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A simple semiclassical method is presented for calculating physical observables in states with

good angular momentum and isospin for models whose mean-field solutions are hedgehogs. The

method is applicable for theories which have both quark and meson degrees of freedom. The basic

approach is to find slowly rotating solutions to the time-dependent mean-field equations. A non-

trivial set of differential equations must be solved to find the quark configuration for these rotating

hedgehogs. The parameters which specify the rotating solutions are treated as the collective degrees

of freedom. They are requantized by imposing a set of commutation relations which ensures the

correct algebra for the SUQ)XSUQ) group of angular momentum and isospin. Collective wave

functions can then be found and with these wave functions all matrix elements can be calculated.

The method is applied to a simple version of the chiral quark-meson model. A number of physical
quantities such as magnetic moments, charge distributions, g&, g ~~, X-h, mass splitting, properties
of the N-d transition, etc., are calculated.

I. INTRODUCTION

During the past several years there has been intense in-
terest in various chiral models of the structure of baryons.
These models range from the Skyrmion, ' in which
quark degrees of freedom are completely eliminated in
favor of effective meson degrees of freedom, to models
such as the chiral (or hybrid) bag ' and the chiral
quark-meson model, " '~ which include both quarks and
mesons. These models all share an important feature that
the mean-field soliton solutions are hedgehogs —they have
a specified correlation between angular momentum and
isospin. These solitons are not eigenstates of either J or
I and represent a superposition of N and b, states. In or-
der to study the properties of baryons with good quantum
numbers, it is necessary to project the hedgehog.

For fixed-particle-number quantum mechanics there is
a well-estabhshed method, due to Peierls and Yoccoz, ' '
for projecting from a mean-field state. In principle, this
method can be extended in a straightforward fashion to
field-theoretic problems with hedgehog symmetry. In
practice, this leads to a formidable quantum calculation.
At present, such calculations have only been undertaken
with the use of approximate methods such as the use of a
coherent-state formahsm with a plane-wave basis. ' '

An alternative projection method, based on semiclassi-
cal physics, was developed by Adkins, Nappi, and VA'tten

(AN&), and applied to the Skyrme model. This method
involves the use of collective coordinates which
panxnetrize rotations. These collective rotations are al-
lo~ed to became time dependent and are eventually quan-
tized to yield states with the appropriate quantum num-
bers. The method is consistent as long as the motion of
the collective variables is adiabatic compared to the
motion of the intrinsic variables. This semiclassical pro-
jection scheme has the virtue of simplicity and is exact in
the large-N, limit.

It is appealing to use the semiclassical projection
method for models with quarks. Some authors have at-
tempted to use the ANW approach with quarks by collec-
tively rotating the hedgehog quark spinor together with
the hedgehog meson fields. ' ' In these calculations, it
was implicitly assumed that the quark spinor, as viewed
from the rotating frame, is identical to the hedgehog spi-
nor of the static mean-field solution. Unfortunately, this
is not consistent and yields the spurious results that
quarks make no contribution to the angular momentum
(and, hence, no contribution to the moment of inertia)
(Ref. 10) and that the isoscalar magnetic moment is zero
(Ref. 19). The problem is that the quark equations are
first order in time while the meson equations are second
order. Thus, as we shall see, the time-dependent collective
rotations perturb the mesons only to the second order in
the rotation frequency and, in the adiabatic approxima-
tion, these effects can be dropped. In contrast, the quark
spinors are perturbed to first order. To treat the quarks
consistently, it is necessary to calculate the changes in the
spinors due to the time-dependent collective rotation.
Such a treatment is analogous to cranking calculations
which have long been users in the study of deformed nu-
clei. A first step towards a semiclassical projection tech-
nique suitable for quark models was a cranking calcula-
tion of the N-b, mass splitting. In this paper we will
generalize this technique and show how it can be used to
calculate the other static properties of N's and 6's, such
as the isovector charge radius, the magnetic moments, gz,
and the pion-nucleon coupling constant, etc.

In order to facilitate the inclusion of quarks, we use a
formalism some~hat different froID AN%. The basic
difference is the class of time-dependent rotations con-
sidered. ANW allow arbitrary time dependence, while we
consider only those rotations which solve (to first order in
the frequency) the time-dependent mean-field (classical)
equations. Both methods, when suitably quantized, yield
identical results for the Skyrme model. However, the
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treatment of quarks is greatly simplified with our ap-
proach. We will attempt to cast our results in a form
which parallels AN% as closely as possible.

As our work was nearing completion, we became aware
of the work of Ohta and Seki. ' They treat the same
problem in a manner very similar to ours. The fundamen-
tal difference in the two approaches is the treatment of
quarks. We explicitly solve differential equations for the
first-order changes in the quark spinors due to the collec-
tive time-dependent rotations. In contrast, Ohta and Seki
estimate these changes by invoking what they refer to as
the "closure approximation. " Unfortunately, this approx-
imation is ad Iioc. Its validity can be assessed by compar-
ing with the explicit solutions of the differential equa-
tions. For the model which we have studied the approxi-
mation appears to be rather poor. Kahana and Jackson
have also done cranking calculations for the chiral bag
model. 22

For concreteness, we will study a particular simple
model, the chiral quark-meson model of Ref. 11. The
model is based on the linear cr model with quarks. In
Sec. II we will review this model and show how mean-
field hedgehog solutions emerge. Next (Sec. III), we con-
sider rotating solutions to the model (cranking}. In Sec.
IV we show how to quantize the collective variables.
Various static properties of the N and b, are calculated in
Sec. V, as are some simple properties of the N-5 transi-
tion.

While the discussion of this paper applies to a particu-
lar model, the extension to other models, such as chiral
bags, is straightforward. One important generalization is
to hedgehog models, which have vector-meson degrees of
freedom. Like the quarks, the vector-meson fields have
changes which are linear in the rotation frequency. We
treat the problem of cranking and semiclassical projec-
tion for these models elsewhere. s

II. THE CHIRAL-QUARK MODEL
AND MEAN-PIEI, D THEORY

The chiral quark-meson (CQM) model was proposed by
Birse and Banerjee" and independently by Kahana, Rip-
ka, and Soni. ' The basic approach is to couple quarks to
mesons in a chirally invariant manner without invoking a
bag. The simplest realization of this idea has a Lagrang-
ian of the form of a Gell-Mann —Levy o model with
quarks in the place of nucleons. The CQM model has
been studied using both the linear" and nonlinear' vari-
ants of the cr model. If the u mass is large ( -1000 MeV)
it makes little difference phenomenologically whether the
linear or nonlinear variant is used. Following Ref. 11 we
wi}1 consider a Lagrangian based on the linear 0 model:

