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Solving momentum-space integral equations for quarkonia spectra
with confining potentials
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Singular integral equations for quarkonia (qq) spectra are solved in momentum space for dif-
ferent choices of confining potentials by introducing a regularization procedure. The method is suf-
ficiently general to treat nonlocal potentials and combinations of singular potentials. Through non-
relativistic model applications we demonstrate the stability and accuracy of the method. The
method works in all partial waves. A first-order correction to the eigenenergies brings calculated re-

sults for soluble model problems into remarkable agreement with exact results. Extensions of the
method to solve the nonrelativistic spectra of three-quark systems and to solve the relativistic
Bethe-Salpeter equation are discussed.

I. INTRODUCTION

As interest has grown in developing a covariant
description of the mass spectra of the elementary particles
based on QCD, there has emerged a need for stable
methods to solve the Bethe-Salpeter' integral equation in
momentum space with nonlocal and singular kernels. In
the case of the charmonium and b-quarkomum ("heavy"-
quarkonia} spectra the Schrodinger equation has been
widely used with local phenomenological interactions
since the nonrelativistic approximation is reasonable and
the techniques for solution in coordinate space are ele-
mentary. %e adopt the quarkonia problem to illustrate a
method for treating singular potentials in integral equa-
tions that is also applicable to more general nonlocal in-
teractions as will arise in applications of the Bethe-
Salpeter equation to problems in QCD.

We begin by considering separately the potentials
u;(r)=a;r' (i = —1,1,2), which represent the Coulomb,
linear confining, and quadratic confuung potentials,
respectively, for the heavy-quarkonia problem, to illus-
trate the singular structure of the momentum-space two-
body Lippmann-Schwinger equation. We then introduce
a regularization (screening) procedure and examine the
implications for the low-lying spectra of these potentials.
A major effect of this regularization procedure is to
change the long-range behavior of the potential. The
long-range effects, such as the confining part of the po-
tential if i&0, are then treated as a perturbation. A
correction is evaluated and encouraging results are ob-
tained. %e then consider the more interesting and more
challenging problem of the Coulomb-plus-hnear confine-
ment potential and obtain remarkable agreement with the
exact results.

Since the method is applicable to nonlocal and singular
potentials, it is interesting to compare our results with

other approximate results. The method of Shifman,
Vainshtein, and Zakharov (SVZ) was introduced to draw
connections between the empirical heavy-quarkonia spec-
tra and fundamental parameters of QCD. In the process
of critically reviewing the limitations of the SVZ method,
Durand, Durand, and Whitentoni (DDW) have quoted re-
sults of the SVZ method for the same potentials we con-
sider here.

II. INTEGRAL EQUATIONS

The two-body Hamiltonian is h =ho+v, where ho is
the kinetic energy operator and v is the potential. In
momentum space the kinetic energy is ho ——q /(2m),
where m is the reduced mass.

The aim of this paper is to find low-lying eigensolutions
of h when u is a confining potential. For such potentials
h has only a discrete spectrum. We shall, however, also
consider the Coulomb potential, which has a continuous
spectrum, in addition to an infinite number of bound
states that accumulate at zero energy. In general, there-
fore, we shall assume that h has a discrete spectrum on
the left of the real energy axis, and a continuous spectrum
on the right extending to + 00.

We focus on the discrete spectrum of h. Let —eb be an
eigenvalue of the Schrodinger equation

"
I fb & = —&b I kb &

Here
~ $0& is the bound-state wave function and eb is the

binding energy. %e denote internal quantum numbers by
the label b.

Equation (1}may be rewritten as an integral equation,
which in operator form is

(2)
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Here we have introduced the free-resolvent operator

gp(z) = (()I0 —z) (3)

where, for convenience, we restrict the energy parameter z
to lie along the real negative hne, zE( —0(),0]. In gen-
eral, for z G ( —ao, O], the equation

n. I 4.&= —gp(z}v
I 0 & (4)

III. APPROXIMATION METHOD

The problem is to find an approximate solution to Eq.
(8) when v is a confining potential. For our test problem,
the potential is chosen to be local in r space, that is
(r~v ~r'&=v(r)5(r —r'). We shall, however, take the
Fourier transform of V(r) and solve Eq. (8) in momentum
space. After partial-wave projection, no advantage is tak-
en of the local r-space behavior of v. Furthermore, the
long-range behavior of v(r} leads to moving singularities
111 thc kcfncl of Eq. (8). GcIicI'al 111ovlIlg slnglllafltlcs 111

integral equations are well known to provide major chal-
lenges to obtaining accurate solutions.

