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It is shown ho~ the Skyrme and the non-Skyrme terms arise naturally from an effective chiral
Lagrangian with the vector and scalar mesons. Some errors in the literature concerning the use of
the Skyrme and the non-Skyrme terms are pointed out.

I. INTRODUCTION

A nice feature of the Skyrmion model' ~ is the possi-
bility of predicting the nucleon mass and its static proper
ties in terms of a few parameters determined from the
low-energy hadron physics. Recent advance in this
direction, as reported in our previous works, makes it
possible to compute the nucleon mass in terms of the cou-
pling of vector mesons to the pseudoscalar mesons. The
low-lying vector mesons (p, c0, etc.) are found to play an
important role in stabilizing the Skyrmion while the sca-
lar meson o destabilizes it. To the extent that the local
approximation is valid, that is, using the resulting chiral
Lagrangian involving higher derivatives of pion fields
when the heavy fields p, ro, and o are ehminated, it was
previously found that the nucleon mass is too large by a
factor of 2. This was done without the flexibility of ad-
justing paraineters such as the pion decay constant, and
the p and r0 widths which are directly measured by experi-
ments. One exception is the I=O scalar meson cr whose
existence is not well established.

To proceed further we must first clarify the important
role of the vector mesons in the Skyrme Lagrangian by
expressing the model-independent dispersion relation re-
sult for the quartic terms in the language of chiral La-
grangian. In recent works a number of people have
chosen to ignore the role of the p meson in Skyrmion
physics and treated the strength of the Skyrme term and
non-Skyrme tnms as parameters to be fitted with the
computed nucleon mass. Many workers in this field even
suggested that the Skyrme term has to be added to the
contribution of the vector meson p Lagrangian (and simi-
larly the non-Skyrme term to be added to the scalar
meson o Lagrangian). Progress in the low- and high-
energy physics in the last 25 years does not allow us to
have these flexibilities. It is the purpose of this article to
straighten out this situation.

Skyrme term appear naturally and explicitly, and want to
emphasize once more the generality of the sum rule dis-
cussed in our previous work.

To analyze the nucleon properties in the Skyrmion
model, we need only the SU(2) &(SU(2) chiral Lagrangian.
The following expressions, although written for
SU(3) XSU(3) as usually done for soft meson processes, is
of course valid for SU(2)XSU(2) without modification.
Now the simplest way to include the vector mesons in the
chiral Lagrangian is to define a vector meson field with a
nonlinear transformation law which depends only on the
pseudoscalar meson field and to construct a chiral-
invariant Lagrangian with these vox;tor meson fields.
Given a representation for vector mesons (i.e., octet repre-
sentation) under the diagonal SU(3), then in the standard
nonlinear realization chiral symmetry, it is possible to de-
fine a transformation law for the p-meson field as'3

under chiral SU(3)XSU(3). U is a function of the
pseudoscalar-meson field. In this nonlinear realization
the meson coupling matrix M is defined as'3'

I.gU'= Ug~',

where 1. and R are, respectively, elements of SU(3)L and
SU(3)a. In terms of the pseudoscalar meson field P,

M =exp(2ifg), P= g 1,;P;, f=f1

2

and

g =exp(if P ) .

A covariant derivative for p„ is then'

&vpp =dip+ ["v~pp I

with

Ul =
2

M' dl Cl I I
=

z I 0' di fI . (3)

In a previous work, two of us (T.N.P. and T.N.T.)
have identified and evaluated the Skyrme term in a
model-independent way using the forward dispersion rela-
tion and the Froiss'u't bound. This result was subsequent-
ly verified in special models of local and global chiral
symmetry, ' or hidden symmetry " we construct here a
chiral Lagrangian for p which has the virtue of having the

Note that U& transforms as a gauge field and p& as a co-
variant derivative

U~ —+ Uup U ' —3~UU

p~~UppU

The usual left-handed and right-handed currents are de-
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From (2) we can define a covariant field strength tensor
for p& as

lg
Fp» =D»Pp DpP—» [P»P»] .

