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Pauli quenching effects in a simple string model of quark/nuclear matter
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The method of thermodynamic Greens functions is applied to a nonrelativistic many-quark
model system. A color-saturated confinement interaction is introduced by considering nearest-
neighbor string configurations. The equation of state which accounts for the formation of three-
particle bound states is derived within a ladder Hartree-Pock approximation. The temperature- and
density-dependent energy shift of the intrinsic nucleonic system is calculated by considering the ex-
change symmetry (Pauli principle) between the quark constituents of the nucleons. The relation of
this nucleonic quasiparticle energy shift to nuclear-matter data is pointed out. It is shown that
beyond a critical density the nucleonic clusters are dissolved due to the Pauli quenching effects. The
hadronic-to-quark-matter phase transition is considered at zero temperature.

I. INTRODUCTION

Although there has been considerable success in under-
standing the properties of hadrons on the basis of their
quark substructures as derived within quantum chromo-
dynamics (QCD), a rigorous use of QCD for multihadron
systems is not yet in reach. Therefore, in order to gain in-
sight into the new qualitative effects and to obtain finally
calculable expressions, a more phenomenological ap-
proach has been established which is based on empirical
quark-quark interaction potentials, cf. Refs. 1—11. The
genuine quark interaction potential diverges at large dis-
tances and reflects in this way the confinement character.
This property is in contradiction to the behavior of ordi-
nary interaction potentials which in general can be adjust-
ed in such a way that they vanish for infinite interparticle
distances. Thus, being of no difficulty for bound-state
quark clusters such as mesons and baryons, the treatment
of a confinement potential requires some new ideas if a
many-quark system is considered.

Effective nonrelativistic Hamiltonian approaches,
where the confinement interaction is taken as the sum of
two-body confinement potentials, have succeeded remark-
ably well in describing properties of single hadrons such
as, for instance, the low-lying mass spectrum, magnetic
properties, etc. Furthtmnore, the effective quark potential
approach is also successfully applied to describe multihad-
ron systems and to calculate, e.g., the deuteron form fac-
tor, the nucleon-nucleon scattering phase shifts, the effect
of embedding a nucleon into nuclear matter [European
Muon Collaboration (EMC) effect], and others which
seem to signal the presence of the quark substructure in
the hadrons. For the extended literature on these subjects
the reader is referred to the recent reviews " and the
references therein.

In dealing with multihadron systems, the potential
model has to be modified in order to avoid unphysical ef-

fects as the color—van der Waals force between color-
singlet clusters. According to Oka' the confinement po-
tential for multihadron systems should satisfy the follow-
ing conditions: (i) additivity of two-body confinement
forces within color-singlet clusters; (ii) asymptotic separa-
bility of color-singlet clusters; and (iii) exchange symme-
try among the quarks (on account of the Pauli principle).
These conditions are considered within the string-flip
model of I.enz et a/. ,

' who formulated a nonrelativistic
quantum-mechanical approach to a many-quark system.

Independently, the concept of saturation of the two-
body interaction within colorless clusters was introduced,
to derive a quantum-statistical approach'3 to a nonrela-
tivistic quark potential model. One of the main tasks of
quantum statistics is the evaluation of the many-body as-
pects within, e.g., the grand canonical ensemble, so that
not only the ground-state properties of the multiquark
system, but those at finite temperatures and densities can
be calculated as well. Some of the important questions
which can be attacked within such an approach are the
behavior of hadrons embedded in nuclear matter, the
phase transition from hadronic matter to quark matter,
the response of the system to temperature and compres-
sion effects, and the modifications in the quark systein
within the noneqmlibrium state.

This paper is organized in the following way. We begin
our discussion in Sec. II with the introduction of the
model Hamiltonian for the multiquark system. In Sec. III
we derive in the spirit of the Bethe-Goldstone treatment
of the many-body problem an equation of state which re-
flects the clustered hadronic phase as well as the free-
quark phase. After having discussed the saturation of the
confinement interaction in Sec. IV, a simple model calcu-
lation is represented in Sec. V for the quadratic quark
confinement model potential. With the equation of state
which is based on a unique description of both the
clustered as well as the free-quark matter phase, the sta-
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bility of hadronic matter and the possible hadronic-to-
quark-matter transition is considered at zero temperature.
More realistic parametrizations of the equation of state
are considered in Sec. VI. There, the stability of nuclear
matter with respect to phase separation is studied. Con-
cluding remarks are given in Sec. VII.

II. MODEL HMrBL'IONIAN
FOR MULTIQUARK SYSTEMS

We will briefly outhne the underlying model to be em-
ployed for the calculations of the quark substructures of
matter. Within a nonrelativistic potential description, the
Hamiltonian for a system consisting of N quarks takes
the form

N

H = g(m;+p; /2m&)+ V(ri, . . . , rN),

where m; stands for the quark masses, and p; /2m; is the
kinetic energy. Usually, the potential energy is taken as
the sum over all pair interactions:

Vconf(r r ) g Vconf(& (2)
I &J

where V" (r,&) stands for the confining quark-model po-
tential acting between two quarks. In this approximation
the Hamiltonian formalism has successfully been applied
to describe the properties of color-neutral clusters of three
quarks (baryons) or quark-antiquark systems (mesons), cf.
Refs. 3—8. However, the expression (2} for the potential
energy cannot directly be applied to a many-quark system,
because unphysical effects such as the color—van der
Waals force and divergent total energy would arise.

To introduce a potential energy appropriate for a
many-quark system (matter} we consider an ensemble con-
sisting of an arbitrarily given color-neutral number of

e
G

FIG. 1. (a) String configurations attributed to identical quark
positions: two-body strings. 4,

'b) Three-body string and qq pair
creation.

quarks and antiquarks with given net baryonic charge and
make use of the adiabatic approach of Ref. 13. Accord-
ing to this adiabatic appmach, for a given state vector
(ri, . . . , rz) of the total system all possible decomposi-
tions into three quark of quark-antiquark color-singlet
clusters are taken into account within a string model. The
interaction potential is assigned only to those clusters
whose quark constituents are interacting via strings. The
resulting potential energy becomes then also a function of
the string configuration

V"""s(ri, . . . , r~,'string configuration)= g V""f(r; ) .
strings

(3)

This stringlike picture is illustrated in Fig. 1(a), where for
identical quark positions possible color-singlet string con-
figuration are depicted.

In the adiabatic approach the potential energy in (1) is
associated with those string configurations which give a
minimal potential energy at fixed quark positions:

V( r, , . . . , r~) =min[ V"""s(ri, . . . , r~,'string configuration)] .

The phenomenological many-quark model Hamiltonian is
then defined by Eq. {1}where the potential energy is cal-
culated according to Eq. (4). Three-body string configur-
ation as depicted in Fig. 1(b) are not considered in the
present work. Furthermore, the qq pair creations [cf. Fig.
l(b)], which become essential at high temperatures and/or
high densities are presently discarded. Also, color-
nonsinglet clusters as discussed, e.g., by I.em et al. ' will
not be considered here. The adiabatic approach may be
impmved by averaging over all possible string configura-
tions. Such a task is beyond the scope of the present
work.