The approach we shall adopt is to replace the potential
v(r) by a screened potential e "'v(r), where p is a free
parameter. In the limit p~O the Fourier transform of a
confining potential is a distribution. However, we do not

has an infinite number of solutions [ ~ f & j corresponding
to the numbers t Il j. For z = —eb we may regard Eq. (4)
as a kind of Schrodinger equation where each

~
It), & is an

eigenstate of the Hamiltonian h~ =hp+II~ 'v, and the in-
teraction strength II is adjusted to give the binding en-

ergy Gs. Thc physical sollltlo11 corresponds to Q=b, aild

Ils ——1. The functions [ ~
It), & j are usually referred to as

Sturmians because they are solutions of a particular form
of the Sturm-Liouville equation.

We may symmetrize Eq. (4}. Let

I 4 &
=&gp(» I X & .

The I ~
X & j are now eigenstates of the equation

I} ~X & = V'gp(—z)vv'gp(z) ~X & .

If v is self-adjoint, then the eigenvalues [II~j are real. In
order for the Sturmians [ ~ P & j to be normalized to unity
it is convenient to use the normalization condition

(X ~gp(z) (X &=1.
After the usual partial-wave decomposition, Eq. (6) in
momentum space reads

I) X (q)= —I K(q, q')X (q')q' dq', (g)

where K is the symmetric kernel

K(q, q') =2m (q 2mz) '~ v—(q,q')

&& (q' —2mz)

Here we have suppressed the subscript angular momen-
tum l. Equations (8) and (9) are true for all angular
momentum I. The potential v (q,q') is the Fourier
transform of v(r), and a description of this Fourier
transform is given in the Appendix.

take this limit. The idea is that p can be chosen small
enough that the screened potential gives a binding energy
c'I,

' that is close to that of the confining potential binding
energy c(,. The approximation eb

' can be further im-
proved by using perturbative methods, as we shall show.

In the case of confining potentials the above screening
procedure will result in continuum-state contributions to
the binding energy. In order to avoid this complication
we introduce an additional constant c &0, and write the
potential as v (r)—c; the screened potential becomes
e I'"[v(r)—c]. In practice, c is chosen so that the calcu-
lated binding energies are real. All eigenenergies we quote
below have been "corrected" by adding c to the values c'b '

obtained in solving Eq. (8).

A. Zero-order solution

where g is a constant scale parameter. The interval

[—1,+1] is partitioned by n knots Ir„j, such that
t„ 1 & t„. Although we shall restrict our numerical
method to uniformly spaced knots on [—1,1], the param-
eter g may be viewed as a means of concentrating these
knots in a selected region of the semi-infinite domain. On
this mesh we define basis functions IB„j, which are
chosen to be cubic 8 splines. Next, the function X~

' is
approxlQ1ated as

n+1
X' 'fq(x))= g P„'&„(x) . (12)

The spline coefficients IfP„;v=0, . . . , n+1j are deter-
mined from a Galerkin technique for second-kind
Fredholm integral equations. Finally, the energy cI,

' is
obtained by ensuring that the eigenvalue 1)I, '=1. This
procedure also yields the wave function in momentum
space, f'b '(q).

B. First-order correction

Let u be the correction term to the screened potential.
In r space we write

v(r) =(1—e "')(v(r) c) . — (13}

This potential has all of the long-range behavior of the
original power-law potential v(r). Using first-order per-
turbation theory, we find

~()) ~(0)+(y(0)
~

v
~

y(0)& (14)

The corro:tion term in Eq. (14) is finite. This is because
the bound-state wave function 1l)'b

' falls off exponentially

We seek a zero-order solution for Eq. (8}. Let
K' '(q, q') be the kernel given by the screened potential.
Equation (8}becomes

X (q)= —f K' '(q q')X '(q')q' dq' (10)
0

We briefly describe our numerical treatment of Eq. (10}.
We first map q onto a finite interval. For this purpose we
use the mapping

q(x)=g, xG[ —1,+1],1+x
1 —x
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as r~oe. The zero-order solution is close to the correct
result, and we find that the first-order corrections produce
satisfactory results in our numerical calculations so that
higher-order terms will not be considered.

a = [(m&+mi)8 ——,8 ]—1,1

m )Pl2

and 8 represents the (positive} binding energy. Let us re-

strict ourselves to the case a &0, where manipulations
analogous to those performed above may also be per-
formed. In practice, this limits solutions to the range

0(lrt)+Pity —(itti +my } (8 Cltt)

+m, +(m, '+ m, ')'", (17)

which certainly covers a large range of relativistic bound-
state solutions. In the case m )

——m2 this implies

IV. APPLICATION
TO THE BETHE-SALPETER EQUATION

A full relativistic equation for two interacting particles
was developed originally by Bethe and Salpeter Central
to the derivation is the infinite series of irreducible graphs
for the kernel of the integral equation. Only in simple
models with certain approximations, such as the VA'ck-

Cutkosky model, s can the problem be converted easily to a
differential equation with local interaction form. For the
general problem of relativistic bound states one faces the
full integral equation in four-momentum space. In light
of the interest in strong-interaction problems such as qq
systems one would also like to assess the convergence of
the expansion for the kernel.

