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Lagrangian dynamics of particles and fluids with intrinsic spin
in Einstein-Cartan space-time
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A Lagrangian formulation of equations of motion for spinning particles and fluids interacting
with torsion and curvature of space-time is given. Our approach is general in the sense that it does
not specify either the form of Lagrangian or the auxiliary condition. The derived energy-
momentum and spin tensors have the form, which is usually postulated phenomenologically.

I. INTRODUCTION

The aim of this paper is to give a Lagrangian formula-
tion of equations of motion for point particles and perfect
fluids both carrying intrinsic spin and interacting with a
gravitational field. The gravitational field is described in
the framework of the Riemann-Cartan geometry; i.e.,
space-time is equipped with torsion and curvature. This
means we are using a general approach of the Poincare
gauge theory of gravitation' without a specific choice of
the gravitation Lagrangian (the choice of the Einstein-
Cartan theory is the best known example).

The problem of these equations and their Lagrangian
formulation has a long history. The list of contributors
begins with Frenkel, who derived the equations for a
classical model of the electron in special relativity from a
variational principle. As we know today, his Lagrangian
has a special form and his auxiliary condition S"uj =0
may not be the best choice. The perfect fiuid consisting
of particles carrying an internal but classical spin was in-
troduced by Weyssenhoff and Raabe. Its extensive inves-

tigation was carried out by Halbwachs, who gave a La-
grangian formulation for the "Weyssenhoff fluid" equa-
tions. Meanwhile, Mathisson and Papapetrou derived
equations for extended bodies in general relativity in the
pole-dipole approximation, which in the special-rela-
tivistic limit coincided with those of Frenkel. A Lagrang-
ian formulation for particles and fluids in general relativi-

ty was given by Bailey and Israel. ' Their treatment is
general in two respects. First, they do not specify the
functional form of the Lagrangian, but only its variables.
Second, they do not specify any auxiliary condition (as,
e.g., the Frenkel condition or the Tulczyjew ' condition
S'tPJ ——0).

In the 1970s the Weyssenhoff fluid became a basic
phenomenological tool in the Einstein-Cartan theory. "
Nearly all investigations of the Einstein-Cartan field
equations were done under the assumption that their
right-hand side is that of the Weyssenhoff fluid; i.e., the
energy-momentum tensor and spin tensor have the form

t'J N'PI+p(u'u~ —5J )——,

s Jk —XSJk,

respectively. The Lagrangian description of the Weys-
senhoff fiuid was given in 1982 by Ray and Smalley. '"
But their approach, based on a special-relativistic ap-
proach of Halbwachs, is far less general than that of Bai-
ley and Israel in general relativity. In particular, they im-

posed the Frenkel auxiliary condition and postulated a re-
lation betwen spin and angular velocity involving a non-
dynamical function. In effect, their matter tensors t'j and
s'Jk are of a more specific form than those given by the
formulas (1) and (2).

In Sec. II, I consider point particles in the presence of
curvature and torsion. I develop here part of the methods
used in the next section, which is the core of the paper.

In Sec. III, I attempt a general Lagrangian approach to
Weyssenhoff fluids in Einstein-Cartan space-time. The
one-particle Lagrangian of Sec. II is an analogue of the
specific Lagrangian of the perfect fluid in Sec. III. The
specific entropy and the concentration of particles are in-
cluded in its list of variables. It is a priori assumed that
the entropy is constant along world lines of the fluid and
the number of particles is conserved. To solve these con-
straints I employ the method of Lagrange coordi-
nates. ' ' Dynamical equations for the fiuid are ob-
tained from variation of world lines and orthonormal
tetrads in a fixed geometry. Variation of geometrical
variables leads to the Einstein-Cartan field equations (or
to their generalization of a Poincare gauge theory) with
right-hand sides given by (1) and (2). Fluid equations are
contained in gravitational field equations due to a set of
identities valid in any Poincare gauge theory of gravita-
tion.