We would like to stress that because of the definition of
a confinement many-quark potential (4) the interaction
energy is not simply given thmugh the sum of additive
pair forces as one knows from Coulomb systems, but the
apparent saturation property of the quark potential

V {r,&) may rather be compared with the homeopolar
binding within chemical compounds. The consideration
of the minimal string energies (4) implies that the string
interaction takes place mainly between next neighbors,
and this fact permits us to avoid the rather involved prob-
lem of determining the minimal string energy configura-
tion for given quark positions. Therefore, in the following
we restrict our. wives to next-neighbor string configm'a-
tions and introduce the distribution function of string
lengths c(r). Thus c(r) defines the probabihty that two
quarks at distance r are next neighbors (see also Sec. IV).
In doing so one can replace the complicated interaction
potential (4) by an effective one governed by the string
length distribution function c (r}:

Veff(p ) Veonf(p )c(„)
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Because of the appearance of the string length distribution
c(r) in Eq. (5), the resulting density-dependent effective
potential is no longer divergent for large interquark
separations, because c (r) decreases exponentially, cf. Sec.
IV.

Instead of the Hamiltonian (1) with the potential energy
(4) we consider in this paper the following effective nonre-
lativistic Hamiltonian:

H'rr=g(m;+p;z/2m;)+g V' (rJ) .

This form of the effective Hamiltonian has familiar prop-
erties met in many-particle physics and, therefore, can be
handled by making use of the known techniques of quan-
tum statistics. Setting formally V' =0, a free-quark
propagator can be introduced, and the interaction part can
be treated by perturbation theory and partial summations
(see the next section).

111. EQUATION OF STATE
FOR A MULTIQUARK SYSTEM

Starting with the Hamiltonian (6) and employing the
usual methods of quantum statistics, ' we derive now for
the multiquark system an equation of state which consid-
ers within a unique description the clustered quark phase
(nuclear matter) and the free-quark matter stage. Infor-
mation about equilibrium properties of a many-particle
system are contained in the correlation or Green's func-
tions. We start with the single-particle and two-particle
thermodynamic Green's functions, 6

& ( l,z} and
Gz(12, 34,z}, where 1=(p»a&) denotes momentum and
further quantum numbers such as color, flavor, and spin,
and the qmmtity z stands for the complex frequency vari-
able.

The quark momentum distribution function n(1), the
quark-quark correlation function p (r& —r2), and the

density (equation of state} n(P, p) as a function of the
temperature P ' and the quark chemical potential p are
then obtained according to

n (1)=f f~, (c0)lmG)(l, c0+i0),

1
p, ,(r~ —r2) = . g g Gz(p~a~, p2az, p~+q, a~,pz —q, ccz, Qq)exp[ —iq(r& —rz)],

o

(10)

The operator V containing the in-medium effects is usually described in diagram technique. An approximate form for it
including the Pauli-blocking effects is represented in Appendix A.

We solve Eq. (10) in perturbation theory and obtain, for the three-quark cluster (nucleon) energy,

E„p E„p+EE„p '. —— (11)

E„p is the unperturbed energy eigenvalue of the isolated three-particle cluster [left-hand side of Eq. (10)] of total momen-
tum P and internal quantum number v. The corresponding antisymmetrized eigenfunction is denoted by g„p. The shift
&4'„p ' accounts for the Pauli-blocking (phase-space occupation} due to the surrounding quark composites (with distri-
bution function f3(E)=[expP(E —3p)+1] ) and possible free quarks [distribution function f (1)]. As derived in

Appendix A, it takes the form

&E„p '=g
( 1(„p(123))

'[E(1)+E(2)+E(3)—E„p][f,(1)+f,(2)+f,(3)]
123

+$$$ P„'p(123)gyp (456)f3(Epp ) f 53@P„p(123)gyp (456)—1(„p(453)gyp (126)I
123 456 v'I"

X [E(1)+E(2)+E(3)+E(4)+E(5)+E(6)—E'„p —E&p ]

n(P, p) =—g n (1) .1
(9)0

Here 0~=2nA/( iP)+2@—with A, =O, +I,+2, . . . are the two-particle Matsubara frequencies, and f (co)=[expP(ru
—p~)+ I] is the quark Fermi distribution function. We consider a three-color model with two degenerated flavors
(u,d). The contributions of antiquarks (real and virtual) will be completely dropped (however, see the remarks on the
binding part of nuclear forces in Sec. V). Within this approximation scheme the baryon density nor coincides with the
density of quarks of given color and is one-third of the total quark density n, i.e., ns ——

3 n(P, p }

Applying the Matsubara technique, the Green's functions are evaluated by perturbation expansion as described by the
usual diagram notation. Following the lines of a treatment of hot nuclear matter' a Bethe-Goldstone —type equation
arises which is equivalent to an effective wave equation for a color-singlet three-quark cluster embedded in a medium
consisting of quarks which may form composites (hadrons):

3 3

g(m;+p; /2m; —E„phd„p(123)+g g V( (1J23,1'2'3'Hj„(lp'2'3') = —g V(123,1'2'3'Hf~p(1'2'3') .
i=1 i &j 1'2'3' 1'2'3'

g~Pauli, free, g~pauli, bound
vP + vP (12)
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The account of the Pauli principle has the important
consequence that the formation of a bound state is
quenched due to the presence of surrounding free particles

(f,(1)) gi~ing rise to ~&„p ' ' [first term on the right-

hand side of Eq. (12)] and bound states (fi(E„p)) leading
to E„p ' ' [second term on the right-hand side of Eq.
(12)].

In Ref 1. 5 a similar problem has been considered:
namely, the formation and destruction of bound states of
nuclei as deuterons, tritons, 'He and He embeddeded in
hot nuclear matter which may be produced in the course
of a high-energy nucleus-nucleus collision. It is clear that
the consideration of this Mott-type mechanism is also of
decisive significance in describing the nucleon properties
within the quark picture. Especially, when calculating the
equation of state the Pauli quenching mechanism controls
the destruction of bound states at high baryon densities
and, therefore, it has to be one of the main ingredients of
a general theory describing the transition from bound to
free quarks within a unique model. But as we will see, the
consideration of the Pauli-blocking effect plays already an
important role in understanding the properties of hadron-
ic matter at nuclear matter saturation density.

Notice that in (12) the Pauli principle is realized also at
the nucleonic level; i.e., in the summations over v'P' the
terms v=v' and P =P' in the curly brackets cancel, be-
cause P =P' demands P3 Ps fo——r the quark momenta.
Such a compensation is also known from the Hartree-
Fock approximation and forbids the interaction of a nu-
cleon (vP) with another nucleon in the same state. Of
course, since the nucleons are not elementary particles, the
underlying ccnnmutation relations for these composites
are not purely fermionic but contain density corrections.
Howevei', tll lowest-density ordei' [as is the case of Eq.
(12)], the fermionic character of the nucleons is retained.
This is in agreement with the general scheme that com-
posites behave in the low-density limit as elementary par-
ticles.