~=Pl:i&+g(~+is s~ 4»I4+ 2
.(~r ~)'

+ , (&„f)' U(—0,(|)), — (2.1a)

where the mesonic potential functional is given by

U(cr, g)= , A (cr +P v)—+Ccr. — (2.1b)

In Eqs. (2.1), cr and P are the quantum-mechanical field
operators for o mesons and pions; g is the quark field

operator. A summation over color indices is implicit.
The constants A, v, and C are related to the masses for
ihe pion and a meson and to ihe pion decay constant,
F =93 MeV:

A'=(m '—m ')y2F ',
—m z/A',

C=I: m 2.
(2.2)

Spontaneous chiral-symmetry breaking gives a nonzero
vacuum expectation for o,

&ir &vac= (2.3)

and the explicit chiral-symmetry breaking term in Eq.
(2.1b) gives the pion its mass. The quark-pion coupling
constant g is a free parameter of the model. In the nu-
merical calculations which are presented in this paper, we
will use the preferred parameters of Ref. 11, m =1200
MeV, m =139.6MeV, and gF =500MeV.

There is some ambiguity in the choice of m In.

boson-exchange models of X-N forces one uses a e
"meson" with a mass of about 500 MeV. This rr should
not, in our view, be considered as the meson which is the
chiral partner of the pion. The boson exchange o is, after
all, not really a meson —there is no experimental evidence
for a 500-MeV resonance in m-~ scattering. Rather, this
u should probably be viewed as simulating many types of
higher-order effects in multipion channels (box diagrams,
effects of b,'s„etc.). Moreover, an attractive scalar poten-
tial with a range comparable to (500 MeV) ' may well be
found between two solitons (which represent nucleons) for
models of the sort considered here even if m itself is
large. The point is that the cr field for a static soliton will,
in such a case, have a spatial extent similar to that of the
source of the o field which falls off at large distances with
a characteristic distance of (2m ) '. Various effects (the
finite mass of o, the quark contributions to the mass, the
effects of renormalizing the N-5 part of the potential, and
both quantum and nonstatic effects) can increase the ef-
fective mass of the 0 part of the potential to something
larger than 2m . Thus, an effective mass of around 500
MeV is not unreasonable.

%e note that m-m resonances with the quantum num-
bers of the o have been observed in the 1-GeV region:
The S(975} and the e(1300). Unfortunately, one cannot
deduce from the observation of a resonance its properties
under chiral transformations. Thus, one does not know if
one of these resonances is, in fact, the chiral partner of the
pion. It seems reasonable to suppose that perhaps one of
these resonance is, in fact, the pion's chiral partner and we
will take the somewhat arbitrary value of 1200 MeV for
the o mass. The other resonance might correspond to a
chiral singlet —the glueball. Alternatively, the mass
eigenstates for the two resonances may represent linear su-
perpositions of the cr and the glueball. While 1200 MeV
was chosen arbitrarily, the results are, as mentioned
above, rather insensitive to variations in the o mass.

%'e will study the model using mean-field theory.
There are many different ways to introduce mean-field
theory, each carrying its own interpretation. The treat-
ment which is simplest for our purposes is based on a par-
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(cr,g, q ~
cr(x)

~

cr, g, q ) =o(x),

(cr,g, q ~
P{x)

~

cr, P,q ) =o(x),

(cr,g, q ~ g, (x')Mg, (x)
~
cr,P,q ) =5~ q(x')Mq (x),

(2.4)

where Itr, is the quark operator for color c and M is an ar-
bitrary matrix in Dirac spinor space and isospin. It is ap-
parent from the color structure of the quark equations
that the mean-field states are locally color singlet. The
form of the mean-field state also indicates that only the
effects of the N, valence quarks (where N, is the number
of colors) are included; a single spinor for the valence
quarks is the only quark information in the state.

The dynamical assumption of mean-field theory is that
quantum fluctuations are not important in the evaluation
of expectation values of products of field operators in a
mean-field state. Thus, one assumes

(cr,g, q ~
crf,MQ,

~
cr,f,q ) =cr5„qMq,

(o,P,q ~ Illa', MQ,
~

cr, g, q ) =ps„qMq, (2.5)

where, in the third equation, the subscripts a, b, and c in-

dicate isospin; the superscripts are powers.
The c-number fields o, P, and q used to describe the

mean-field states are, in general, time dependent. Equa-
tions of motion for cr and P can be obtained from the
quantum Euler-Lagrange equations by taking expectation
values in the mean-field states:

ticular class of quantum states. Any state in this class
will be labeled

~
cr, II),q), where o, t() are c-number fields

(whlcli clcscrlbc tllc Illotloll of plons and cr IIlcsolls) alld q
ls a DII'ac splIlor {whlcll clcscrlbcs thc qualk nlo'tloll). Tllc
detailed form of these quantum states is of little impor-
tance. The state must, however, have the property that

Since Mz is an arbitrary matrix, the preceding equation
can only be satisfied, in general, if the equation of motion
for q,

[—I'cs V gp—(cr+ I ~.cliy, ))q =i a,q, (2 7')

V' o N, gq—pq+—5U(cr, p)/scr =0,
VP N, igq—tPy5r—q+5U(o, f)/Q =0,

[—ia V gp(cr—+is Qys))q =. eq .

(2.9)

is satisfied.
The overall effect of taking an expectation value and ig-

noring quantum fluctuations as in Eq. (2.5) is simply to
replace o, P, and g with o, P, and QN, q in the equations
of motion (2.6). It is clear that the mean-field approxima-
tion is essentially classical in nature. Eventually, we will

requantize the collective degrees of freedom of the system.
Of course, even with this essentially classical interpreta-
tion of the mean-field equations of motion, it is necessary
to recognize that q is a Dirac spinor and thus contains
some quantal information (in the sense of first quantiza-
tion). In later sections we will often use mean-field theory
to study various operators. We will adopt the language
that an operator evaluated in mean-field theory is simply
the expectation of that operator in a mean-field state as
obtained by ignoring fluctuations as in Eq. (2.5).

Let us now turn to the question of finding localized sta-
tionary solutions (solitons) for the equations of motion
(2.7). In a stationary solution the meson fields are static
and the quark spinor has the trivial time dependence
q(I)=e ' q. The eigenvalue, e, is a Lagrange multiplier
which enforces the normalization of the quark spinor:

I d'rq'q=l . (2.8)

The equations for a stationary solution are therefore given

by

&~,y, q ~
[a„{sw/sa„e)—sw/se]

~
~,y, q & =0.