In order to demonstrate the applicability of the
methods wc have discussed above, wc sllall ti'cat thc
Wick-Cutkosky model in its integral equation form —that
is, without exploiting the specific limit (mass of scalar
field exchanged @~0) where it can be rewritten as a dif-
ferential equation. Furthermore, the more general prob-
lem of p,+0 is no more difficult than p, =0 in our method.
We also remark that it is possible, within our framework,
to go beyond the ladder approximation. However„we
reserve that effort for a later work.

The integral Bethe-Salpeter (BS) equation for two com-
plex scalar fields of masses m& and mi interacting
through a real scalar field of mass p can be written in the
center-of-momentum system, after a Wick rotation has
been performed, as

(q +2aq +1)g(q)= J d"q'U(q, q')P(q'), (l5)

two space and one time dimensions. The problem that
then emerges may be treated easily by a partial-wave
decomposition, just as we had done in the Schrodinger
problem. If we restrict ourselves to the lowest-order con-
tribution to U (q, q'), we have a Yukawa-type form:

u(q„q')~ 1
(20)

2 (q —q') +p
where the metric is Euchdean due to the Wick rotation
(q =qi +qi +qo ). The partial-wave decomposition of
(15) renders the integral equation similar to Eq. (8), but
with go(z) in Eq. (7) replaced by

go(z)~(q" +2aqi+1}

which introduces no additional complexity to our method.
Thus we see that it is possible to study interesting ques-

tions of convergence for bound states of the kernel expan-
sion in the BS framework directly with our method. At
present this is limited to the two space and one time di-
mensions, but we have also extended the discussion to the
more general p+0 situation.

V. RESULTS AND DISCUSSION

We solve the momentum-space integral Eq. (8) using
the method described in Sec. III. Our results are com-
pared with exact solutions. We note that we are present-
ing Schrodinger, not BS, solutions.

A basis of 20 splines is used to solve Eq. (10) with sim-

ple power-law potentials. A basis of 40 splines is used for
the Coulomb-plus-linear potential. The parameters p and
c are chosen so that the solution does not change when
more basis functions are used. In practice, the zero-order
approximation is sensitive to the value of these parame-
ters, but the first-order approximation is not. The scaling
parameter g is adjusted separate1y for each potential. The
values of the parameters chosen for each model problem
are given in Table I.

Our first results concern the simple power-law poten-
tials. We restrict our discussion to the case 1=0. We cal-
culate the eigenvalues e„and eigenfunctions squared
(f„(r)

~

at r=0 The val. ue of ~g„(0}
~

is of some in-
terest because it is related to leptonic widths. ' Exact
eigenvalues for the Coulomb, linear, and harmonic-
osciliator potential are given in Table II. Table III gives
our numerical results. We find that for these soluble
model problems a first-order correction to the cigenener-
gies is sufficient in most cases to yield accurate numerical
solutions. The least accurate results seem to occur for the

0.59m2 &8 & 3.41m2,

and in the case m
&
~0 this implies

(18) TABLE I. Choice of parameters. The screening parameter p
and subtraction constant c for the screened potential
e "'[U (r }—c]. Scale parameter g in Eq. (11).

Potential
Thus one may achieve a highly relativistic composite sys-
tem of zero mass.

A framework for a simple study of the convergence of
the BS binding energies with higher-order contributions to
the kernel can be obtained by restricting the discussion to

Coulomb
Lmear
Harmonic oscillator
Coulomb plus hnear

0.01
O.OS

0.1

O.OS

10.0
20.0
2.0

1.0
2.0
S.O
1.0
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Coulomb
Linear

Harmonic oscillator

(4n ) (8mn 3)

(4 )-'
2 I(n+ —,')
m I (n)

Coulomb potential over values of the principal quantum
number n ~ 1. In this case the eigenenergies accumulate
at zero and are therefore difficult to reproduce accurately.
For n=4 we find an error of about 50% in the binding
energy. We remark that the value of g in Eq. (11) is ad-
justed to optimize the stability of the solution when dif-
ferent mesh points are used. Our result therefore
represents an accurate solution of the integral Eq. (8) plus
the first-order perturbation. The eigenenergies of the har-
monic oscillator are uniformly spaced, whereas those of
the linear potential are more closely packed. For these
confining potentials the method works well for principal
quantum numbers n & 4. The eigenenergies are calculated
with an accuracy of about 6% for the harmonic-oscillator
potential, and about 0.5% for the linear potential. We
can expect less precise results for the harmonic oscillator
because this potential has stronger confinement than the
hnear potential. It is noteworthy that the present method
works well for the lowest-lying eigenstate, even in the case
of the Coulomb potential.