Applying perturbation theory, '' the quark momentum
distribution function is derived from the single-particle
Green's function,

n (1}=f,[E(1)+di(1)]

+g g f3(F. p+&~„p ')
( g p(123) (

', (13)
23 YP

and can be divided into a single-particLe contribution and
a bound-state contribution. In the single-particle contri-
bution, the quantity b,(1) is the single-particle energy shift
of a quark, and in Hartree approximation it is given by

The equation of state (9} is obtained from (13) by sum-
ming over the variables 1=(p&,ai). Having the density
n (p, T} at our disposal, the free energy per quark f fol-
lows from

f(ns, T) f(na, T)= I —IJ,(ns, T)dna
5g

~a "a

and permits us to calculate further thermodynamical

quantities via this potential with respect to the baryon
density na and the temperature T .Especially, at T=0
the free energy coincides with the internal energy
E=Ei„„+E~, per quark and is related to the single-
particle energy shift b of a free-quark system according to

5(ns, T=O)= [ngE~, (na, T=O)] .
BNg

The approximation scheme developed in this section
permits one to evaluate the quark Green's functions in
such a way that the composite formation and statistical
correlations (Pauli principle} can be taken into account.
Therefore, we are able to study the transition from a ha-
dronic phase, where bound-quark states dominate, to a
state of free quarks within a unique picture. As we will
show below, this transition is mainly controlled by the
Pauli quenching mechanism. Of course, our approach al-
lows also for more sophisticated approximations concern-
ing the correlation function„but at present we intend to
discuss the simplest nontrivial approximation which in-
cludes the new features and is of fundamental interest to
develop a general theory.

IV. SATURATION OF THE CONFINEMENT
INTERACTION

A main ingredient of our approach to the thermo-
dynamical description of a confinement interaction model
is the concept of saturation of the interaction within
color-singlet clusters, i.e., within different cluster decom-
positions of a given distribution of the quark locations
[see Fig. 1(a)]. The most preferable configurations are
those of lowest energy of the strings. Considering the
time evolution of the quark system the strings are allowed
to flip from one configuration to another. The distribu-
tion of the lengths of different strings is calculated as
done in Ref. 13 by utilizing the methods of statistical
physics. In so doing we introduce the probability

pr r (ri2) that for a quark located at r~ with color y& the

next-neighbored quark with color y2 is found at r2. This
concept of saturated strings is in close analogy to the
quantum-mechanical treatment of the string flip model by
Lenz et al. '2

In contrast with the two-quark distribution function

p~ ~ (r„ri) cf. Eq. (8) which represents the density of two

quarks being locatei at (ria, ) and (r2a2), respectively, and
which is normalized through

(17)

the probability p „(r&2}that two quarks are next neigh-

bors is normalized to unity, i.e.,

d r&2p„(r,2)=1 .

The prefactor —,'6 on the right-hand side {RHS) of Eq. (17)
reflects the two-spin and two-fiavor degrees of freedom.

Let us denote by O&c(r) &1 the probability that a
quark found at distance r from a given point is the next-
neighbored one of this point. The probability distribution
c (r) is then determined through the integral equation
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n (r) =n (r)c (r) + f, d r'pz(r —r')c (r'), (19)

where n (r) is the quark density distribution and pz(r —r')
is the two-particle distribution function. (At the moment
internal degrees of freedom of the quarks are discarded. }
The second term on the RHS of Eq. (19) takes into ac-
count that within a sphere of radius r a further particle
may be found at r' being the next-neighbored one with
respect to that at r =0, so that the particle located at r is
no longer the next neighbor.

For the case of independent particles with density
n(r)=no ——const and pz(r —r')=no Eq. (19) has the solu-
tion

4mc (r) =exp — nor
3

(20)

The function p(r) =noc(r) gives now the probability that
the next neighbor is found at distance r from the reference
point located at r =0. [Remember, that a quite analogous
distribution function p(r) is used in solid-state physics to
describe the distribution of donor-acceptor separation in
doped senilcoildllctors. ]

The probability to find a next neighbor with given color
yz at distance riz from a quark with color yi one calcu-
lates in the same way as (20}. For the uncorrelated medi-
um one obtains

(2) 4m
p„r (r)z) =nziexp — nzir, z

1 2 3
(21)

In the case of a correlated medium the evaluation of the
nearest-neighbor distribution is a rather involved task.
For details we refer to Appendix B.

For the subsequent derivations we divide the multi-
quark system into free quarks and quarks in bound states.
Furthermore, in calculating the interaction between un-
bound quarks any correlations in the distribution function
are neglected. This corresponds to the independent parti-
cle picture described within the Hartree approximation
(for the exchange contributions see Appendix A). The ef-
fective interaction between two free (unbound) quarks is
then given by

=V" (riz)pr r (riz)/ning,

where the probability that a string between the particles at
r„rz will be realized is accounted for by the function
c(r). Inserting (20) or (21) into (22) one sees that the ef-
fective mean potential V' (riz) vanishes for r»~ ao, al-
though the confinement potential V"" diverges. This
desirable feature of the nearest-neighbor approximation
introduced above does also apply in the general problem
of a correlated medium, because the normalization condi-
tion (18) has to be satisfied in any case. Therefore the sa-
turation of the confinement interaction removes the diver-
gencies occurring, e.g., in the virial expansion with a con-
finement potential V "(riz). This Hartree approxima-
tion together with the resulting saturation properties may
also be applied to the quark-antiquark interaction in the
case of finite temperatures T&0 (see Ref. 13).

Notice that the Hartree approximation (uncorrelated
quark distribution) reflects the quasifro: motion of the
quarks under frequent changes (fiips) of the string interac-
tion. This approximation is only justified in the high-
density case (overlapping nucleons) but is not applicable
for the low-density phase where matter is built up by nu-
cleons and where strong correlations occur among the
constituent quarks. It is an advantage of our approach
that the appearance of correlations (cluster formation) in
the low-density case is automatically taken into considera-
tion, see Secs. V and VI.

For only three-quark color-singlet clusters as considered
in this paper, the distribution of two quarks in a three-

uark cluster cannot be calculated via p'r, 'r, (riz). This is

because any two quarks denoted by 2 and 3 must not be
next neighbors if quark 2 is next neighbor to 1 and simul-
taneously if quark 3 (different color) is also next neighbor
to quark 1. In this case a string separation of wrong size
between the quarks 2 and 3 may occur. For independent
particles (see Appendix B) the following approximate
two-particle probability for the two-quark separation dis-
tribution within a composite of three quarks (color sing-
let} can be obtained:

p'„'„(riz)= —,na f dx f dzx exp[ —x —(x +y —2xyz) ~ ], y =(4mnzi/3)'~ riz . (23)

This distribution function 4nr» p'r '„,(r») is shown in

Fig. 2 together with the probability distribution function
Eq. (21) of free quarks 4mr» pr '„(r,z). It is seen that

compared to the free pair distribution p the pair distri-
bution in three-quark systems has a maximum value shift-
ed to larger string lengths. This is due to the fact that the
minimum potential energy of a three-quark cluster is not
always found from next-neighbor string configurations.
The difference in the string distribution functions p' ' and
p' ' leads to different mean values as

(.»')"'=2.0& r „'&"'=0.695n, -z~',

&
~

r „~ &"'=1.4(
~

r„[)i"=0.774n, -'",
( [ r» ]

-')&"=0.74(
[ r» [

-')"'=1.620n, '" .