(2.6)
Solutions to Eqs. (2.9) have been found using the
hedgehog form of Chodos and Thorn:

&~,y, q [ [a„(SW/sa„y) —SW/~] [ o,P,q & =0.
By invoking the dynamical assumption of Eq. (2.5), we
obtain

os(r) =crs(r),

Ps(r) 4'h(re, (2.10a)

Clcr N, gq tpq+5U(—cr, p)/scr'=0,

Clp N, gqtpy5rq+—5U(cr, p)/5/=0 .
(2.7)

G (r)Xs
A=

~4m I cr.rr'(r)XI,

One must take slightly more care to obtain the equations
of motion for the quarks as the Euler-Lagrange equation
has only a single quark field operator, while the equations
giving the expectation value of mean-field states involves

quark bilinears. This problem can be circumvented by
multiplying the Euler-Lagrange equation for P by P Mz
on the left, where M„ is an arbitrary 4~ 4 matrix:

&,y, q ~
y'M„[a„(sw/sa„y') sw/sy']

~

~—,y, q & =0.
(2.6')

Using the relations in Eqs. (2.5), we obtain

qtM& f ia.V gp(o+i~ fy—s)]q—=iq M&a, q .

1
XI, = (ut —dt) .

2
(2.10b)

The substitution of this form into Eqs. (2.9) automatically
satisfies the angular parts of the equations. One obtains
four coupled ordinary differential equations for the radial
functions cd, QI„G, and E. These can be solved numeri-
cally. One iterates to find the eigenvalue, eI„which gives
a solution that satisfies the normalization condition (2.8).
The solutions, based on this model with the parameters as
given earlier, are plotted in Fig. l.

where the subscript II indicates the hedgehog solution and

JI, is the hedgehog Pauli spinor,
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T—r[~A(t)f ~ A t(t)],

o(t) =a',
where q', P', and a' represent the spinor, pion, and sigma
fields in the rotating frame and A (t) specifies the time-
dependent rotation. %e seek stationary solutions for q',
P', and cr'. For an arbitrary A (t), there are generally no
stationary solutions for the primed fields. If, however,
A (t) corresponds to rotational motion in which the expec-
tation value (i.e., the classical value) of the angular
momentum and isospin are tim. e independent, then sta-
tionary solutions exist. Of course, by Noether's theorem,
it is precisely those rotations which lead to static classical
I and J that can be time-dependent solutions to the
mean-field equations of motion. We will consider the
ofm

A (t) =8 exp(it A, r/2), (3.3)

((iil
0.0 Q5 I.G l.5

r (fm)

I») i I

2.0 2.5 3Q

FIG. 1. The hedgehog mean-field solution. Quark upper aud
lour components are shown in (a), and meson fields in units of
F in (b).

q~Aq,

f @~A P rA (3.1)

where A is a space-independent SU(2) matrix.
%e now turn our attention to time-dependent rotations

and cranking. The basic idea is to find stationary solu-
tions to the Euler-Lagrange equations in a rotating (or
isorotating) frame. ' ' Thus we write

The hedgehog form (2.10) is not invariant under either
rotations or isorotations. However, because of correla-
tions, it is invariant under a combined rotation in space
and isospace. The generators of such a grand rotation are
the grandspin operators K, which are defined by
K=J+I. Because the hedgehog breaks the J-I symme-
try, there are an infinite number of solutions to the sta-
tionary Euler-Lagrange equations which are degenerate to
the hedgehog solution. These solutions can be obtained by
rotating the hedgehog in either space or isospace. The
grand-rotational symmetry implies that one can reach all
of these degenerate solutions by considering either rota-
tions or isorotations. %e choose to rotate in isospace. A
convenient parametrization for an arbitrary isorotation is

—V QJ N, igq' py—s~jq'+
c) U(a', P')

+B,'y;+(A, Xa,y'), =0,
—V a' —N, gq' pq'+ ' +c), 0'=0.c) U(a, g)

CT

(3.4)

We seek statianary solutions of Eqs. (3.4), which implies
that d, a'=8, P'=d, P'=0 and that id, q'=e'q'. The
equations for stationary cr', P', and q' are formally identi-
cal to the equations for stationary cr, P, and q [Eq. (2.9)],
except for the A. r/2 term in the equation for q'. There-
fare, it is convenient to expand Eqs. (3.4) about the sta-
tionary hedgehog solutions of Eq. (2.10) and to treat
k.~/2 as a perturbation. We write

q =qs+5q & =et, +5&,

a'=a~+5a 0'=4s+54, (3.5)

where the subscript h indicates the hedgehog solution
(2.10), and solve perturbatively for 5q„5a, 5$, and 5e at
first order in A, . It has been shown on the basis of
grand-reversal symmetry (time reversal combined with an
isorotation through ir about the 2 axis} that, to first order,

where 8 is a time-independent SU(2) matrix and A, is a
time-independent vector. As will be shown in Sec. IV,
this form is sufficiently general to allow arbitrary classical
values of J and I consistent with the physical constraint
from grand-rotational symmetry that

~

I
~

=
~
J~. While

solving the cranking problem, 8 and A, will be treated as
parameters. They are the collective degrees of freedom
for the rotational problem. Eventually, we will requantize
the system, and 8 and k will acquire nontrivial commuta-
tion relations.

We start by studying the motion of the primed fields.
Equations of motion for q', P', and a' can be found by
substituting the equations describing collective rotations,
(3.2) and (3.3), into the mean-field equations of motion for
q, P, and cr [Eqs. (2.7)]:

[ i a V —gp(o' —i ~ f'y—5)+A: ~/2 id, ]q'=—0,
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h'5q+(A, .r/2)qi, —es5q —5eqs ——0, (3.7)

where h is the effective Dirac Hamiltonian in the rotat-
lllg fraiiM,

Grand-reversal symmetry and the proof that 5cr and 5II}

vanish to first order are reviewed in Appendix A.
An expression for 5q and 5e can be obtained from the

quark equation of motion (3.4a) with the use of stationari-
ty, the adiabatic approximation, and Eq. (3.6):

Q.5
E

1 ~ 0
(

1 I ~ f [
t l 1 f

(
s I I 'I

l
% I

B.. .-.

QQ r

c
Dp

'
OQ 0.5 I.Q !.5 2.0

(o)

2.5 3.0

(3.8)h'= I~ —& gP(—~~+I~ 4sr5) .