2

The last term is needed to ensure the covariance of +„„
under the local SU(3) X SU(3) transformation. ""

We now add to the chiral Lagrangian the vector-meson
terms. For vector mesons with the transformation law
given by (1), the mass term is automatically invariant
under global SU(3) XSU(3) transformation. The interac-
tions of vector mesons with pseudoscalar mesons are con-
tained in a chiral-invariant part with at least two field
derivatives:

which determines e in terms of the mass and the width of
the p meson. The sum rule (10) is rigorous in the sense
that its general validity depends only on the Froissart
bound for the scattering amplitudes. Therefore by com-
paring the result (9) and (10), g' can be calculated. Now
from (7), the p —»2m decay amplitude is given in terms of
the usual on-sheB g~ coupling constant as

m (P~2~) =gp, c (Pi —P2)

with

mp
plPlF

Putting this into Eq. (11),we find

1 Zl
p
———,Tr F„„+ [JI„,P„—]

g

2 2 2+ I Nlp TrPp +, Tr[Pp,P»]
g 2

1 2
2

g
2

Consistency between (9) and (13) requires that

1—=0
g

(13)

where for generality the last term, which could be con-
sidered as a contact term, is added to the right-hand side
(RHS) of Eq. (6). (It will be shown below 1/g'=0. ) The

p meson-pion interaction terms

Tr(Pp»[Pp„P»]+covarlant dcrlvatlvc)
g

can be easily brought into the following form (ignoring a
total divergence term):

Wi =TIPpJp,

J„=——'
4'(aAL. „,L,„]+-,' [L,„,[L„,L,„]])4.

Ifl terms of I p wc have

1

2 Tr[L„,L,„]+Wi+P kinetic terms,
328

where the first term on the RHS of Eq. (8) is the Skyrme
term with

1 1 1=2 +
~2 g2 g&2

On the other hand, the sum rule derived in Ref. 6 reads

[s (s —4m )]'~ a (s)dsf
4m 2 (s —2m )

Saturating the RHS with the p resonance and making the
5-function approximation for the cross section (in order to
compare it directly with the tree graph Lagrangian ap-
proach), we find

which tells us that the Skyrme term receives its most im-
portant contribution from the p meson. Higher-mass vec-
tor mesons or continuum can modify slightly this result
which is neglected here. For the p-meson contribution,
from (12) and using the Kawarabayashi-Suzuki-
Riazzuddin-Fayyazuddin (KSRF) relation, ' i.e.,

2= 2fe gpmr ™p

which is the result obtained in Ref. 6. This shows the
equivalence between the effective Lagrangian approach
and the dispersion relation for the p-meson contribution.
We have here a very rare situation in physics where some
general properties of the S matrix, e.g., the forward
dispersion relation and the Froissart bound, can be used to
give strict constraints on the low-energy physics. In fact
the sum rules given in Ref. 6 for both the Skyrme and the
non-Skyrme terms are even more general than the well-
known GoMberger-Miyazawa-Oehme sum rule' or the
Adler-%eisberger sum rule' whose validity depend on the
assumption of the absence of the subtraction constant
which grows linearly with the laboratory energy for the
crossing-odd amplitudes; while this assumption seems
reasonable, it cannot be proved from first principles.

The interaction term Wi gives rise to terms with six or
more power of field derivatives. In the local approxima-
tion they are expected to make a small contribution to the
nucleon mass. In the following we shall make this ap-
proximation for simplicity and ignore these higher deriva-
tive terms.

In the Weinberg' and Wess-Zumino' effective La-
grangian treatment of current algebra, the p mesons
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transform as gauge fields under chiral transformation. If
we normalize p„such that its transformation under
SU(3}XSU(3) is that of (2i/g)u„, then in terms of the
new p„, the minimal chiral Lagrangian for p meson is

2l
Wp= —

4 TrF~» + 2 &lip TI' pp
—

U~
g

2 & 2 2W~= —
4 Gap» + i Bi~) co~ +PcdpBp+

B~ —— e~~pTr(L +~Lp)
1

2

where I'„„is the covariant field strength tensor for p„:

~y» ~pp» ~4 p lpga p ]2

If we now identify the linear combination

(15)

as determined from the co~3m decay rate.

2l
P~ — U~

as our p„ field with the transformation law given by (1),

then after some algebra, S~ can be shown to be the ex-
pression (6}. This equivalence proof is based on our free-
dom to redefine the p field to simplify computation with
tree diagrams for physical processes. In this way, either
choice of the p field will lead to the Skyrme term with the
strength given by (13) in agreeinent with dispersion rela-
tion.