Next we consider a combination of simple power-
law potentials. The Coulomb-plus-linear potential
U(r) = ar '+br ha—s been used as a model for the heavy
quark-antiquark system. " We choose a =0.49 and
b=0.17 GeV. The masses of the charm and bottom
quarks are taken as m, =1.35 GeV and mb 4.77 GeV,——
respectively. These parameters produce a good fit to the
average quarkonia spectra. " Table IV shows our numeri-

TABLE II. Exact values for the simple power-law potential
V(r)=a~r'. The a„ is the nth zero of the Airy function
Ai( —a, )=0. Energies are in units of 0,;2~'2+"m~ '~'2+" and the
square of the wave function is in units of (m~a;)3~' +" with
A=v= 1.

Potential

cal results for the spectra of charmonium (cc) and b
quarkonium (bb), which are predicted by this Coulomb-
plus-linear potential.

From these results we may conclude that accurate solu-
tions to momentum-space integral equations can be ob-
tained in the case of confining potentials, and that a first-
order correction to the eigenenergies is sufficient to bring
most of the calculated results for the model problems con-
sidered in this paper into close agreement with exact re-
sults.

Faddeev' has shown how the integral equation ap-
proach may be used in a nonrelativistic three-body prob-
lem. Faddeev equations have been used as a model for the
heavy three-quark system. ' One possible application of
the present method for treating confining potentials is in
the solution of three-body integral equations. Indeed a
simple method that uses Sturmians as a basis for solving
Faddeev equations exists' and could be extended to the
confining potential case.

Finally, the numerical method may be used to treat rel-
ativistic integral equations such as the Bethe-Salpeter
equation. An extension of the present method to treat in-
tegral equations that arise from the Wick-Cutkosky model
is currently being investigated.
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APPENDIX: Fourier transform of the power-law potential

The momentum-space partial-wave projo:tion of the
potential is defined in our notation by

~

y(0)(0)
i

2

TABLE III. Comparison of /=0 solutions for the power-law potentials v(r}=r' obtained by our
method with the exact results labeled e„and

~
P„(0) i

'. The units are the same as in Table II.

Pl &n &n

—0.2500
—0.0625
—0.0278
—0.0156

—0.240
—0.053
—0.019
—0.009

—0.250
—0.060
—0.021
—0.010

0.039 79
0.004 97
0.001 47
0.000 62

0.03974
0.00492
0.001 41
0.00066

2.338
4.088
5.521
6.787

2.92
4.93
6.45
7.71

2.35
4.10
5.51
6.80

0.079 58
0.079 58
0.079 58
0.079 58

0.105
0.096
0.088
0.081

3.0
7.0

11.0
15.0

4.83
9.35

13.40
17.18

3.09
7.05

11.11
15.93

0.17959
0.269 38
0.336 73
0.392 85

0.277
0.329
0.358
0.381
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TABLE IV. Ground-state energies in MeV for Coulomb-plus-linear potential u (r) = —ar '+br,
with a=0.49 and b=0.17 GeV~. The masses of the charm and bottom quarks are m, =1.35 GeV and

m~ ——4.77 GeV. The values of e&~ are taken from Table II of Ref. 3.
(13

Charmonium
1S
1P
1D

364
772

1060

535
1001
1315

368
775

1062

b quarkonium
1S
1P
1D

10
519
792

—97
353
588

& q ~

v
~ q ) =4 g (2i+ I)Pt(g q )u, (q,q ),

I

ut (q,q') = Jji—(qr)u (r)J't (q'r)r zdr,

(Al)

(A2)

vo (q,q')= —,—ln
2 a 1 (+')+
m' 2qq' 2 (q q')2+ls2

(A6)

where Pi is the first-kind Legendre polynomial and jt is
the spherical Bessel function.

The screened power-law potential is

u;(r) =a;r'e (A3)

For the case i = —1„ the interaction is a Yukawa function
which can be written in momentum space as a second-
kind Legendre polynomial, namely,

vo(q, q') =—2 a I
tr 2qq' [(q —q')2+@2]

1

[(q+q')'+( '1

uo(q, q') =- [(q+q')' p']-
a' 2qq' [(q +q')z+)Lt2]z

(A7)

„-&( .
)

2 a
g q+q +lz

rr 2qq 2qq
(A4)

[(q —q')' —J ']
[(q —q')'+l" ]' (AS)

I+1
uI(q, q')=( —1)'+', , vt '(q, q') . (A5)

We give examples for l=0:

Screened potentials for i p —1 can be obtained from the
relationship vo(q q') =—2 a [Jsz—3(q —q') ]

tr 2qq' [(q —q')z+p ]s

[ls' —3(q+q')']
[(q+q')'+u']'

(A9)
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