Multiplying Eq. (3.7) on the left by qi", gives 5e
= qI, (A, r/2)qI, ——0. Finally, we are left with the cranking
equation for 5q:

~Q I i I 1
t

I I I I
t

I I I I
]

I I I I
[

I I I l [ II

Al

E

u) 0.5

(b)

(h' —ei, )5q=( A, r/2—)qI, . (3.9)

Simple tensorial properties of grand spin are of great help
in solving Eq. (3.9). The hedgehog spinor qII has even
parity and transforms under grand rotations as a K =0
tensor. Therefore (Ar/2), q sis an even-parity K =1 ten-
sor with K parallel to A,. Since the differential operator
(h' eI, ) is—invariant under grand rotations, 5q must be a
X=I even-parity spinor with K ahgned with l(,. The
most general spinor with these transformation properties
can be expressed in terms of four radial functions in the
following manner:

Q.Q --*---"--

05 i I I I I I I I I I I I I I I I I I I I I I I I I I I I I

00 0.5 I.G l.5 2Q 2.5 3.0

FIG. 2. Solutions to the cranking equations in terms of the
functions in Eq. (3.10). Exact solution is shown in {a), and re-
sults from the "closure approximation" in (b).

Iq=~
A (r)A, crXs+8(r)(A, cr/3 —A, r'8 cr)XI,

iC (r)A, PXs D(r)(A, )&.'P).crX—s

(3.10)
IV. QUANTIZING THE COLLECTIVE VARIABLES

5„(—3 +28/3) = 28lr gph( —A +—28/3)—

(gcri, —ei—, )C +E/2,
c)„(A +8/3) = —8lr —gpI, ( —2 —8/3)

(ger„—es—)D F/2, —
(3.11)

&,(C —2D)/3= —2(C 2D)/3r+gctIs(C—+2D)/3
—(go&+as )A +6/2,

c)„(—C D)= —(C +D)/—r gctI„(C D)+(gc—rs+ei, )8—,

where o and ((I are the radial sigma and pion functions
from the hedgehog solution (2.10). These inhomogeneous
ODE's are driven by the hedgehog spinor functions, G
and E. Equations (3.11}can be solved numerically with
boundary conditions such that the functions are every-
where finite. The results are plotted in Fig. 2(a).

For comparison we plot the saine four functions ob-
tained using the "closure approximation" of Ref 21 in.
Fig. 2(b). ~e note that at least for the model considered
here the closure approximation does a poor job of repro-
ducing the exact solutions.

where X is the hedgehog spinor of Eq. (2.10b}. The form
(3.10}reduces the cranlcing equation (3.9) to four ordinary
differential equations (ODE's) for the radial functions:

0'k 2 —I, &X k + g ~ rX

Using the mean-field approximation described in Sec. II
and the rotating solution for the quark and meson fields
given in Eqs. (3.2), (3.3), (3.5), (3.6), (3.10), and (3.11), we
find mean-field expressions for the isospin and angular
momentum which depend only on the collective variables
8 and A.:

I, =I d r[N, 5q rsqs —{A,—A..fr~)I)}s Ab]

&( ,' tr(r, BrsB )—
,' tr(~, BrsB )Ab-, .

Jk ——J d r IN, 5q [cri, 2i(r&&B)k]qI—,

+(A,,—A, .rr, )(()i, A, k I

(4.2)

Having found rotating solutions to the time-dependent
mean-field equations, we turn to the question of quantiz-
ing the collective variables. This is done by considering
the angular momentum and isospin, both of which are
conserved by the system. The expressions for I and J fol-
lowing from Eq. (2.1) are

Ia ~ +a 2 +&abc b t e
(4.1)
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[Jk I.l =0

[I~,Ib] =i &ob«:I~,

(4 4)

are satisfied by the collective expressions given in Eq.
(3.13). The adiabatic assumption implies that the intrinsic
degrees of freedom are decoupled from the collective ones
and thus commute. Since W depends only on the intrinsic
degrees of freedom,

[W,Ak]=[M, 't)
b ,

' tr(r, B~b—B )]=0 . (4.5)

The commutation relations (4.4) will be satisfied if the
three parameters needed to specify 8 commute with each
other and if

[A„Ab]=is, ,b, (&, /~),
[A.„B]=Br,/(2J )

(4.6)

One can use the commutation relations of (4.4) to quan-
tize the system and find collective functions. The matrix
8 must be parametrized in terms of collective variables.
There are many equivalent ways to do this. We will fol-
low Adkins, Nappi, and Witten (ANW) and write 8 as

8 =ho+i~ 1,
with the constraint that

bp +1.1=1 .

(4.7}

(4.8)

With this parametrization, we find that Eqs. (4.4) are sa-
tisfied if l(, is given by

(4.9)4=[&/(~)] bk —bo &ki bi—
0 k NX

Using thc collcctlvc cxprcssiolls for I a11d J, (4.2), arid the
differential operator for l(,, (4.9), one can find collective

where W, the moment of inertia, can be expressed in terms

of the radial functions which specify pb, 5q, and qk,

drr N, AG+CF 3—2DI' 3 +,,Sm' 3

(4.3)

We have evaluated the integral in (4.3) for the model be-

ing studied here and have obtained the result &= 1.17 fm.
The meson contribution accounts for 62% of the total
value. This represents the fraction of both the angular
momentum and isospin in a rotating soliton which is car-
ried by the pion.

As mentioned previously, these mean-field expressions
«r»nd I arc time independent and give I

I
I

=
I
J

I »
choosing an appropriate matrix 8, the angle between I
and J can be arbitrary. Thus we see that the rotation in

Eq. (3.3) is sufficiently general. We also note that the
quark contributions to I and J (and therefore to K) de
pend on 5q and thus cannot be found without a cranking
calculation.

The mean-field expressions for I and J are essentially
classical in nature. %e requantize the system by insisting
that the commutation relations for the angular momen-

tum and the isospin,

[Jk«Jil=t&kb««J««««

wave functions which are simultaneous eigenstates of J,I, J„and Ii. Because the collective motion satisfied
I II =

I JI at the mean-field level, all of the collective
eigenstates obtained by quantizing this motion will have
the same eigenvalue for I and J . One finds

8 =exp(iy~i/2)exp(iPr2/2)exp(ia~r/2) . (4.11)

The collective wave functions parametrized this way are
nothing but the conventional Wigner D matrices with ap-
propriate normalization constants:

(2J + 1 )
I/2

Dm , m «P y.»-. (41»

where J(J+1), mj, and mi are the eigenvalues of J2, J„
and I3, respectively.