Since free quarks move in the uncorrelated medium rela-
tively freely, the strings may flip rather frequently from
one next neighbor to another, whereas quarks which are
bound into clusters are strongly correlated. %'e suppose
that the interaction must be operative during a long time
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rate correlation effects. The approximation made here
resembles the analogous treatment of a plasma when
bound and scattering states are energeticaHy wel1 separat-
ed. In this case, scattering states behave differently from
bound states and may be treated in Born approximation,
whereas the bound state is treated by considering an infin-
ite ladder sum. However, this picture is not well justified
if the bound states merge into the continuum of scattering
states (Mott transition).

We would like to emphasize that for color confinement
the three-body correlation should also be incorporated.
The decomposition of the three-body correlation into
two-body correlations and the use of a modified two-body
nearest-neighbor probabihty as given by (23) is an approx-
imation to the three-body correlation appearing in the sys-
tem consisting of unbound quarks.

V. MODEL CALCULATIONS

0 1 2 3
string length

FIG. 2. Probability distribution of string lengths for uncorre-

lated quark distributions as a function of the reduced length

y =r &2(4n n~/3)'~3 (sca1ing 1 fm for nuclear matter density po).

interval in order that a bound state can be formed in the
spirit of the infinite-ladder summation procedure. That
is, we assume that the constituents of a bound state
remain next neighbors for a long-time instant and that the
resulting effective interaction potential associated with the
rather stable bound-state string configuration is not af-
fected by the presence of other particles.

Bearing this in mind, we take for V' (rii) the un-
screened confinement interaction V "(riz) within a
color-neutral bound-state cluster but for free quarks we
shall employ the interaction V (ri2)c(ri2), which is
screened due to the saturation by next neighbors.

Iil principle, tllc dctcriillilatloil of c(ri2) aild V (rig)
should be performed self-consistently in order to incorpo-

In order to demonstrate the applicability of the theory
developed in Secs. III and IV and to discuss the conse-
quences of the Pauli-blocking mechanism, we study a sim-
ple model case with the confinement potential

2

V (ri2)=nf ~~ 2

2
(25)

E„g—— P +3v 3co+3m,
6m

(26)

where the internal quantum number vo denotes the ls
state in the proton (P T,P 5 ) or neutron ( n T, n t) configura-
tion. The corresponding wave function for the isolated
three-quark bound state reads '"

This simple quadratic confinement potential has also been
employed in recount investigations within the string-flip
model. ' A more realistic model of confinement quark
potential is considered in the next section.

One of the main advantages of the quadratic confine-
ment potential (25) is that the three-particle Schrodinger
equation can be solved exactly. The ground-state energy
for the isolated nucleon is (R=c =1)

(123)=5(P Pg)(v 3b /m) —exP( —b Pg, )exP( —3b Pg /4)Pspo„)(123), (27)

b =(v 3m~) '=((r, —R) ) =(riz )/3; Ps ——p&+pz+p3, '
p&

——(pi —pi)/2; p~,
——(pi+p2 —2p3). The spin-

flavor-color [PsFc&„~] part is antisymmetric in the color variables, but symmetric with respect to SF, and has the more

explicit form'

I
Pspc(z )(123)= &6y18

(2u Tu Tdi+2u Td Ju T+2d tu Tu T —u Tu Jd T
—u Td Tu t —u tu Td T

—u td Tu T

—d Tu Tu l —d Tu tu T)det
I
RBG

I
.

Making use of a perturbative treatment, the energy shift && '"", Eq (12), due to the Pauli blocking can be expressed in
terms of the wave function (27). Handling carefully the SFC part, the resulting energy shift of the three-quark system
due to the presence of bound states (nucleons) in the surrounding medium is



PAULI QUENCHING EFFECTS IN A SIMPLE STRING MODEL. . . 3505

as""' '= HAPP [[204—2v3b'(P+P p]e-"-""""
32vm mbP

—[51 2v—3b (P+P') ]e ' p' ~3]f3(E„g ) .

5/3
17v3 b'

+ 60v- 2
"' (33)

which can be interpreted as the equation of state for the
case where a bound-state quark cluster (nucleon) is sur-
rounded by only bound-state quark clusters (nucleons). In
other words, we have deduced an equation of state of ha-
dronic matter in a simple approximation, where in addi-
tion to the ideal Fermi-gas treatment of the nucleons the
Pauli-blocking effects due to the quark structure are taken
into account.

We have evaluated the shift b!L =p(na, T =0)
p, (nz ——O, T—=O), see Fig. 3. The parameters m =350

MeV, b =0.59 fm entering (33) have been taken from Oka
and Horowitz, " who were able to describe the low-lying
nucleon energy spectrum and the 'Se nucleon-nucleon
scattering phases at high energies. Especially, the fairly
good reproduction of the high-energy nucleon-nuciten
scattering data within their string-flip model stresses the
importance of retaining the antisymmetrization among
the quark constituents in order to generate the repulsive
part of the nucleon-nucleon interaction. This effect is
well known from the interaction between atoms or mole-
cules, where, bscause of the consideration of the Pauli
principle with respect to the electrons, effective potentials
lexeme apparent which are strongly repulsive. Also in
our approach, which for the two-nucleon problem is very
similar to that of Oka and Horowitz, " it is expected that
the scattering phases are reproduced for high energies.
Vfe are, however, not interested in these two-nucleon
characteristics but rather in the bulk properties of nuclear

Here, at T =0 the P' integral is restricted to the region
P'&Pz, where Pz denotes the Fermi momentum of the
hadrons corresponding to the hadronic density n),

Pp (3r——r na/2)' (30)

Expanding the integrand of Eq. (29) with respect to P,P'
one has, to lowest order,

gEPSU)i, boall(l [ I (Pll )$ i (P/l)ipse]
32 %PE

For T =0, and according to Eqs. (9) and (13) the energy
shift && '

& at the Fermi momentum is related to the

quark chemical potential p through

EO +g~ Pauli, bound

+OF OP

Let us briefly discuss the case of completely hadronized
quark matter, na ——'na. With (26), (31), and (32) we have
the relation

2/3

p(na, T =0)=v 3ro+m+ rid
1 3

18m 2

rnatter described within an underlying quark picture. One
interesting quantity to be studied in the many-body sys-
tem is the chemical potential, because according to the
well-known Beth-Uhlenbeck formula the scattering phase
shifts determine the thermodynamic properties of the sys-
tem. Thus, instead of comparing with experimental
scattering phases we are attempting to compare with re-
sults inferred from a theoretical description of known nu-
clear matter properties at zero temperature.

