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%e examine the effect of Aavor-dependent elastic scattering upon neutrino flavor vacuum oscilla-

tions. The results are derived from a First-principles Dirac equation for the phenomenon. The con-

jecture of Wolfenstein is validated (with a correction 6~V 26 as noted in more recent literature)

for a homogeneous medium. While the differential equation obtained for the extension to a non-

homogeneous case appears to differ significantly from that which has been used in the literature

heretofore, we are able to show that they are equivalent for densities that vary little over the
neutrino's de Broglie wavelength.

I. INTRODUCTION II. OSCILLATIONS IN VACUUM

Mikheyev and Smirnov' have recently pointed out that
neutrino oscillations in a vacuum associated with very
small mass differences and mixing angles will be appreci-
ably enhanced when passing through matter as dense as
that within the Sun or other stars. Indeed, such an effect
[the Mikheyev-Smirnov-Wolfenstein (MSW) effect] may
ultimately prove to be responsible for the observed solar-
neutrino deficit. There has therefore been considerable
discussion of the consequences of the MSW effect in con-
nection with neutrino propagation in the Sun and in other
dense bodies as well as the early Universe. 3 The foun-
dation for the MSW effect is an interesting paper by Wol-
fenstein. ' In that paper a prescription is given for com-
bining the spatial phase shift due to the refractive effect
of the medium with the temporal phase shift arising from
the mass matrix in vacuum. Wolfenstein's prescription is
given for a homogeneous medium, and an appropriate ex-
tension to the nonhomogeneous case is not really obvious.
Mikeyev and Smirnov have discussed the nonhomogene-
ous case in terms of an effective local Hamiltonian as seen

by an observer moving with the neutrino wave packet and
in this way have recognized that what is called an e neu-
trino inside a dense medium will be called by a different
name when it gets outside the medium.

In this paper we provide a more rigorous justification
of Wolfenstein's conjecture for pasting together spatial
and temporal phase shifts, which allows us to deal more
completely with the nonhomogeneous case.

We begin with an unconventional discussion of vacuum
oscillations in Sec. II which is more adaptable to the more
general case. In Sec. III we introduce into the Dirac equa-
tion for the neutrino, a source terin arising from charged-
current neutrino scattering in a uniform, electron-rich
medium and derive %'olfensteins conjecture in an ap-
propriate limit. In Sec. IV we generalize to a nonuniform
medium and obtain an expression for the electron transi-
tion probability in the two-flavor model for very slowly
varying density. The results are illustrated by a simple
application and are in accord with known results in the
adlabatlc 11mlt.

(is) —M)v=o, (2)

from which there follows a Klein-Gordon equation and
hence the energy-momentum relation

The rotation in flavor space which diagonalizes M~ is
characterized by the angle 8„define through the rela-
tions

( vi) =
~
v, ) cos8„—

~
v„) sin8„,

( vi ) =
~
v, ) sin8„+

~
v„) cos8„,

where the states labeled l and 2 are the simultaneous
eigenstates of E and p; i.e., they are the eigenstates of M.

The v, ~v„ transition probability is usually discussed
in terms of an electron neutrino of definite momentum,
which is then expressed as a superposition of the corre-
sponding energy eigenstates associated with the mass
eigenvalues discussed above. The temporal evolution of
v, can then be followed trivially. We choose, instead, to
consider an initial v, state which is an energy eigenstate.
Its temporal evolution is given by

In order to determine its spatial development, we must
first write the spatial part as a superposition of wave
functions with definite momenta pi 2 =E'+ m i 2 .
full temporal and spatial development of the electron state
is thus given by

~v, (x,t))=e ' '[ ~v, (0,0))e' ' cos8„

+
~
v2(0, 0))e ' sin8, ] .