III. THE ROLE GF THE o) MESON

The co meson through its coupling with the topological
baryon currents, stabilizes the Skyrmion and makes a pos-
itive contribution to its mass. The strength of this
coupling can be determined from the co-+3m decay rate as
follows: Within SU(2)XSU(2), the most general chiral-
invariant coupling of the co with p and n is of the form

2i~l =ice„~„Trp„F~+ [pp,p ]-
g

IV. THE SCALAR-MESON
AND THE NON-SKYRME TERM

2
y g0

8
I,

(21)

The on-mass shell afric coupling constant (p =m ) is
given by

2
'

g~Nl ~go~=2

It has been suggested that the I=O, S-wave nv scatter-
ing amplitude in the 500—1000-MeV region can be fitted
with a broad resonance, the o meson with mass m =700
MeV. In this case, the main contribution to the non-
Skyrme term comes from the cr meson ' and its strength
parameter y/e is given by the sum rules derived in Ref. 6
for n n scattering (using the Froissart bound). In the 5-
function approximation for the m n cross section, y/e
depends on the mass and width of the o meson. This re-
sult can also be obtained directly from the tree-graph La-
grangian by assuming a chiral-invariant nirm coupling of
the form

(20)

from which we find

2i+ „L,p]
g

(17) If we now identify g~~ with the nonderivative cree ver-
tex in the hnear o model, we have

As with the Skyrme term, the effective Lagrangian for the
process co-+3m with the lowest power of pion field deriva-
tive is given by the direct terms. To obtain the strength of
these direct terms, me compute the m~3m decay rate us-
ing (7} and (17). We find that the p-exchange graphs pro-
duce an amplitude of the form s,~/(mz s,j) (s;J bein—g
the dipion-invariant mass), which when added to the
direct g term, the usual p-dominance amplitude of the
form mz /(mz —s;1 }is obtained. Hence in the ateence of
the g" term, the low-energy effective co to 3m coupling is
obtained from the co-+3m decay rate computed with the
usual p-dominance graph [i.e., of the form rn~ /
(m~ —s;J ) mentioned above]. As mentioned previously,
recent theoretical analyses and the good agreement with
experiment for the ratio I (co~m y)/I'(co~3m) obtained
with the Gell-Mann —Sharp —%agner model indicates that
the g" term is small and therefore will be neglected for
our purpose. The total Lagrangian for the co meson is
then

2Pk~
g ETC' (22)

V. THE NUCLEON MASS
IN THE SKYRMION MODEL

To thc extent that thc local approximation ls va11d, l.c.,
for a Skyrmion radius R much bigger that the Compton

similar to the KSRF relation for g . From (21) we get

f.' '

8 2 7?g ~

which is the expression obtained with the gree-graph linear
o model. With the parameters for the quartic and higher
derivative terms determined from the low-energy data as
shown above, we now present our result for the nucleon
mass as a test of the Skyrmion model.
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FIG. 1. Numerical solution for the chiral angle F(r) as func-

tion of the radial distance with y =0.20, A=75.
FIG. 2. T eThe computed baryon current density 80(r) as a

function of the radial distance.

wavelength of the vector and scalar meson (I/
« ), the effects of heavy particles can

represented by the two quartic terms and the six power of
derivative terms (the 8&8& terms). In this approximation
the Skyrmion mass is given by

(23)

C ~d 2 ~2 2sinE

OO

2pg2 S1n I a

o
s1n I',

yc ——0.21

which is below the value y= —,
' determined from the I=O,

th
S-wave n m cross section. Because of large un rt

' t'ce ain 1es1n
e determination of y, we shall for our calculation take

as the largest allowed value.
We find

mo ——1751 MeV

as the static soliton mass before quantum correction. The
computed nucleon and 6 mass are

2 sill F
(24) mN ——1772 MeV, m~ ——1858 MeV

QC ~ F'sin F
dx

with

C=2V 2mf„le, Q=P e f lm. m

Thhe expression for the co contribution (H ) a rees
that of Adkins an

' ' ' '
n.1ns and Nappl 1n the local applox1mat1on.

We now look for a stable soliton by a numerical solu-
tion of the Euler-I. agrange equation for the chiral angle
F(r) with the appropriate boundary conditions chosen for

Sk rmi
8= so iton. Since the non-Skyrme term d tab'1

yrmion, we find a stable soliton only for y below a crit-
ical value y, . For Q =75, we find

lararger than the measured values by more than 50%.
To have an idea of the Skyrmion as an extended object,

we give in Figs. 1 and 2 the shape of F(r) and the baryon
current density 80(r) as a function of the radial distance.

Finally as a check of our numerical method, we com-
pute separately Ho, Hp, H, H and find that the relation

Ho ——,' (Hp+H~+3H—„) (25)
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