Here we considered only the antisymmetrization among
the ~uarks. However, it was pointed out by Oka and Ya-
zaki (see also Ref. 4) that the spin-spin interaction be-
tween the quarks plays also an important role in calculat-
ing the effective repulsion. The spin-spin contribution
( I,J '") is considered in the next section.

Let us first consider in Fig. 3 the shift of the chemical
potential L)!t. which gives us information on the relevance
of the Pauli-blocking effect. An essential feature of hp is
its steep increase with the baryon-number density n~.
This is solely due to the consideration of the Pauli princi-
ple with respect to the quarks. The blocking of phase
space by the surrounding hadrons quenches the considered
bound state implying that the bound state itself becomes
energetically unfavorable. Notice that this effect is not
linear in na, but proportional to nzs~, which arises from
the consideration of the Pauli principle with respect to the

8 ~0-

0

-10- ~r quark—

0.1 0.2
Density (fm 3) ns

FIG. 3. Equation of state hp from Eq. (33),
~p =p(&g, T =0)—p(ng ——0, T =0) compared with the Skyrme
expression (34) and Skyrme without binding [a =0 in Eq. (34)].
Furthermore, the free energy per quark (35) is presented which
coincides at T =0 with the internal energy per quark.
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hadrons, i.e., the consequence of the fact that not only the
self-energy diagram but also the hadronic exchange dia-

gram has been taken into account, cf. (A6).
It is now interesting to see how these results for hp

compare with an empirical fit to the chemical potential of
ordinary nuclear matter. %e take the Skyrme-type pa-
rametrization of Vautherin and Brink' widely used to
calculate nuclear matter (NM) properties:

' 2/3

3~NM = ns +anil +bns +cns (34)
2M 2

with the choice of parameters a = —792.97 MeU fm3,
b =125.225 MeV fms, c =2711.9 MeV fms, M is the nu-

cleon mass. The free energy per quark f(ns, T=0}
=f(nz ——O, T=0)+Sf of nuclear matter at zero tem-
perature is obtained according to (15}:

2/3

35fNM= ns +

ianna+

g bns + 3 cns
3 3ir 1 3 5/) j

and coincides with the internal energy per quark of nu-
clear matter at T =0. The parameter choice of Vautherin
and Brink' fits the empirical nuclear matter data; i.e., the
minimum of the free energy is found at po

——0.17 fm
with the binding energy per nucleon Es ——16 MeV—(see
Fig. 3).

The binding properties of nuclear matter are accounted
for by the linear term in the density in Eq. (34). Of
course, within our simple approach we do not reproduce a
binding part of the hadron-hadron interaction. This may
be realized by the exchange of virtual pions, i.e., by virtual
quark-antiquark excitations neglected in our approach.
Disregarding the binding property of the Skyrme parame-
trization, i.e., considering ApNM by setting a =0 in Eq.
{34), then the shifts &!~ and hp~M agree surprisingly well

as can be seen from inspection of Fig. 3. We are aware of
taking this agreement too seriously but it may indicate to
what extent a nuclear matter equation of state based on a
quark picture may reproduce some of the expected
"empirical" properties of nuclear matter.

Notice that the expression {29)permits us also to study
the temperature dependence of the Pauli-blocking or
phase-space occupation due to the quarks forming com-
posites and the free quarks as well. In a recent paper' the
effective mass has been calculated for a nucleon moving
in a finite-temperature medium. It turned out that for
T =0 the results coincide surprisingly well with those ob-
tained from ordinary Hartree-Fock calculations. The
solution of the effective wave equation corresponding to
the Bethe-Goldstone equation (A3) leads to temperature-
and density-dependent nucleonic wave functions permit-
ting us to estimate the increase of the average nucleon ra-
dius due to the presence of matter (EMC effect}.

In perturbation treatment and by using the wave func-
tion (27), the shift of the nucleon energy due to free
quarks is given by

'2

b, E„&"'' — J— dpp[7 —3b (P/3 —p) ]exp — b ———p f(E~) (36)

and illustrates that free quarks are very effective in block-
ing out bound states. This effect results in a large shift
especially for P=O. With increasing density the states
near P =0 are shifted so far that the formation of bound-
state clusters with P&0 in free quark matter becomes
more favorable.

The free-particle energy shift rP in the Hartree approx-
imation is evaluated after replacing the confinement po-
tential V (r) by an effective density and temperature-
dependent potential V' (r) as introduced in Sec. III, and
therefore the determination of the Hartree shift should be
done with care. The basic idea behind the Hartree ap-
proximation is that the pair-distribution function is as-
sumed to be uncorrelatixi, p, ,(r,z) =ns j16. The poten-

tial energy per quark E~, for the free-quark system fol-
lows from the string energies, and with (20) and (21} we
have in a system of free quarks

3r yeff p (37)

Making use of relation (16) and under consideration of
(24) olie fiilds

gH ~~ {r 2)(3)r12

+0 0386 ~ 2/3+ ~
mb4

(39)

The most striking effect in the free quark system of low
density {neglecting all correlations between the quarks} is
the increase of energy and chemical potential when de-

creasing the density. This is in contrast with the nuclear
matter properties at low density and is the consequence of
the confinement phenomenon. In this low-density case,
the confinement potential is saturated at large mean dis-
tances.

The general equation of state p(na, T =0) is obtained
for a homogeneous system from Eqs. (9) and (13) where
bound states (hadrons) as well as free quarks may occur.
The result for the quadratic confinement potential is
shown in Fig. 4(a). At low density, the chemical potential

p of the hadronic matter is lower than the free-quark

In the case that all bound states are blocked out (quark
matter) the equation of state is immediately evaluated.
The associated chemical potential takes the form

' 2/3

p(ng, T=O)= 1

2'



PAULI QUENCHING EFFECTS IN A SIMPLE STRING MODEL. . .

-- nucl. 80nIG

t I l I

0.05

jnucleonic
/ salute@

ee quark
sohton-

0.1

condition that the hadronic phase is stable is satisfied. In
order to simulate the case of a stable hadronic phase
below a critical density ns, a model calculation for the
quadratic confinement potential having no degeneration
with respect to spin and flavor is shown in Fig. 4(b}. In
spite of the fact that the results in Fig. 4(b) are not realis-
tic because of neglect of spin-flavor degeneration, they il-
lustrate clearly that the stability of hadronic matter is
very sensitive to the spin and flavor degrees of freedom.

The model calculations of this section have shown that
some important features of the empirical nuclear matter
properties can be well reproduced on the basis of the
underlying quark substructure. However, the more reli-
able calculation of the transition region from stable ha-
dronic matter can only be achieved vnth a better potential
model to be considered in the next section.

VI. MORE REALISTIC MODEL CALCULATIONS

I

8xlg4&Q+
PBQIOfl

1 I

I I& 1 i t i l i (

0.05 0.1
reduced densit)t ns b'

FIG. 4. Equation of state y, {ns,T =0) for the quadratic con-
finement Eq. {25). (a) Fourfold spin-flavor degeneration, (b) no
spin-flavor degeneration.