V. PROPERTIES OF N's AND h, s

In this section we will use the collective wave functions
of Sec. IV to calculate the various static properties of nu-
cleons and deltas. The basic method is straightforward.
Suppose one wishes to study the matrix element of some
operator 8 between arbitrary states of N or b.. We start
by using the mean-field approximations of Sec. II and the
rotating solution of Sec. III to obtain an expression for 8
in terms of the collective variables, A, and 8. This is com-
pletely analogous to obtaining the collective expressions
for I and J in Eq. (4.2). We will denote the collective ex-
pression for 8 as 8«]&. Since the intrinsic variables are as-
sumed to commute with the collective variables, H„~~ as a
collective operator depends only on A, and 8. Of course,
the time dependence of the rotation in Eq. (3.3) implies
that, in general, O„~I will be time dependent and we will
view it as a collective Heisenberg operator, 8 ~t(t). Matrix
elements of the Schrodinger operator 8 in a nucleon state
are obtained by evaluating 8«o(t =0) in the appropriate
collective wave function from Eq. (4.10). The validity of
this procedure depends upon the validity of both the

I I » =(I/~)(bi+ib2),
I p 1 & = —(i/m)(bo —ib3),

I
n t & =(i/~)(bo+ibi),

I
~»= —(I/~)(b, —ib, ),

I

~+"=-',
& =(~2/~}(b, +b, )' (4.10)

(the other 6 states can be obtained from
I

b, ++s =—',
& by

use of the lowering operators I =I i iI2—and
J =J,—J~). It is not surprising that the collective wave
functions are identical to those of ANW. Indeed, the
mean-field expressions for I and J written in terms of A, ,
8, and W [Eqs. (4.2}] are identical for the Skyrme model
and for models with quarks. The treatment of the collec-
tive motion differs only in the expression for the moment
of inertia.

We note, in passing, that the parametrization of the
matrix 8 given in Eq. (4.7) is not the only convenient
form. A useful alternative is to express 8 in terms of the
three Euler angles, a, P, and y, used to specify a rotation
in space:

R =exp( iaJ—, )exp( iPly—)exp( iyJg)—.

%ith this pararnetrization, 8 is given by
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mean-field treatment of Sec. II and of the adiabatic ap-
proximation.

%e will start by calculating the isoscalar electromagnet-
ic properties of the nucleon. The elix:tromagnetic current

may be written as

I I I
)

1 I I~ ~~

I.GO

I I
)

I 1 I I
)

I 1 I 1
t I I I l

'gI +yH (5.1)

where 8I' is the baryon current and V," is the vector
current for the ath coinponent of isospin. The isoscalar
properties depend only on the baryon current:

0.50

8"=(1/N, )Py"g . (5.2)

The mean-field expressions for the time and space com-
ponents of 8& in terms of the collective variables and the
functions describing qi, and 5q are

8~ii qi, qI,
—(4——Ir) —'(G +F )+O(A, ),

B~n =25q r'r'qI +O(~')

=(4Irr) -'(2AF+ 28F/3 —2DG)(k, Xr), +0(A,') .

(5.3)

In the adiabatic limit we may drop the terms of order A, .
The expression for the space components of the baryon

current indicates one of the differences between the
semiclassical treatment of a model with quarks, such as
the chiral quark-meson model, and the Skyrme model.
One expects on naive geometrical grounds that
8,",

~~
b(r—)—(A, Xr)k, where b(r) is a radial function. We

find that for models with quarks, b (r) is given in terms of
5q. Since 5q is determined from the cranking calculation,
we see that b (r) depends in detail on the dynamics of the
model. In sharp contrast, the Skyrme model gives 8"

ii

purely as a rigid rotation of the static mean-field baryon
density" and therefore is independent of the dynamics.
For our model, we have compared b (r) as correctly calcu-
lated using cranking with what it would have been if a
rigid rotation of the baryon density had been naively ap-
plied. %'e plot

b„,„k (4Irr) '(2AF——+2BF/3 2DG), —

b„s,d (4m) '(G ——+F )
(5.4)

in Fig. 3 and note that the cranked result is somewhat re-
duced from the rigid result.

The isoscalar mean-square radius (r )I 0 is defined as
(r ) „,+ (» )„,„,. It can be found by evaluating

~

~

d rr 8„» in either a proton or neutron state. This
gives

(rI)i 0 f dr r (G—+F ) . (5.5)

Numerical evaluation of this model yields a result of (0.70
fm) which compares weH with the experimental value of
(0.72 fm)1. The isoscalar magnetic moment operator is
defined as

0.5

FIG. 3. The radial function b(r) which characterizes the iso-
vector space current density: 8 q

——b (r)(A, )(r)k. Both the ex-
act result of the cranking calculation and the result of a naive
rigid rotation are plotted.

in a proton spin-up state. Using our mean-field approach
we have

p& 0
——p& —, ~ rXB„», pt

Upon substituting the form (5.3) for 8~it, we find

pi p=(pt
~

As ~pf ),' f drr'(AF+BF/3 DG) . —

Finally, we note that A,I——Js/W and that by construction
the collective

~ p t ) in Eq. (4.10) is an eigenstate JI with
eigenvalue —,'. The expression for pi o becomes

P,i 0
—— f drr (AF+BF/3 DG) . —1

3W
(5.7)

Numerically, this gives 0.381@,~ (where p,~ is the nuclear
magneton), which is less than one-half of the observed
value of 0.88pz.

The square of the isoscalar magnetic radius is defined
in analogy to Eq. (5.6) as

(& )r (pt 0—,

' f d'=r(rXB), r' ptI p~

The semiclassical evaluation yields

(r )I 0—— f drr (AF+BF/3 DG) . (5.8)—
3~pI =o

Numerically we find {r )I 0
——(0.91 fm); experimentally,

it is (0.81 fm) .
Next we consider the isovector electromagnetic proper-

ties. These depend solely on the third isospin component
of the vector current V~I. The quantum operator for V~I

ls given by

pr 0——f d rrXji 0
——, f d rrXB, (5.6) Vl = I A'"~A+el.bk. ~lb . (5.9)

where B is the baryon space current. To find the isoscalar
Illagllctlc InoIiicllt, wc cvaluatc tllc thlld coInponcnt of lM

The mean-field expressions for the time and space com-
ponents for V~I are
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V „,=N, SqtBt~~q„+c„y ay„, +O(X )

=[(N, /4n)[AGAd+BG( A—,.rr~+Ad/3)+CF(A, rrd) D—F(ld A—, rrd)]p((l, ( A—q+kr. rq) jC3z+O(A, ),
(5.10)

&i,oII =(N, /2)q B y y" iBq ei—,l p r)„p +0(h, )=[(N, /4')c„GFr +c rrtr„ / ]C +O(Ai),

where C~I, is defined as

C,b —,'Tr(—w,BrI,B ) . (5.11)
pf dQP J pf + gf dQy' J

The expression for Ii, (4.2), can be obtained from Eqs.
(5.10) and (5.11) by integration over space and the evalua-
tion of the trace. It is useful to have the expectation value
of C&& in proton on neutron collective wave functions.
Using the collective wave functions, one finds

(pt ) C3g [pt) =(nl
~

C3d [nL)= ——,'5id,
(5.12}

(n& ICuIn»=(S & ICulu»=+ ised .