Neutrino oscillations between two families, say e and ls,
are described in vacuum by the Lagrangian density

W =v(is) —M)v,

where M is a 2X2 matrix in flavor space. This implies
the field equation
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The probability of finding this state to be an electron at
x =8 is given by

P(v, ~v„'R)=
i
(v, (0,0) i v, (R, i))

i

Evaluating this yields the standard result for relativistic
energies

ing that for high energies the left-handed chiral projection
satisfies

y y ( i V—)L = EL—

allows a great simplification on the right-hand side of Eq.
(17). Equation (17) then becomes

P(v, ~v„R)=1—sin 28„sin (mR/l, ),
1„=4mE/(m2 mi —) .

III. OSCILLATIONS IN UNIFORM MATTER

(Sa) (F+V )L =0,
(&b) where

F=E M —2~2—6pEN .

(19)

(20)

As Wolfenstein has argued, the relevant effective in-
teraction for neutrino scattering in a medium which con-
tains electrons but not muons, and is therefore not diago-
nal in flavor space, arises from the charged current and is
given by (p vF )L—(0)=0. (21)

The one-dimensional solution is therefore of simple
plane-wave form with the momentum of the right-moving
solution satisfying

(Glv —2)j"vy„(1+y5)Nv,

where j is the electron density

(9) Even though M and N do not commute, to lowest order
in M /E and GpE/E we can write

j"=ey"(I+y5)e (10) Mv F =E — —~26pN .
2E

(22)

and N is a 2X 2 matrix which in flavor basis is given by

1 0
N=

(i& M)v=—(G/v 2j)"y&(1+y5)v . (12)

The energy-momentum relation is most easily established
by introducing the chiral projections vt, ~it ——(1+y5)v/2.
Equation (12) is then equivalent to the following pair of
equations:

The fleid equation for the neutrino field that follows from
Wo+Ww is

This result is identical to Wolfenstein's conjecture [Ref.
10„Eq. (22) with G~ —v 26]. Consequently, we obtain
the same expressions for the mixing angle in matter.

Calculating the probability of finding a state which was
originally v, to be v, at x =E. as discussed in Sec. II we
obtain a modification of Eq. (8)

P(v, ~v, ;R)=1—sin 28 sin2 2~8
I

where the mixing angle and the oscillation length in
matter are given in terms of the vacuum mixing angle as

i e1vL —M vii —V2Gj „yi'N v—L, ,

i Bvii —MvL ——0 .

(13a)

(13b)
tan28 =(1—ri sec28„) ' tan28, ,

I =l„(l—2' cos28„+g~) (24b)

%e avoid the temptation to include Majorana mass terms,
i.e., Mr vr„and Miivit in (13a) and (13b), respectively.
The right-handed field can be eliminated to give ri=v 26pE/(mi mi ) . — (25)

(a„a~+M')v, = iS(v 26j„y—"»,) . (14)

%e now assume the electron distribution is static and un-

polarized, so that

This is in complete accord with the prescription of Wol-
fenstein.

Jp =p(x )6po, (15) IV. OSCILLATIONS IN NONUNIFORM MATTER

where p is a constant equal to the number of
electrons/volume. We can now seek stationary energy
eigenfunctions of the form

i
v(x, r)) = iL(x))e

The problem is thereby reduced to the time-independent
equation for L (x)

(E' M'+V')L (x)=v 26 [E —( iy,y &)]pNL (x). ——

(17)

Limiting ourselves to the case of uniform density and not-
v F +i L (x)=0d

dx
vr i—

dx

The discussion of Sec. II is valid for nonuniform matter
through Eq. (17). Furthermore, as long as 1/E is small
compared to the distance scale over which the density
varies, we can still use the previous results through Eq.
(20). Moreover, the same criteria, (pE) 'dp/dx &&1, al-
lows us to factorize the wave operator in Eq. (19) even for
a spatially varying density. %'e are therefore led to the
following differential equation:
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To the extent that nonforward scattering can be ignored,
we can omit the locally reflected solution, say the left-
moving solution, and finally arrive at the first-order dif-
ferential equation eq =O.OI

= 0.95

P(v ~s )

M dE — V2—Gpss+i I.(x)=0 .
2E dx

(27)
- 0.5

Since E is a multiple of the identity matrix in flavor
space, the E term in Eq. (27) does not affect the oscilla-
tion phenomenon and can be dropped. Dropping this
term and replacing x by t produces the time-evolution
equation ba.wd on Wolfenstein's work that has been wide-

ly used in the literature. We therefore conclude that
Wolfenstein's time-evolution equation is fully justified
provided only that the density varies little on a length
scale equal to the de Broglie wavelength of the neutrino.