3,6'

Hartrec energy, so that the free-quark states cannot be oc-
cupied. Thus, we have a system of hadrons in the envi-
ronment of hadrons. If the baryon-number density is
larger than the value ns ——0.021b I, the free-quark Har-
tree shift becomes smaller than the bound quark chemical
potential so that the free-quark states can be filled. Be-
cause of free quads, the bound-state energy is lifted up so
far that the system may flip suddenly to the free-quark
solution. No solution of (13) has been found which corre-
sponds to a partially hadronized quark matter. Going
from high to low density, the free-quark solution for
p, (nil, T =0) indicates that the formation of bound states
embedded in surrounding free-quark medium is allowed
for densities below ns ——0.015b

An important feature of the equation of state is that it
gives information on the thermodynamic stability of
matter 1«he condition «Sta»»ty ~jl/~nial I T=O&0 ls
violated, the homogeneous state becomes unstable with
respect to phase separation. The region of the two-phase
coeltlstence is obtained from a Maxwell construction in
the representation II, =jj(n&, T) or„more generally, from
the double tangent construction for the free energy.

For the simplified quadratic confinement potential
model and degeneration 4 with respect to spin and flavor
(SF), llo stable hadl'olllc nlattcr is obtaillcd, scc Flg. 4(a),
because the absolute minimum of the free energy occurs
in the free-IIuark phase at too-large densities of about
ns 0.24b . In th——e next section we show that for a
Illole rca»stjc model of collfillcnicllt quark potential the

Applying the quark potential model to real matter, the
form of the potential must be better specified and
pararnetrized. For instance, one may use a potential simi-
lar to those treated in the very successful approaches to
six-quark systems: '"

b Vj( 1+—s;sj )+U(r j ),1 8

16m

1 + ycoflf
lJ

1V"=—o,jJ S
,. ~

f"(ns, T =0)=313+24.75ns i —132.16ns

+301.32ng + 15.65ng (41)

In U(r j } further short-range modifications of the quark-
quark interaction (e.g., tensor farces) are collected which
are dropped here. With C=O, C=O, this choice of the
quark potential coincides with that of Oka and
Horowitz. " Taking their parameter values a, =1.77,
nI =350 MeV, a = —,

' 230 MCV/fm one reproduces not

only the baryon data but also the NN scattering phase
shifts at high energies.

For the sake of continuity we will utilize this set of pa-
rameter values and take C =54.48 MeV to adjust the nu-

cleon mass (see Appendix C). For the variational parame-
ter b in the Gaussian-type wave function (27) the optimal
value b =0.59 fm ' is obtained by minimizing the nu-

cleon binding energy.
%ithin this more realistic quark potential model, the

free energy per quark f at zero temperature as function of
the baryon density n~ is shorn in Fig. 5. In the hadronic
phase, the energy shift &&„' ' due to the Pauli-blocking

mechanism is calculated from the wave function of the
three-quark bound state and the quark mass, cf. Eq. (12).
Because the quark-model potential does not appear explic-
itly, one may use the results obtained in Sec. V. It was
found that the empirical nuclear matter result' for the
free energy f"per quark (in MCV„ns in fm )
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FIG. 5. Equation of state f(ns ', T =0) for a realistic quark
potential model, Eq. (40)„according to Eqs. (41) and (42). The
empirical version, Eq. (41), of the equation af state in the ha-

dronic phase includes a binding part, cf. Fig. 3. Double tangent

construction gives two phase transitions: from ng ——0 to nuclear
matter density ~ and the quark/nuclear matter phase transition
(see the insertion).

model calculation at zero temperature. The first one is
the liquid-gas-like phase transition in nuclear matter.
At zero temperature the associated region of instability
reaches from ns ——0 to nuclear matter density ns ——po
=0.17 fm . This phase transition exists for tempera-
tures lower than a critical one of about 15—20 MeV. The
second phase transition is associated with a transition
from nuclear matter to quark matter and occurs at density
values between n~ ——4.26po and n~' ——5.43po. This can be
seen from the double tangent construction displayed also
in Fig. 5. The density values for the transition region are
in reasonable good agreement with the findings of other
approaches. '

The results of the calculations shown in Fig. 5 illustrate
that within the more sophisticated confinement potential
model (40) which reproduces the properties of nucleons
and two-nucleon characteristics, also a phase transition to
quark matter is obtained. The nature of this new phase is
characterized by the absence of bound states (nucleons)
which are dissolved by virtue of the Pauli-blocking mech-
anism. A similar effect is known in nuclear matter as
well as in plasma and solid-state physics (Debye screen-
ing) where it is called the Mott effect. A Mott mecha-
nism due to color screening was recently studied by
Satz. This mechanism is not considered in this paper in
which the action of the Pauli principle has been taken into
account.

There are further potentials discussed in the literature
such as, e.g., a hnear confinement potential

Vp)" ———', (A,r,j+C), (43)

—212.03a,ns'"

+15.85X10 0., n~
1

+57.82' 10 e+C+m . (42)

Since an averaging over the spin states has been per-
formed, the spin part of (40) does not contribute to the
free energy f

The free energies per quark for the hadronic phase as
well as the free-quark phase are given in Fig. 5 as a func-
tion of ns '. Possible phase separation regions due to the
appearance of a first-order phase transition are obtained
from a double tangent construction. As shown in Fig. 5,
two distinct phase transitions are obtained from our

can also be reproduced in a good approximation within
our approach if one would add to (29) an empirical
binding-force contribution [see also discussion below Eq.
(35)]. A quite similar situation exists in calculating the
N-N interaction. "' There the attraction between nu-

cleons may be introduced as the effect of a meson cloud
which has not been considered here.

According to (37) and using the quark potential (40) the
free energy per quark in the free-quark phase is given by
the expression (cf. Appendix C)

f ' (ns, T=O)=69.72X10 ns +06—95an
1

and the incorporation of the confinement potential into
the Darwin term and the spin-spin term. Different pa-
rameter values were considered by adjusting the low-lying
baryon masses. The dependence of the equation of state
on various parameter-value choices is discussed in Appen-
dix C, and we show that the gross behavior of the equa-
tion of state and the occurrence of a phase transition is
not influenced remarkably by different forms of the
quark-quark potential.

