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%'e calculate decay rates and branching fractions for the postulated S= —2 0 dibaryon, both for
the expected M=1 channels ( n A, n X,pX ) and for the possible M=2 mode ( nn). For AS= 1 de-

cays we find the S waves are dominated by all =
z transitions due to the Pauli principle, which

forces the six-quark final state to be in a SU(3) 27-piet. If observed, this would be the first break-

down of the LI =
2 rule. The lifetime is lang, of order 10 ' sec, which should be considered in

planning experiments. In the d6'=2 case, we add a consideration of dispersive effects to our previ-
ous calculation of the box diagram, reinforcing our conclusion that the H is too short lived to be the
explanation of the Cygnus X-3 events.

I. INTRODUCTION

Dibaryon states, distinct from the deuteron, have been

sought for many years. Although none have yet been
detected, there is reasonable motivation to continue the
search. In particular a theoretical analysis' suggests the
most stable such state would be a neutral, strangeness —2
state of zero spin and isospin. This so-called H particle
would be a composite of the six quarks uuddss.

The mass estimate for the H in Ref. 1 has it sufficient-

ly bound to be stable under strong decay (mii &2mz).
Interestingly there has been a recent speculation that a
more deeply bound H, stable even under hS =1 weak de-

cay ( rnH & m ji+m„), might be associated with the obser-
vation of high-energy muons associated with a hadronic
component in the emission spectrum of Cygnus X-3 (Ref.
3).

Regardless of whether this speculation is valid, the H is
a very interesting particle in its own right, especially as it
relates to our understanding of quark dynamics. It is
hoped that its existence will be probed in a forthcoming
experimental program. For such an endeavor, it is im-
portant to have some sense of how the H would decay
weakly (lifetimes and branching fractions). It is our pur-

pose to provide this information here.
Throughout we shall take seriously the description

presented in Ref. 1 of the H as a composite of six quarks
which have highly similar spatial wave functions Thus, .
although it has become traditional to refer to the H as a
dibaryon, it is very unlike the deuteron where color corre-
lations between the quarks produce a moleculelike bound
state of two distinct baryons. Presumably if we were able
to reduce the H binding energy to nearly zero, it would
more and more resemble a deuteronlike composite of two
A hyperons. The weak decay of this object would be dic-
tated by A decay, accompanied by minor off-shell correc
tions. However, for the H particle considered in this pa-
per the picture of weak decay we arrive at is rather dif-
ferent, involving in a central way the symmetry properties
of six-quark ground-state configurations. It is important
for the reader to appreciate this point; otherwise some of

our results might appear unduly mystifying. Indeed, we
find (see Sec. IV) for the M =1 decay of H into two
baryons (H-+Bi82) that the b,I=—', contributions are
dominant in the S wave, in contrast with the usual M = —,

rule. As we shall see, this result has a very simple origin.
If observed, it would be a significant confirmation of both
the scenario assumed here and our understanding of it. In
addition we find a rather long H hfetime which may be
important to the design of experiments which look for it.

In Sec. II we describe how to write both six-quark wave
functions and also the weak Hamiltonian in the quark
model. Section III contains a discussion of the P-matrix
formalism which is used to relate bag-model multiquark
configurations to baryonic scattering states. Sections IV
and V are devoted to ES= 1 weak decays H ~BiBi and
H ~B&B2vr, respectively. %e have previously given a cal-
culation of the lLS=2 decay H-+nn via the box dia-
gram. In Sec. VI we repeat this result for completeness
and present a full discussion of the corresponding disper-
sive contribution. Our previous conclusion that the
b,S=2 lifetime is too short for the H to be the explana-
tion of the Cygnus X-3 events is reinforced. Section VII
contains a summary of our results.

II. QUARK-MODEL WAVE FUNCTIONS
AND OPERATORS

We shall compute weak decays of the H in the quark
model. To do this we must first write down wave func-
tions for the H initial state and for the baryon-baryon fi-
nal states. Also we must give the quark structure of the
hS = 1,2 nonleptonic weak Hamiltonians.

Dealing with the H wave function is a crucial aspect of
the calculation. Obviously, to do computations involving
six-quark states is a formidable task. However even learn-
ing about the quark content of the H is a problem of some
subtlety. Fortunately there exists an approach which pro-
vides a powerful guide in how to proceed. Consider Table
I, which we reproduce from Jaffe's paper. ' lt gives the
spectroscopy of all possible color-singlet six-quark config-
urations of ground-state (i.e., S-wave) quarks. The list of
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SU(6) of color jspin SUC', 3) of flavor

TABLE I. Spectroscopy of ground-state six-quark confjgura-
tions.