For completeness we consider the solution to Eq. (27) in
the Hmit that the density varies slowly on a distance scale
equal to the local oscillation length. We can then use the
approximate local plane-wave form,

0.5

x/R
0

I.O

P(v-+u )

t
i

I .0.5
I y% iy)gll IF II 'll llpi+II+NQ

t'ai q t& y iiPitP Ni IINIIN

x
L(x)=A(x) expi f p(y)dy (28)

[p (x)—~F ]A (x)=0

in which A (x) is a slowly varying vector in flavor space.
The local momentum as determined by Eq. (27) must

therefore satisfy

(b)

8„=QOI
= I 05

i

0,5

x/R
0

I,O

- I.Q

P(v ~v )e e

which is identical to Eq. (21) except for the x dependence
of p and of p. We therefore immediately have a solution
to this flavor space eigenvalue problem in terms of a local
mixing angle defined by Eq. (24) through the x depen-
dence of ri as given in Eq. (25).

We can now calculate P (v, ~v, ;R) in the same manner
and find in this case

0 5 x/R

l
~

c t) ~PgP%~+~++~J~~ —m- mr~~

0
0 I.O

&(v, ~v„'R)= cos (a —p) —sin2asin2psin2
4

(30a)

- 1.0

P (v e~s'~)

a=8(0),
p=8 (R),

Rf =2m' I l~ '(x)dx .

(30b)

(30c)

- 0.5

This expression obviously reduces to the previous result
for uniform density, since then a=P and f =2mR/I . It
is also clear from this expression that the v, probability
will be very small outside of the matter distribution if the
mixing angle at the point of origin approaches its max-
imum value of 90.

As a simple application we consider osrillations in a
medium ~ith a linear density distribution out to some dis-
tance Ro, more specifically for

0

FIG. 1. v, appearance probability as a function of distance
from the point of creating for the linear density distribution.
All curves are for a vacuum mixing angle of 0.01. (a)—(d} illus-
trate the shape change as one progresses from core densities
below the resonance value to core densities above this critical
value.
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0 otherwise.
(31)

8 =0.05
q =095

In this case we can evaluate f in terms of elementary
functions and find

/R
0

1.0

—2mRof= [I(ri(&))—&(rio)],

where

(32a)

p(p
I(tI) = g(rl)+ In(p+2ri+2gri)29+ 4 2

(32b)

8,=005
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Figures 1 and 2 illustrate the results for two different
vacuum mixing ang1es and several different core densities.

4

4

4

4

4

4

4

8 =005
V

q =l.20

0.5 x/Ro

ht~ tt 44 tt ttthttthtNhttt tthhttth.

4

hh
ht

8 =0.05

q =20

t

4

h

4

t

t

t
h „ 4 tt tt ~ 4

444 4 4 4

4 4 4
h 4 tt 44 44 44 4 tt 4 44 h 4 4 4 4

ht 4

- IO

-0.5

- l.o

-05

V. SUMMARY

We reformulated the theory of neutrino oscillations in
terms of the mixing of different momentum eigenstates
having equal energy. This allowed us to reduce the prob-
lem of osci11ations in static matter to the so1ution of a
time independent second-order differential equation de-
rived from an appropriate Dirac equation with source
term. With neg1ect of nonforward scattering, this effec-
tive Schrodinger equation was reduced to a first-order dif-
ferential equation which was shown to be equivalent to
the time-evolution equation for variable matter density
that has been used in previous applications. The pro-
cedure was illustrated by application to a linear density
distribution, and analytical as well as numerical results
were given in the limiting case of very slowly varying den-
sity.

%'hile we have not been able to discover any new physi-
cal phenomenon by this approach, we hope it will serve a
pedagogical purpose in clarifying some of the issues sur-
rounding this exciting effect.
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