The electric charge density p is given by the space com-
ponent of the electromagnetic current. Since we have col-
lective expressions for both the isovector and isoscalar
contributions to the current, we can determine the charge
densities, We have plotted in Fig. 4(a) the isoscalar and
isovcctor radial charge dcnsltlcs,

I I I I
[

I I I I

U

O5

CC

where dQ indicates an integral over angles. %e show
separately the quark and meson contributions to the iso-
vector density. In Fig. 4(b) we plot the radial charge den-
sities for the proton and the neutron.

The isovector charge radius operator is given by

(r ), , =(2llq)(pl' f drr V, pl) .

From this one obtains the semiclassical result

(~ )I I = — f «~"[N, (AG+CF/3 2DF/3—)

+(8rr/3)(t}l, ] . (5.13)

Numerically, we get (r )I,=(1.11 fm) . Experimen-
tally, (r )I I

——(r')~mr —(r')„,„I is somewhat smaller:
(0.88 fm) . The pion contribution to (r ) accounts for
81%. It is not surprising that (r )& I is dominated by
the pions. The factor r V& in the integrand is very sensi-
tive to the long-range part of the fields. Since the pion is
the longest-range field in the problem, one expects it to
make a large contribution.

The isovector magnetic moment operator is given by

«X3I=&= (5.14)

%e can determine pi ~ by evaluating the third com-
ponent of pi I in a proton spin-up state, using the mean-
field approximations:

Q5 I.5
l (ffrl}

i

2.5 3.0
PI 1= Pt' d f &X+3coll P't

Using the expression for V3„„,(5.10), the fact that

I I I I ] I I I I ] I I I I [ I I I 1
t

I r I 1

]
I 1 I

(b

m 2 — /

0)c
~

— /
l

/
v -//

I2a
CC

I I I I I I I l I I I I I I I I I I I I I I I I I I I I

0.0 0.5 I.O l.5 2.0 2.5
r(fm}

FIG. 4. Radial charge densities. The isoscalar and isovector
radial charge densities and separately the pion and quark contri-
bution to the isovecior distribution are shown in {a),and the pro-
ton and neutron radial charge densities in (b).

p.~ i ——I dr r (2N, rGF/9+8rrrtrI, /9) . (5.15)

%'e notice that the meson contribution to pi ~
is exactly

one-third of the meson contribution to W. This feature is
also found in the Skyrme model. However, in the
Skyrme model the mesons account for the entire contribu-
tions for both Jr and Iui i. We also notice that the quark
contributions to V3„~~, and hence to pi &, depend only on
the stationary hedgehog solution and not on the changes
due to cranking. Thus the calculation of the isovector
magnetic moment in Ref. 19 is correct despite the fact
that cranking effects were ignored. Upon evaluating
(5.15), we find pi I ——4.00p~, which should be compared
with an experimental value of 4.70@~. In our calculation,

%Is»=~i/~Is»= ~ Is»
and the expectation value for Czq in

~ p t ), (5.12), we ob-
tain
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the pion contribution accounts for 56% of the total. The
square of the isovector magnetic radius is given by

&r &I 1
—— f drr (2N, rGE/9+8@/~ l9) . (5.16)

PI=&

The quark and pion contributions to &r &I 1 are 0.321
and 0.925 fm, respectively, for a total of (1.12 fm); the
experimental value is (0.80 fm} . Again, we are not
surprised to find that the mesons dominate the contribu-
tions to the magnetic square radius as the integrand is

highly sensitive to the long-range parts of the fields.
Now let us turn our attention to the problem of calcu-

lating gz. For a system with finite pion mass, the expres-
Sloil fo1 gg 1S

Tgg= pf xA3 pf (5.17)

where the axial-vector current is given by

~."=
2 0r"vs'. f+(k.d" ~ ~&W. } .

The collective expression for gz is obtained straightfor-
wardly using our mean-field methods:

g~=&et IC» IS t& Jd r' —N, (G' —+'/3)+ (((,&„,—„a„y„—2 „((„/) (5.18)

where &p t
~
C»

~ p t & is ——,
' from Eq. (5.12). Numerical-

ly, we find that the quark and meson contributions to g„
are 0.667 and 0.748, respectively, for a total of 1.42. This
can be compared with the experimental value of 1.26.

As noted by ANW, there is a subtlety in the chiral lim-
it. For a system with m~ set to zero at the level of the
Lagrangian, the three-dimensional integral used to obtain
Eq. (5.18) is not absolutely convergent. However, because
the pion pole goes to q =0, expression (5.18) no longer
gives gz. Instead, g„ is given by

—', of the value in Eq.
(5.18). A simple explanation of this factor of —, is given

in Appendix B.
The calculation for g zz for models with quarks exact-

ly parallels the ANW treatment of the Skyrme model, as

g zz can be determined solely from the pion tail. Sup-
pose one has an old-fashioned description of hadronic
physics based on the interactions of nucleons and pions.
Far from the nucleon, the pion field is given by

X exp( mr)/r . — (5.19)

The soliton solution has a pion tail which at large dis-
tances decays hke a p-wave Yukawa form:

P, (x) =DC„x;(m + 1 lr)exp( mr)lr, —(5.20)

g ~~——8+DM~/3 . (5.21)

Using our solution to find D and a nucleon mass of 939
MeV, we obtain g ~~——14.9; the experimental result is
13.5.

Of course„pion-nucleon scattering depends on q and
the coupling between N and n should be given by a form

where C„ is defined in (5.11) and the constant D can be
read directly from the numerical solution. Using the
wave functions in Eq. (4.10), one finds that &N

~ C„~N'&

equals —&N ~,o; ~N'&l3. By comparing Eqs. (5.20)
and (5.19) and evaluating C„ in the collective wave func-
tioiis, oile finds

factor g sN(q ). The pion-nucleon coupling constant cal-
culated in Eq. (5.21) corresponds to g ~~(qi= m—)

One can easily find the full form factor using the semi-
classical methods of this paper by considering Fourier-
Bessel transforms of the collective expression for the pion
source. We do not do so as we do not believe the model to
be very useful at large energies. We wish to observe,
however, that any model that satisfies the PCAC (partial
conservation of axial-vector current) relation, B„A,"
=m+~g„also satisfies the Goldberger-Treiman rela-
tionP which gives g ~~(q =0) in terms of I', M~ and

(5.22)