II. POINT PARTICLES

A. The Lagrangian and its variables

The variables which describe motion of a particle are
(1) the world line t—+x'(t), (2) the frame t~8,'(t) defined
over the world line and satisfying the orthonormality con-
ditions

iiab&i~j=g J ~

Throughout the paper the indices a, b, . . .=0, 1,2, 3 and
are inoved vertically by means of g,b=diag(+ 1,—1,
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—1,—1) and its inverse il . The holonomic indices are
i,j, . . .=0,1,2,3.

The Lagrangian L is an unspecified function of

dxx, u =,8;,8; .
dt

Above, we have introduced

'a ' ' k8;'=u'V, e;= —I';; 8'ku',

where I;i are connection coefficients of a metrical (i.e.,
Vkgi =0) but nonsymmetric connection.

We require that L be invariant under (1) an arbitrary
transformation of coordinates and (2) a stiff transforma-
tion of the frame 8';~Ai, e;, where Ab is a constant
Lorentz matrix. These requirements lead to a simplifica-
tion of the Lagrangian. Because of requirement (1), L
does not depend explicitly on x'. Moreover, instead of 8';,
we can use the angular velocity tensor

B. The variationa1 procedure

In formula (5) we have variations 5 of functions and
their arguments. In general, the variation 5f (x)
=f'(x') f—(x) can be decomposed as

5f=5of +5if'

where 5of(x)=f'(x) —f(x) and 5&f =5x'r};f. We can
substitute this decomposition of 5 into (5). Moreover, be-
cause of identity (6), instead of 5i we can use its covariant
analogue 6=5x'V;. Note that an arbitrary covariant
derivative V; can be used here; nevertheless, we shall use
that one determined by I'zk. Note also that the replace-
ment 5i~h is generally valid for scalar functions of ten-
sor variables.

Following these remarks, we can write (5) as

5L = —P; b,u'+ ,' S;i(5o+—bko'i —,P'ui5—og,i .

To calculate the first term in (9), we need the formula

Cl)i =8 g FJ~ 5 u = (5x ) +Q k 5xiu (10)

which, due to Eq. (3), is skew symmetric co,i
———

cubi;.
Now, since two variables of the Lagrangian u' and co'i do
not carry an a index, in order to satisfy requirement (2),
8'; can enter into L in the combination (3) only. Therefore

L =L(u', co'i,g;i) .

We require (3) that the action A = f 'Ldr be invariant
0

under arbitrary transformation of the parameter t This.
leads to the last restriction on the Lagrangian:

which can be used as the definition of the torsion tensor
Q'ik. The complementary formula

~8'.=(~8.') +R',k,e.'5x "u'

is needed in order to calculate

b,co', =b,e,'8,'+8,'b, e,'
=eii(58,')'+R'iki5x "u'+co'ke, hei .

%'e also need

L (au', ace'i, gi ) =aL (u', co'i, g;i ) 5oro'i =ei(5oe') +5or'ii u "+ro'ke'5oei . (12)

for any a & 0. Therefore

A= I Q, pg, j. ds,

Substituting (10), (11), and (12) into (9), and rearranging
the terms, we get

where u' and Hi are linear and angular velocities, respec-
tively, in terms of a parametrization by the proper time s.

The variation

5L =~;5x'+ z& 8'.(5o+a)ei+ ,
' u"S i5oI")k—

—iP u 5ogii+ (13)

5L = P;5u'+ ,'S 5~—, ,'I"5—g;, —— (5) where

gives a definition of the momentum P;, spin S;i, and the
additional quantity I'i. An infinitesimal coordinate
transformation induces the following variations; 5L =0,

~ ~

5U =Ecru, 5' i =ed@ i —s iN k, 5g;i = E;i —Ep . Substi-—'.
tuting them into (5) and taking into account the arbitrari-
ness of e'i, we obtain the identity

P;ui =I'+ —,
'
(cokis; —cok;S i)k

which is a prototype of the decomposition of the energy-
momentum tensor onto its symmetric and skew-sym-
metric parts.

On the other hand, the homogeneity of L [Eq. (4)] leads
to the Euler identity

L = E
I

u
I + —,

' S;ico', —

wlere
I

u
I

is defined by u'= Iu lu'and E=P,u'is the
rest energy of a particle.

