 d + 1)

G(3) (p —1)/2+v ikv/(@+1)
(1,d+1) 0

In the present examples, we have —(I+(M)/2&0 in all
cases and for )(2&0 (&0), we have p+v&0 (&0), and

(p —1)/2+v&0 (&0), respectively.
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the kinematical effect as well as the gravitational curva-
ture effect. These effects must be discriminated by the
use of quaritities such as intrinsic curvature, but we have
no invariant physical quantities good at the discrimina-
tion. Moreover, we have not considered in this paper any
viscous effect which may be brought by gravitational-
wave transport, " and any quantum effects such as parti-
cle creation' and the Casimir effect. ' It is beyond the

scope of this paper to study the behaviors of the perturba-
tions in the presence of these effects.
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APPENDIX A: THE PERTURBED RICCI TENSOR

We write down the general expressions for the perturbed Ricci tensor components corresponding to the metric pertur-
bations in Eqs. (3.7)—(3.9), (3.14), and (3.18):

N —1

e 5ROO/Q =(N —1)aA+ 2 (N —1)a+ g pb —k A —k{8+aB+[y,bk'k l(2k )]8]
b=l

HT+(N 1)(aHM) +a[ HT+(N 1)«—Hbr) ] [y.—bk'k'I(k')]Hr

N —1

[y„y'—k'kb/k +(y,bk'k Ik ) ]Hr+2 g (pb Hbr+pbpbHbr)
b=l

+2Pb g {k,[8' (H'/—k) ] Gbb~,

e 5R, /Q =ik, [(N —2)a —p, ]A+i { , k'(y« —y,bk, k"I—k )Hr+ k, [ (N 2)(a—Hbr)—+p, (HM+aHbr) pb Hbr—])

,'ik [8,—y,b(H /k—) ] ik, p, G','—,
e 5RbIQ= {(a+p,)A+2[a'+(N —2)a 2]A ]5b —k'kbA

(A2)

—{kB+[(N —2)a —(p, +pb)+y, dk'k "I(2k )]kB J k'kb Ik

—(a+p, )5bkB+(k'kblk )Hz+(a+p, )5bHz+[(N —2)a —2(p, +pb)+2y, dk'k Ik ](k'kblk )Hz

+ {4p,pb+[(N —2)a —2(p, +pb))y, dk'k /k y' k, kdlk —+2(y,dk'k "/k ) J(k'kblk )Hp

+[ (N —3)a+p—,+pb ]k'kbHbr {[(a+p, )Hb—r ]"+k'(a+ p, )Hbr

+[(2N —3)a+(N —1)p, ](aHM)'+(N —2)a(p, Hbr) ]5b

+ —,
'

kb {8' (H'lk)''+(N ——2)a[8'—(H'/k)'] j + ,
' k'yb, {[8' (—H'/k)' ]+(N——2)a['8' (H'Ik) ]{—

+(Pa Pb){kb[8 —(H /k) ] k—[Bb —yb, (H—'/k) ]]—G b+[ —(N —2)a —2(p& —pb)]G b kGb—
(A3)

where Gb =Gb' '+Gb ' and no summation is taken over an index a in Eq. (A2) and indices a and b in Eq. (A3), even if
they appear twice. In the above derivation, Eq. (2.5) was used.

While these expressions seem complicated, the first-order equations in terms of the invariant variables can be reduced
to simple and compact forms such as in Sec. IV.

APPENDIX B: DERIVATIONS OF PERTURBED QUANTITIES

l. (ks) &(l

In the case a + 1 =0, the substitution of Eq. (5.20) into Eqs. (4.8), (4.20), and (4.21) leads to

N —1 X —1
y — p G4+ py62 ——0, (B1)

Gz+ 2ib+y+2 PG5+ —P(2ij+Y+2)G3 PI(ij+1)+2b y(3 —P)+ P =0—,X—1 N —1 N —1

L

cg Gg+(I —c, )y(GO+y)/(@+1) —yG2 ——0,

(B2)

(B3)
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(2p+y+2)Gs —— —2pbc, +c, Gs+[by(2p, —y)+(2p+y+2}GI ](1—c, )/(1+@),

64 ——(Gp+y)ypi(p' —1),
(84)