The model considered here, of course, satisfies the PCAC
relation at the quantum level. The mean-field expressions
for A," also satisfy a classical version of the PCAC rela-
tion B„A,"„s—m I' P, . Th—us, the Goldberger-Treiman
relation is satisfied for the g„and g z~(q =0) as calcu-
lated semiclassically. Goldberger and Treiman give

g &N(q =0}=14.3, which is 4% smaller than
2 — 2

Having calculated a number of properties for the nu-
cleon, we now turn our attention to the properties of the b,

and N-b, transition. Most of the properties we consider
are related to the nucleon properties by model-
independent relations. These model-independent rela-
tions are analogous to the well-known relations of transi-
tion operators and moments in the conventional Bohr-
Mottelson treatment of deformed even-even nuclei and
follow directly from the tensorial structure of the various
operators considered and the fact the collective wave
functions are Wigner D matrices. For some operators
these relations are trivial. For example, the isoscalar g
factor for lL is identical to the nucleon value. The isovec-
tor magnetic properties are somewhat more interesting.
The isovector magnetic transition matrix element is given
by

&& t I
Vi'=11~++s =1&=—1 2&x t I vI =1 IP t &,
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while the 5 isovector magnetic moment is given by

&~++& = '
IVy=i I~++&= i &= "&pt II i=i IS'1& .

(5.23b)

lation found in the Skyrme model. ' Since the pion is
light, the meson contribution dominates both
(pl

~ Q3i ~

6+s = —,
'

& and (r &i i. Thus, even if one con-
sider models with quarks there is an approximate relation:

The m-X-5 coupling constant is given by &pl l
Q331~'& =-'&=«2/30)&" &i=-i . (5.27)

3
R~wz =Tf~xw (5.24)

Qij =" (xixj i )p ~
(5.25)

where p is the electric charge density. Since the isoscalar
part of the charge density is spherically symmetric only
the isovector part will contribute. Using m = V3 and the
form in Eq. (5.10), we can obtain a collective form for
Q&. Evaluating this in the collective wave functions of
Eq. (4.10) yields

&p& I Q» I

&'s = i &

=(v 2/45%') f dr r [N, (BG CF DF)+—4n'P —] .

(5.26a)

The other components of Q can be related to Qiq.

&pi
~ Q» I

&'s =-,' &=(et I Q2z Ii 's = i &

There is one interesting property of the N-b, transition
which cannot be related to nucleonic properties: namely,
the electric quadrupole transition matrix element. Of
course, the electric quadrupole moment for a nucleon van-
ishes as the quadrupole operator is a rank-two tensor
under rotations, while the nucleon is a rank one-half.
This is analogous to the quadrupole properties of de-
formed nuclei —the ground state is J=0 and thus has a
vanishing quadrupole moment, but the deformed nature
of the state guarantees a collective E2 transition from the
ground state to the first J =2 state. For our system we
can calculate the quadrupole transition by studying the
quadrupole operator, which is given, in Cartesian coordi-
nates, by

The relation (5.27) is in some sense model independent —it
depends only on the pions dominating both (r &i i and
one quadrupole transition matrix element. %e note that
as one approaches the chiral limit both the quadrupole
transition and the isovector square radius diverge and re-
lation (5.27) approaches an equality. For the model con-
sidered here, the right-hand side of (5.27) is 7% larger
than the left-hand side.

Finally, let us consider the energy of N's and 6's. The
Hamiltonian corresponding to the Lagrangian in Eq. (2.1)

H =f d xIiti [ ia V— gP(—ir+i~ Py5)]g

+ —,(VP)'+ —,
' (Vo )'

+ —,II~ + —,IIp +U(ir, g)), (5.28)

where II and II& are the momenta conjugate to o and p.
We obtain a collective expression for H in the usual
fashion and obtain

H„ii=Ei, +Jr A, A, /2, (5.29a)

where Eg is the mean-field expression for the energy in
the static hedgehog solution:

E„=f d'x [N, qit[ ia V g—P(&+i—~ yy, )]q„

+ , (Vf)'+ —,
'

(V—vari, )'+ U(vari„itii, ) I

(5.29b)

If one were to follow the semiclassical projection method
as outlined thus far, one obtains the following expression
for the masses of the N's and 6's:

= ——,'&ptiQ
(5.26b)

(p t
( Q; (

&+s = —, & =0 f« i&j
M. =E„+J.(J.+1)/2=E„+3/8~,
Ma Ei, +Ja(Ji, +1——)/2=Ei, +15/8& .

(5.30a)

Numerically, we find the quark and meson contributions
are 6.9X10 and 4.70&(10 2 fmz for a total of
5.39X10 fm. Experimentally, it is known that the
quadrupole transition matrix element is small. A recent
theoretical attempt to extract the E2 resonant transition
from the experimental data gives an electric quadrupole
partial decay width which corresponds to a quadrupole
transition matrix element, which agrees, in turn, with our
calculation in order of magnitude. This extraction from
the data gives a negative relative sign of the electric quad-
rupole and magnetic dipole transition matrix elements,
which agrees with the semiclassical result. Moreover, we
note that this transition matrix element vanishes for
spherical models of N's and b, 's, while in an intrinsically
deformed description such as a hedgehog it is automati-
cally nonzero. It is interesting to observe that the meson
contribution of (pt

~ Q33 I
5+= —,

'
& is equal to v 2/30

times the meson contribution of (rz&l i, precisely the re-

In Eqs. (5.30a) there appears to be a clean separation of
the energy into a static contribution from the hedgehog
and a contribution from the collective rotation. In fact,
this is somewhat misleading. Some of the rotational ki-
netic energy is contained in EI, . Recall that the mean-
field treatment of quarks is not completely classical.
There is some quantal information contained in qi, . In
particular, we note that the quark contribution to the
mean-field expectation value of J does not vanish in the
static hedgehog solution, even though the expectation
value of J is zero. In contrast, the meson contribution to
J is zero with our mean-field approximations. To avoid
double counting of the quark rotational kinetic energy,
one should subtract from the masses in Eq. (5.30a) the ro-
tational energy of quarks in the ground state. We can ap-
proximate this energy by (J~ &i, /~, where (J~ &i, is the
expectation of the quark contribution to J in the
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TABLE I. Summary of physical quantities for the chiral
quark-meson model of Ref. 11 as calculated using the semiclas-
sical projection method. For comparison, the experimental re-
sults are also listed.