F=( P;+ , Si,iej'V;8—,—)5x',

a;i=s;i eks; +~";s i—,

3;=P; (Q "iiPk —, R ~g—isk')ui . —

(14)

(15)

5og,"—=8„5oei +e,i 5oe,' =0 (16)

gives a restriction on variation of frame; note, however,
that B,q ———8J;.

The variation of frame leads therefore to the dynamical
equation

S &kS;"+a)";Sk' —0——

In fact, in order to derive equations for test particles
from the principle of least action we need much simpler
formulas. In this case the geometry involved is kept fixed
so 5oI'ik =0 and 5og;i =0; thus the first two terms in (13)
play an essential role. The condition
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which can be represented in a more familiar form

5 '» =P'U» —I'»U' (17')

function no determines a volume four-form in the space
of Lagrange variables

if we use the identity (6). Another interesting form of
these equations is

(17")

rto=dt hX =no(y )dt hdy'hdy hdy

According to Eq. (21), it is related to the standard space-
time volume four-form g = e 1 by the relation

which shows that the spin tensor is constant relative to
the frame 8,'.

The variation of world line leads to the equation

(18)

The term in (13) containing b, 8~ vanishes if either we im-
pose the condition of parallel transport ' or we use the
dynamical equation (17).

Equations (17) and (18) are fully deterministic. In order
to solve them, we do not need an auxiliary condition, but
rather a form of the Lagrangian. If it is given, the initial
conditions should completely determine the time develop-
ment of the particle.

III. PERFECT FLUIDS

A. Test hds

To describe motion of a perfect spinning fluid, we shall
use its I.agrange description. The dynamical variables are
(1) the three-dimensional family of world lines (t,y )—=y"~x'(y" ) and (2) the orthonormal frames
y&~8;(yl'). The mapping y&~x' is assumed to be a dif-
feomorphism. The indices of the Lagrange-type coordi-
nates are p, v, . . . =0,1,2,3 and a,P, . . .=1,2, 3. The velo-

city field is now u'=Bx'(t, y )/Bt.
In addition to the dynamical variables and their deriva-

tives, the Lagrange density function W will depend on the
concentration of particles n and the specific entropy S
(i.e., entropy per particle). The number of particles is con-
served,

(19)

and the specific entropy is constant along each world line,

consistently with (23).
The specific Lagrangian I. will be a generalization of

the one-particle Lagrangian of Sec. II. The list of its vari-
ables will be extended to include the specific entropy S
and the concentration of particles n:

L =I (S,n, v, co~)&gtj ) .

%e introduce temperature T and pressure p by

5L = —
! u ! T5S + 5n I';5u'+ —,'S—;J5ap'J.

pf
2

+ ,
' I'J5g,j . — (24)

Since S and n are scalars, the identity (6) remains un-

changed, in particular I'J=u'PJ'. Identity (7) also holds
true.

According to (22), 5S =0. Thus, in order to calculate
the new terms in (24), we need only

5n 5!u! 5J 1 5g
n fu! J 2 g

as follows from (21). A direct calculation gives

The action integral is

Lgo ——

where the Lagrange density function W is connected to
the specific Lagrangian 1.by the relation

n

where we have introduced

/ =X;edx'=nu; +dx'

(20) ,
' h'J5g;1+u; ——B~y"5B„x',

where

h'»= u'u» —g'»

(25)

as a three-form of a particle current.
The Lagrange coordinates y" are useful for solving the

constraints (19) and (20). Namely, in these coordinates

is the metric tensor in the space perpendicular to u'.
Now, we can substitute 5=5&+5& into (25) and use b, in-
stead of 5~ as done in Sec. II. This leads to

E = J& gdy ' h dy h dy, —

where J det=(B&x )and'g =det(gj). This gives

n= nu(y ),J —g

S =SO(y ) .

The functions no and So will be treated as given. The

Q l»$~ +~ Q yPQQ ~l

The last term in the expression above is

—V;5x' —QJJ5x' .