Gp+(28+3 +2)(2P+2+3 I )61+'V{1 —8 }Gs 2—P+bY {6(P+1}+y+2(1 P—)[y/2 i —P—(8+1)/y] I =0, (86)

where b:——1/(p+1) . Equations (Bl), (83), and (85) for Gp, Gz, and 64 are not independent and one of them is arbi-
trary. If we specify them as in Eq. (5.14), the other solutions are given by the summation of the solution with Eq. (5.14)
and the second type solutions (5.3)—(5.11). Accordingly we consider only the set of Gp, Gz, and 64 in Eq. (5.14). Corre-
sponding to this set, GI, Gs, and Gs are uniquely determined from Eqs. (82), (84), and (86). The value of e is derived

by substituting Eq. (5.13) with this 6; into Eq. (4.4) and the result is given in Eq. (5.15}.
For the fourth solution in the text, the substitution of Eq. (5.17) into Eqs. (4.8), (4.20), and (4.21) leads to

X—1 X—1
y — p 64+ py6~ ——0, (87)

Gg gyH4+ p ~Gp+yHg —Gg ~ =0,X—1 p, y(r —
} )

X —2 @~1 p+1
r

Gs~ 2~y~ 2 — p Hs~Hz~ p[6&~{2p~2~y)Hs]+ y(y —LM)+ p'N —1 N —1 2b N —1

p+1

N —1 p N —1 X —12+y+ 2 —
& 2

{u Gs+G~ — + & p(2p+2+y)Gs+2b y(y —p)+ p@+1 N —2

(88)

(89)

(810}

c, 64+(1 c, )y(—Gp+y)/(@+1) —YGq ——0,
2

2
1 —c,—(6&+Hz)+c, — +Gq + Gp+yHpp+1 @+1

rr
p+1

(811)

(812)

21 —cs
63{2} +2+r ) =c.'{—2V b +6s ) + '

[{2r +2 +r }6i +b y {2V r)]-p+1
(813}

Gs+(2p+2+y)Hs ——c, +Hs +p,b

@+1

64 =py( Gp+ y )/(p' —1),

I —C,
2

[Gi+(2p+2+y)HI bpyi(@+1—)],pal (814)

(815)

(@+1)Gp+pyHp+(1 p)H4+3y+—p(p 1)+y(y —p—) =0,
1+@

(816)

Gp~(2P+y+2)(2p~2+yp)6 +y(1 —}u )6 —2p+b{y [6(@+1)+py~2(1—p)(y —p)] —2py(1 p~) j ={}, (817)

(p+ 1)(y+4)6
& +[(2p+ 1+y )(2p ~ 3 ~ yp ) + 1 y+p]H i +—H p

+y(1 p)Hs+by y—}u—5 — +(1—p, )(2y+p) =0 . (818)
p+1

Equations (87), (811),and (815) for Gp, Gq, and 64 are the same as Eqs. (81), (83), and (85) in the third solution, but
in this case Gp, Gz, and 6& cannot be arbitrary. The reason is that they are included in Eqs. (BS},(812), and (816) for
Hp, Hp, and H4, which are not independent, and the consistency condition determines uniquely the values of Gp, Gz,
and 64. They are given by Eq. (5.18) which is the same as Eq. (5.14). Since Eqs. (88), (812), and (816) are not indepen-
dent in the present case, one of Hp, Hz, and H4 can be arbitrarily given. If we specify Hp as

r

X —1 y+1Hp —p(p —1}~2y——~ y(y+2)(p —1)+p—y —3+2X —2 p+1 y(p+1)+ X —1
(819)

then Hq and H4 are determined from Eqs. (88) and (812), and furthermore 6; and H, (i = 1, 3, and 5) are determined
from Eqs. (89), {810),(813)—(815), (817},and {818}.

For e we obtain Eq. (5.19) substituting Eq. (5.17) with the specified values of 6; and H, into Eq. (4.4).