Before the nuclear-to-quark-matter phase transition
found in our model can be brought in close connection
with the expected phase transition in real matter one has
to investigate further mainly two problems: (i) to what ex-
tent the approximation scheme in deriving the equation of
state within the potential inodel is correct and (ii) how
realistic the use of the potential model for overlapping nu-
cleons is. With respect to (i), the influence of the quark
potential parameters, the effect of virtual quark-antiquark
excitations, the extension of possible string configurations
including three-body string and non-next-nearest interac-
tions, and the inclusion of further diagrams in evaluating
the Green's functions seems to be of vital interest, and
should be the subject of further work. I.et us remember
that Horowitz et al.9 solved the Schrodinger equation for
a quark potential model using numerical methods. How-
ever, they could not observe a phase transition because a
one-dimensional problem was solved. Furthermore, they
considered a system with a finite number of quarks. It is
worthwhile to note that the qualitative behavior of their
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results with respect to the pair correlation function coin-
cides with our findings that the bound-quark states are
dissolved with increasing density. In a recent paper by
Horowitz the calculations of Ref. 9 has been extended to
the three-dimensional case. He also found that the quark
correlation function is significantly modified if a nucleon
is embedded in nuclear matter.

With respect to (ii} we should in general expect that the
quark potential model may only be applied for density
values of quarks which do not exceed the density within a
nucleon. As is well known, at high densities another form
of the equation of state of matter is obtained from pertur-
bative quantum chromodynamics (see Ref. 23). The re-
gion of applicability of the simplified quark potential
model can only be established from a more fundamental
derivation of this model within @CD. Finally it should
also be remembered that one has to pass from the equili-
brium thermodynamics to a nonequilibrium theory if one
is looking for the effects of the equation of state of
quark/nuclear matter in high-energy collision processes.

APPENDIX A. APPROXIMATE EVALUATION
OF THE GREEN'S FUNCTIONS

Let us use a diagrammatic representation, so that the
Dyson equation reads

The self-energy X( l,z) is represented by a cluster decom-
position which gives in the ladder-Hartree-Fock approxi-
mation, cf. Ref. 15,

(A2)

where I„" denotes the bound-state part of the n particle I
matrix defined according to

VII. CONCLUDING REMARKS tn I: %,n (A3)

Our main task was to try a unique description of quark
and nuclear matter within a simple quark potential model.
Before applying the standard formahsm of the many-body
theory, we had to realize the saturation property of the
string interaction so that the particularities due to the
confinement interaction can be removed. The most im-
portant in-medium effect which has to be incorporated is
the action of the Pauli principle between the quark con-
stituents of the nucleons. The Pauli-blocking gives rise to
a shift of the nucleenic quasiparticle energies in depen-
dence on baryon-number density, temperature and nu-
cleon momentum. It is interesting to remark that such a
model calculation reflcets quite well the short-range
behavior of the empirical Skyrme interaction in nuclear
matter and can be immediately extended to finite-
temperature values. A consequence of the Pauli-blocking
is that the bound-state quark clusters (hadrons) baxime
energetically unfavorable at high densities, so that a tran-
sition to a free-quark phase takes place. The quark poten-
tial model permits us to apply the methods of quantum
statistics, but in general its range of applicability has to be
determined through QCD.

One of the authors (H.S.} is indebted to the Niels Bohr
Institute for the kind hospitality extended to him and the
DaIlish M1Il1stry of Education for flIlallcial support.

with

n

Vi „(1,. . . , n, l', . . . , n')= g V(li, l'i') g 5J&'
i=2 j+l, i

(which has to be antisymmetrized),

K„=g VJ(ij,ij'') g 5ki, +ddC„;
i &j k~ij

G„(l, . . . , n, l', . . . , niQ„)

1

zi E(1)—
1

0„—zi — —z„ i
—E(n)

(A4)

In (A2), the Fock term has not to be considered because
interaction between quarks of equal color does not occur
in our model. Furthermore, two-body bound states (Iz}
are not considered because antiquark and meson forma-
tion is not treated within this paper. For the more general
case see Ref. 13. Therefore, only the Hartree term and the
three-particle cluster (nucleon) contribution ( I

& ) survive.
Now, let us consider II more in detail. For 61 we find
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In calculating the medium effects we have to sdect out
the relevant diagrams contributing to ~„.We choose

ty according to (7). In (AS) we remark that no self-energy
is considered, because the interaction is restricted to be
operative only within the three-body clusters.

+ b + CyCL

(crosses denote amputation at equal time), and we give the
following arguments: Generally, a t matrix has a struc-
ture as depicted in (A7)

exchonge port

(A7)

It consists of a forward-directed part with interactions, an
exchange part, and a backward-directed one determining
the order of fugacity. We are looking for terms which are
proportional to the free-particle density (one backward
line) and those proportional to the cluster density [one
clustered backward line, see (AS)]. Furthermore, we con-
sider interactions only within color neutral composites,
not between them. In the spirit of a Born expansion the
following types of diagrams should be regarded:

APPENDIX 8: NEXT-NEIGHBOR
DISTRIBUTION FUNCTION

The determination of the distribution of string lengths
for a given configuration of quark positions is a rather in-
volved problem when dealing with correlated quark
matter. The quantity to be optimized is the potential en-

ergy which is proportional to {',
I rii I ) according to the

choice (25) of the potential. The rigorous solution of this
problem can be given here only for the case of two-
particle clusters in uncorrelated quark matter. For this,
the solution (20) of (19) can immediately be used for the
string distribution, because quarks of different color are
considered as statistically independent. An exchange con-
tribution leading to a Fock term in the mean potential en-

ergy will not occur because the interaction V "(r,z) van-
ishes if both colors coincide.

Another solution of Eq. (19) denoted by c"' '(r) is ob-
tained from an expression for p&(r r') tak—ing into ac-
count the formation of a Fermi hole. For a system of
identical fermions having no internal degrees of freedom,
the pair distribution function p2{r r') at —T =0 behaves
near r =r' hke (r —r') due to the Pauli principle. From
(19) it follows that, for small values of r,

(AS)
c"' '(r)=exp( —ar ) . (Bl)

The first one (i) is always contained in 6& and has to be
dropped. Diagrams (ii) and (iii) are the relevant ones and
can be transformed in those given in (A6). A further ex-
change of lines in {AS) gives no topologically new terms
and must not be considered.

This selection of relevant diagrams is equivalent to the
introduction of a chemical picture, where bound states are
treated on the same footing as free particles. For the
evaluation of the diagrams, the solution of the t-matrix
equation or the corresponding homogeneous wave equa-
tion (effective Schrodinger equation for a thrix:-particle
system with an effective potential containing the influence
of the surrounding medium) and the use of perturbation
theory we refer to standard textbooks (see also Ref. 15).
%e remark that within a more sophisticated approxima-
tion the three-particle binding energy E„p in Eq. (12) will
be replaced by the kinetic energy of the bound state.

The approximations for the two-particle Green's func-
tion (S) are performed in the same way as for (A2):

(1- cf,)}+..

Adopting this functional dependence for the entire space,
the parameter a can be determined by the normalization
condition {18)and takes the value a =3 743nz.