Thus, taking (10) into account we obtain

, h'J50g;~+A/V'J5x'+Q—J;khj 5x' .
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In order to calculate

t; =t;.edxJ (28)

5(&rI)=5Lgp= (27)

we should now substitute (13}and (26) into (24). To write

the whole expression in a relatively compact form, we in-
troduce the three-forms

K= K(8',D8', I",,Dr', ),
8'=8';dx' are orthonormal frame one-forms, 1 '& —I'a, 8'
are connection one-forms, D8'=d8'+I'b A8" are tor-
sion two-forms, and DI 'b ——dI '~+I ', A I 'b are curva-
ture two-forms. The best known choice for K is that of
the Einstein-Cartan theory K= —,

' e(8, A 8 ) AD1'b. We
shall not use this particular form, however.

The variation

and 5pK= —5p8'Ae, + —,'5pI"b Ac, + an exact form (34)
k

'j k"*

where tj; and sk;j are given by the formulas (1) and (2).
The variation (27}has the form

5(&rt) =C;5x'+ B;jr18—', (5p+ 6)8j0

introduces the Einstein three-form e, and the Cartan
three-form c, .

The total variation 5 of an exterior form cp [which does
not depend explicitly on derivatives of y"~x'(y") j is

(35)

+ ,'s" ~5—I',„,'t"~—5~—;,+de .

Above, we have introduced

4=( —tt+ —,
'

sk j8j7;8,")5x'

C; =Dt; —Q'; R t; + , R k,; R sk'—,

where

k k kQj; =Qjkdx, R p ——R "ptdx'.

(30)

(31)

where Ws„ is the Lie derivative with respect to the vector
field 5x =5xjc}j. Equation (35) is a generalization of (8).
In the case of K it gives

5K=5pK+d(5x JK)

5,(&ri) =8',5,8,'( t„"rt+D—s +dx; R t' dxj R t;)—
+ —,'5pl'j As;j, (36)

since K is a four-form. In effect the gravitation Lagrang-
ian does not contribute to (31).

The variation of the fluid Lagrangian which corre-
sponds to (34), according to (30) and (33), is equal to

C;=0. (32)

The last equation reduces to the one-particle Eq. (18) in
the case of dust, i.e., if p =0. One has to draw attention
to the presence of b, =5x'V'; in the second term of (30). It
gives a contribution to C;, which vanishes if the equation
for spin (17) is satisfied. In the case of fluids we cannot
postulate b,8j =0 as done in the case of particles, since it
might be inconsistent with dynamical equations.

One can observe that Eq. (17) can be written also in the

We are ready now to formulate the principle of least ac-
tion for test fluids. It reads 5 Lrtp=0 under the condi-0
tlons 5(g(j =0=5p1 jk and

5p8'
I
an=0=5x'

I a

The Euler-Lagrange equations resulting from (30) are the
equation for spin (17}which is formally the same as in the
case of a single particle and the equation

e = —t. (37)

.J .J (38)

The equations of motion (32) and (33) are contained in the
gravitational Eqs. (37) and (38) due to the differential
identities

where 1"j= I 'jkdx . The transformation formula

allows us to replace 5pI'j by 5pl'a and in effect to get rid
of the Ds; j term in (36). The result is

5p(Wrt)= —5p8'At, + ,'5pI"a As,—+d(s;j8',5p8j),

where t, =8', t; and s, =8,'8js;j. The last formula com-
pletes the interpretation of t j; and s",j as energy-
momentum and spin tensors, respectively.

The gravitation field equations resulting from the Ham-
ilton principle 5p f (K+ Wrt )=0 are

n8;Jq=—Ds;~+dx; h, t~+dxj ht; =0
because of identity (6) and the conservation law (19).

(33) j kDe, —Q, Aej —,R kj Acj

Dc'J =dx' h e' —dx' h e',
B. The IFravitationaI interaction

To describe the interaction of the fluid with gravity we
shall introduce the total Lagrangian four-form'

which foHow from covariance of K under diffeomor-
phisms and invariance under the Lorentz transformations,
respectively.
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