Quantity

& r')I =o
pl=o (px)
&r')r=o
&r'),
Pl =1 (uN)
&r')t=)
gw

g»t'NN

&pt I Q» I
b+s =

z ) (fm~)

(M~+Mg)/2 (MeV)
M~ —Mg (MeV)

Semiclassical
calculation

(0.70 fm)
0.381
(0.91 fm)2

(1.11 fm)
4.00
(1.12 fm)2

1.42
14.9

—2.8

+ 5.4
1119
253

Experiment

(0.72 fm)2

0.88
(0.81 fm)'
(0.88 fm)2

4.70
(0.80 fm)'
1.26

13.5
3.3
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hedgehog state. This subtraction of (J» )q/~ is com-
pletely analogous to subtractions of (J )/~ from
Hartree-Fock energies of deformed nuclei to obtain band-
head energies. For the Skyrme model there are no quarks
and (J» )t, is obviously zero. For models with three
valence quarks, such as the ones being discussed here,
(J» ) equals —', . Thus, the masses for N and b become

M~ EN +JN (J——N + 1)I~—(J» )t, ILK'= Et, —3/4Jr,
(5.30b)

Ma Et, +Jtt(Jtt——+1)I~—(J» )t, /~=Et, +3/4&.
We see that arithmetic mean of Mz and Ma is given by
Et„while the N-b, mass splitting is given by 3/~. Nu-
merically, we find an average N-5 mass of 1119 MeV
and a splitting of 252 MeV. This should be compared
with an observed average mass of 1086 MeV and a split-
ting of 293 MeV. The calculated and experimental prop-
erties of N and b are summarized in Table I.

All of the calculations in this paper were based on the
semiclassical motion of three valence quarks interacting
with mesons. We have, without justification, ignored the
effects of sea quarks. It is straightforward, in principle,
to extend the approach developed here to include the ef-
fects of sea quarks. The numerical work for such a com-
putation will be substantially greater than for the calcula-
tions reported here. We note that the effects of sea quarks
become particularly important when applied to chiral bag
models. In the recent interpretation of chiral bags sea-
quark effects are of critical importance. 7
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APPENDIX A: GRANT REVERSAL

In this appendix the grand-reversal symmetry will be
reviewed and it will be shown how this symmetry leads to
a 55=5/=0 to first order. The grand-reversal operator
consists of time reversal and a simultaneous isorotation
about the 2 axis through m. Formally, the grand-reversal
operator, 8, operating on a state specified by the quantum
numbers L,J,I,MJ. ,m; has the following effect:

cr(x, t)~cr(x, t), —

P(x, t)~4(x, t) . —
(A2)

From Eq. (A2) one finds the effect of grand reversal on
our mean fields:

q(x, t) o2r2q'(x, —t),
o(x, t)~cr(x, t) . —

P(x, t)~P(x, —t) .

(A3)

In Eq. (A3) we see that the meson mean fields are even
under grand-reversal transformations.

From the properties of Eq. (A3) we see easily that the
static hedgehog solution is even under grand reversal I..et
us now consider the set of equations for the mean fields in
the rotating frame (3.4). All terms in the these equations
are even under grand reversal except the A»!2 term, in
the quark equation, which is odd. In our perturbative cal-
culation for 5o and 5$, it is precisely the A»./2 term.

which we are treating as a perturbation. Thus, to first or-
der, 5cr and 5$ must be odd under grand reversal. How-
ever, from Eq. (A3) we see that o =ot, +5cr and

P =Pt, +5/ are even; since crt, and Pt, are even, we see that
5o or 5$ must also be even. For any nonzero 5o or 54,
there is a contradiction; thus 5o and 5$ must vanish.

A more tedious way to see that 5o and 5$ vanish is to
simply expand Eqs. (3.4) without regard for grand rever-
sal. After some long but straightforward algebra one
finds that the first-order shifts are given by 5o =+=0
and 5q is given by Eq. (3.9).

APPENDIX 8: gg AND THE CHIRAL LIMIT

In this appendix we will explain the origin of the factor
of —', which must be included in Eq. (5.18) to give gz
correctly for systems with I~=0 in the Lagrangian. We
will calculate the integral which gives gz as a function of
m and show that there is a discontinuity at m =0. The
limit of this integral in the limit of rn going to 0+ will
be shown to be —, times the integrals with m =0.

The semiclassical expression for gz is

,'g~= f d—'x(p& l(~3 ii)'lp» . (&1)

One can divide the integral into two regions: r ~R and

& lL,J I, , J;)=(-»'lL. ,J J, -~, ,~, ),
where, in the Condon-Shortely phase convention,
c =I, +J+I—rrtj —rrt;. The effect of grand reversal on
the various field operators can easily be deduced:

1((x,t)~cr2T ptP(x, t)P"—,
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r ~ R, where R is an arbitrary large radius chosen so that
for r ~R all of the fields have essentially reached their
asymptotic forms. The discontinuity comes from the
p' Q 8 region. Clearly, in this asymptotic region, A3 jJ 1S

complete1y dominated by the pions which are the lightest
mass fields in the problem; 0 will be at its vacuum expec-
tation value of F—and the quarks will not contribute.
Thus, in the asymptotic region

&I 1
I
(~s-n)'let&=F &pt I

~'6-nl»& .

The asymptotic form of the pion field in proton state for
m +0 can be obtained from Eqs. (5.20) and (5.12):

(83)

From Eqs. (82) and (83) we can evaluate the integral in
the asymptotic region:

p~ ~3coil p t

4mDE~m~

9
r dr exp( —m r)/r

4rDE~
[exp( —m ~r)+ Rm ~exp( m~r) ]It .—

(84)

This gives a value of 4nDF (1 +m~8) exp( m /8)/—9.
Taking the m ~0 limit, one finds

X3A3~)]'dS .
S

(86)

Using the asymptotic form for As „n, one obtains
8rrDF /9. Note that the discontinuity in Eq. (85) is
4mDF /9. Thus if one wishes g~ to be a continuous
function of m, one must multiply the result of Eq. (86)
[or equivalently, Eq. (5.18)] by —,.

limm„~o f d'x&pt I(~„on)'let&=4~DF /9.
r&R

(85a)

On the other hand, if one evaluates (84) with m„set to
zero at the outset, one finds

d X P't A3~g Pf =0. (85b)

The difference between Eqs. (85a) and (85b) is precisely
the discontinuity we seek. It is fairly clear what is hap-
pening. A finite amount of the contributions to the in-
tegral in (Bl) come from distance scales of 1/m . If one
sets m to zero in the Lagrangian, this contribution is
lost, yielding the discontinuity.

For the chiral limit one can use an argument of ANW
to express the full space integral of (Ai~n)' in terms of
the pionic tail. The divergence of the axial-vo:tor current
vanishes in the chiral limit and one can use the divergence
theorem

f d x(A3gon) =f d x t);[ x3(A3gon)']
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