2. (kv. ) ~~1

For the oscillatory solution 1 with Eq. (5.22) we get from Eq. (4.2la)
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g+2ikg+ikg+ [3(N —2)a —A(1 —c, )/[(N —2)a —p(k)]](g+ikg)

+[(N —2)[a—2(N —2)a ]—Aa(N —2)(1—c, )/[(N —2)a —p(k)]]g'+k(1 —c, )A@2——0. (820)

If we substitute Eqs. (5.42) and (5.25) into Eq. (820), we obtain

(1—c, )A.
ik 2g)+ —p(k)+3(N —2)a — . g) +k(l —c, 'Q,4„

( N —2 )a —p(k)

+ —,[—(N —2)a+ —,
'
p(k) —(N —2)ap(k) ——,

'
(N —2) a +(1—cz )A, ]go=0,

where k = —P(k)k and y =[(N —1)/(N —2)](1—c,2).
From Eq. (4.22) we obtain, on the other hand,

k(1—c, )—4q+2ikC)2+ikC)2+[(N 2)—a+yp(k)]ikC'2 Q———R,
where

(821}

(822)

Q: k ( 1 cg ) l'kg'+(+(N —2) a+ p(k)
(N —2)

[(N —2 }a—P(k) ] (823)

~ ~

R =—4 z+ [(N —2)a+ yp(k)]@'2

(y —1)p(k)' ——,
' (1—c,') g p(,)'+ (N —2) (y/2 —1)a '+ (N —2)(2—y)ap(k)

+yP( ~(1—c }/[(N —2}a—P(k)] @'2

—iyP(k)[(N —2}a—P(k)] l
—3(N 2)a—+2P(k)+[A(1 c, ) (N ——2)(a—'+aP(k)}l/[(N —2)a —p(k)]]g .

Substituting Eqs. (5.24) and (5.25) into Eq. (822) we get

k (1—c, ) [4q) i()/[(N ——2)a —P(~)] I
—[(N —2)a —P(k)]

(824)

(N —2)(a'+aP(p))
X 2(N —2)a+2

(N —2)a —p(k)

Eliminating 42) from Eqs. (821}and (825), we get

g) ——,'ihip fdrk—'M,

yP(k)+ 2 (—1 —c.'} N —11+2 P(k) —(N —2)a 'go=0
N —2

(825)

vvhere

1= 24o— Ci ) C]P+Cp

@+1 p+1 —y
(826)

M=——
2 (N —2)a'+

& p(k) —
&

(N —2)ap(k) —
4 (N —2) a + &

(1—cz )A.

2(N —2)(a +aP(k) )—2(N —2 }a+yp(k)— —(1—c, )
(N —2)a —p(k) (N —2)a —p(k)

1 S—1+ p(k) —
2 (N —2)a

=(C) +c27 }T

It is found that c) and c2 are reduced to

ci ———,(@+1)

I 2 X —I p —1c~/y= T[y(y V)—+S (V+1—}] y(V —1}+— (p —1} —2y+2 (y —1)—2(y —)M)/(@+1)X—2 p+j (829)
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Then from Eq. (825)

and from Eq. (4.20)

[1+0(rr)]
(@+1)'

(830)

—3P/2 —3/2[1+0( y)]
2 (p+ I)'

For e we use e—:e /exp(i fk dr) Th.en from Eq. (4.4)
r

0

e lrEe~ =[(N —2)a —p~k~]k@2 — (N —l)ap~i, ~

—g p, 4i —[ikg+g+(2N —3)ag] .
C

If we eliminate k@2 in Eq. (832) by use of Eq. (822), we obtain

2 N —1 ~

e irEe = — (N —1)aP~k) —g P( ) 4i — (N —1)a— P~k)

(831)

(832)

(N —2)a —ski '
~ (N —2)a —

peak~
I2C''2 p(k—)C'2+ [(N 2)a—+rp(k) Fz] +

1 —cg k(1 —c, )
(833)

Then substituting Eq. (826), (830), and (831), we find
that

(5.5) we obtain

—3p, /2 —3/2 —y, L, —3p/2 —3/2
Im =f4 )7 + t'c 21

where

(834)

and

5= ——(s i
—si )yil(KF' / t)

3

and

)
——0

h2 ——const(&0) .

(835)
2Bg/r)r + — +—

yi =0 .1 dF/r)t 1

2 F t

Then the solution is

The counterpart in the paper of Perko, Matzner, and
Shepley can easily be derived by assuming the solution in
the form

T

5=5exp iK fF'/ dt

ri=riexp iK fF'/ dt

in the case K Fr &~1. Here e ande areequalto5and
5 in the synchronous gauge. From their Eqs. (5.4) and

r
—1/2F —1/4 5 r

—3/2F —3/4

Noticing that F cct / (1+sk), dt =e dy, and 2@=—sk,
it is found that

—(sk —2) /2
e =5~t

~ t —(p+&) ~ &
—3(@+1)/2

The final expression (836) is consistent with (834) and
(835).
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