In this paper we took for the model calculations two
spin directions and two fiavors. Since the Pauli principle
acts only between quarks of identical spin and flavor, the
formation of a Fermi hole is strongly reduced and is final-

ly neglected in the subsequent calculation.
Let us now consider the probability distribution

p'r, 'r, (ri2) for the two-quark separation within a three-

quark color-neutral singlet. The problem of the deter-
mination of the string length distribution function

p'r, 'r, (r i2) for a system of uncorrelated quarks with three

quark cluster configuration of minimum confinement en-

ergy also cannot be solved in a rigorous manner. I.et us
consider the probability that three next-neighbored quarks
with respect to a given central point ( r =0) are located at
r&, r2, r3. The two next-neighbored quarks are then distri-
buted with the density

T

pr~ "r,(r, , r, ) =ns'exp — ng( I
r i I

'+
I
r2 I

')

which 18 solved by standard methocis. Notice that == — 1S

immediately connected with the total single-particle densi-
The probability distribution of the distance r&2 ——r& —r2
between these nearest neighbors is obtained from

4mri2Pr&r~ ri2 —— d ri d r2na exp —
3

na{ lr& I +1~2 I
) @ 12 [rl + 2 2rlr2cos{e& e2)1

2 (3] 3 3 2 3 3 2 2 1 /2 (83)
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which leads to Eq. (23) after performing some integrations.
Notice that the distribution (82) corresponds more naturally to the three-body string configuration, cf. Fig. 1(b), which

may be energetically favored, and especially a permanent string-flip process in the free-quark matter state may be
represented more adequately by this three-body string configuration.

APPENDIX C: NUCLEAR MATTER/QUARK PHASE TRANSITION
FOR DIFFERENT QUARK INTERACTION POTENTIALS

At the end of Sec. V it was shown that the occurrence of a phase transition from the free-quark phase to a stable ha-
dronized phase depends sensitively on the form of the quark interaction potential as well as number of the spin and fia-
vor degrees of freedom [cf. Figs. 4(a) and 4(b}]. It is of interest to investigate the occurrence of this phase transition in
dependence of the form and parametrization of the considered quark interaction potential. We consider four types of in-
teractions frequently used in the literature.

(A) quadratic two-body string interaction
3

V)~) ——g arj +C ——a, + 2 26V~'z)(r;~)[1+ —,'(s;sj)] (Cl)
"i 4~ 2c2

(8) linear two-body string interaction
r

V(s) ——g Ar~+C ——a, + b, V())(rj)[1+T(s;s~)]
~ij 4PFl C

(C) quadratic thrm-body string interaction
r

V)c) ——g ar; +C——a, + bu~z)(r;)[I+ —,(s;s~)]
3 fi 47pg c

r

(D) linear three-body string interaction

V~D) ——g Ar, +C——a, + dLV~))(r;)[I+ —,(s;sj )]
i=1

(C3)

(C4)

with re
——xixj;rf ——x; —R, R being the center-of-mass

coordinate

b V~ q) (r)= —,
' a, iric4)r53(r)+ 6',

(C5)
5V(i)(r)= —,'a2Ae4n5 (r)+2eA, —

r

The three-quark ground state is determined via a varia-
tional calculation using Gaussian-type trial functions with
the range parameter b =A'/v 3m c0 in (27). The ground-
state energy is evaluated with

function and the corresponding energy eigenvalue, the
Pauli-blocking energy shift of the nucleon is evaluated ac-
cording to (31}. For the free energy per quark f"'d in the
hadron phase we have [nuclear binding is taken into ac-
count phenomenologically by adding a term linear with
respect to ns as in the Skyrme expression (35)]

' 2t3

f '
(n&, T =0}=313MeV+ nff

had 1 A' 3fr

——792.97 MeV fm ns
1

6

(r; )=3b', (r;, )= ~ b,

=v'2/m —, (5'(r; ))=
ij j (C6)

(r )=b', (r;)= b,
3m

—=&6/~ —,(5'(r, ))=(3/2~)'", ;
I~I

~ ~
j

3
fI ~ 3~2 i

~
I~

(C7)

.(s;s. ) =——,
' in the nucleon state (N), = —,

' in the 5
state.

The parameter b is determined by the minimum of the
energy (C6). With this approximate Gaussian-type wave

17~3))i
b 3 3n+

160')/frrn 2
b ng

%e take the nucleon mass Mc =939 MeV. In particular,
the nuclear matter binding energy E~ is determined by
Es 3f '

(po, T=0) a——nd should be compared with the
empirical value —16 MeV. For the construction of the
two-phase coexistence region and the corresponding boun-
dary densities n', n" we take the empirical free energy per
quark (35) for the hadron phase, f"' =313 MeV+hf,
and the expression [cf. (42)]

2/3

f '
(n&, T =0)= rnc +C+fg cc 2 3 // 377

10m 2
Plg

+(V' (r))ng
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TABLE I. The border densities nq and nq' of the hadron-to-quark-matter phase transition for different potential models
(C1)—(C4) and different parameter values e,a„m,a, A,,C. The parameter C fits the nucleon mass Me =939 MeV. The range of the
other parameter values dies restricted so that reasonable values for the X-5 mass difference E~q and the nuclear matter binding ener-

gy Eq result.

Potential
type a

MeV
fm2

(fm) (MeV) (MeV) (fm ) (fm )

1.77
1.77
0.5
1

1

0.52
1

0.52
0.5
0.5

350
400
350
350
400
270
300
350
440
400

38.3
34

150
70
90

270
320

54.6
36.8

—245.4
—114.9
—161.5
—787.6
—382.0
—362.7
—215.1
—272. 1

0.585
0.539
0.60
0.615
0.55
0.47
0.528
0.610
0.575
0.612

290.5
284.4
283.7
273.4
281.3
276.6
303.8
281.1
284.2
285.2

—12.5
—22.6
—10.0
—7.3

—21.2
—22.9
—17.0
—8.2

—20.3
—12.4

0,724
0.562
0.595
0.555
0.445
0,40
0.549
0.474
0,442
0.465

0.923
0.781
1.020
0.752
0.730
0.926
0.781
0.690
0.971
0.910

for the free-quark phase. The effective potential is
evaluated with the next-neighbor q-q distribution in trip-
lets when using the potentials A,B. In the case of the po-
tentials C,D the next neighbors with respect to the center
of mass R are of relevance. The corresponding mean
values are collected in Eq. (24). In the case D, e.g., we
have

( V'"(r))"'n, =0.554zn, -'"——,'2. l 8m3,a,n'~'

+ 3 1TR c ns+2. 183 e'4fs

The case A is given by Eq. (42).

The parameter C was adjusted to the nucleon mass M
using (C6}. The other parameters a„a,k, ,tn, a=0, 1 were
chosen in such a manner that reasonable values for the
mass difference EaN Ea Ett ——as we—ll as for the nuclear
matter binding energy Eb will be reproduced.

Results for different types of potentials ( A —D} for the
quark interaction and for different parametrization as
well are given in Table I. It is remarkable that there is no
large spreading in the the values of ntt and ntt, respective-
ly, determining the borders of the phase transition at
T=0. Typical values are nit ——0.5—0.6 fm and nit
=0.8—0.9 fm . We stress also the possibility to use not
only the mass spectra of the nucleons but also the nuclear
matter properties (binding energy} and the stability of the
hadronic phase if the quark interaction potential is deter-
mined.
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