Since we have introduced the (abcdef) notation for
spinless and colorless six-quark composites, it is
worthwhile to point out at this juncture certain of its
properties. It is straightforward to show that
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(abcdef) =(defabc) .

There is also permutation invariance, up to a phase, with
respect to interchanging the first two, or fourth and fifth,
members:

(abcdef ) = (ba—cdef )

= —(abcedf) . (5)

e "e damu pndyk I
0)

18

where greek symbols run from 1 to 3 and denote color, la-
tin symbols run from 1 to 2 and denote spin, and e ~",e "
are the usual antisymmetric tensors defined over the range
of their indices. An unnormalized spin-zero six-quark
state with the quantum numbers of two neutrons can then
be written as (duddud). The parentheses surrounding six
quarks represent the construction of a colorless, spinless
configuration:

(abcdef)=e ~re" Pe "e e"

xaambpncrsdvpeaqfps . (2)

Denoting a unit-normalized member of the flavor 27-piet
carrying hypercharge Y, isospin I, and isospin-component
I3„as

I
F;I,I3 )27, we can write for the "dineutron" state

I2, 1, —1)2,= (duddud) .1

12 10
(3)

Observe that the normalization constant of this six-quark
confined configuration is not just the square of the neu-
tron normalization factor. Such normalization terms
must be computed independently for each six-quark state,
unless of course inferred from some other state by a sym-
metry principle.

allowed states is a remarkably restrictive one. Evidently
the symmetry structure, especially as regards the Pauli
principle, plays a significant role in constraining the mul-
tiquark configurations considered here. Observe that
spin-zero states can occur only in the SU(3)-flavor repre-
sentations 1, 27, and 28. The singlet corresponds to the 8
particle and the 27-piet contains the possible baryon final
states to which the H can couple via the weak Hamiltoni-
an. The 28-piet has no relevance to our calculation be-
cause it does not occur in the Clebsch-Gordan series of
two SU(3) octets.

The fact that the SU(3) flavor rep-resentations each ap
pearjust once in Table I means that any six quark co-njig
uration having the correct quantum numbers must be a
valid ioave function for the associated state. We illustrate
this important statement with the following simple exam-
ple, which also serves to introduce some useful notation.
Suppose we wish to write down the 27-piet wave function
having the quantum numbers of two neutrons. For a sin-

gle neutron with spin component k, we have

Finally, upon writing out the spin content of (abcdef) one
obtains eight distinct terms. For each of these there are
an additional 36 color terms. The (abcdef) notation thus
characterizes a good deal of hidden complexity, which
makes the six-quark states a real challenge to perform cal-
culations with.

We have considered the (duddud) configuration in part
because it is the one reached by a AS=2 weak transition
from the H. Configurations reached by b,S= 1 weak
transitions from the H are the

I
1;—,', ——,

' )q7 and

I
1;—,', ——,

'
)q7 member of the dibaryon 27-piet. Conven-

tional ladder operations and orthogonality relations can be
used to construct these from Eq. (3). We obtain

I
1,—,, ——, )i7 —— [(sududd)+(sduudd)

12 15

+ (sddudu ) ] (6a)

and

I
1;—,, ——, )2& —— [—2(sududd)+(sduudd)

60 3

+(sddudu)+3(udsudd)] . (6b)

These arise, respectively, from AI = —', and EI= —,
'

decays
of the flavor singlet H.

There is a bit of a surprise associated with the

I
1;—,', ——,

'
)27 state of Eq. (6b). It has the form which

anyone employing the usual algebraic ladder operations
would obtain. Yet inspection reveals that among all possi-
ble states of Table I, it uniquely has the quantum numbers
of a An composite. But the An composite has the struc-
ture (udsudd). It must therefore also be true that (in
unit-normalized form)

I
1;—,, ——, )q7 —— —(udsudd) .

12v'3

The reader might wonder how Eqs. (6b) and (7) can each
be correct. Yet they are, and we can demonstrate so in the
following manner. Two vectors associated with the same
ray in Hilbert space must have the property that the abso-
lute value of their inner product equals the product of
their norms. %'e have verified that this is the case for the
states in Eqs. (6b) and (7). They are indeed equivalent
representations of

I
1; —,', ——,

' )27.

We can now construct the H wave function. The fol-
lowing linear combination is found to be a singlet under
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the SU(3) of flavor

i
H ) =,' [(udsuds)+(usdusd)+(dsudsu)

2(—ussudd ) 2(—dssdud ) 2(—usudsd ) ]

and so must be the H W. e suggest computation of the
normahzation factor as an exercise for the reader. Let us

again raise the issue of wave-function uniqueness, but in

an extended and ultimately more instructive form.
In the (abcdef) construction, the spins of a,b and of

d, e are each paired to spin zero. So are the spins of c,e.
An alternative spin-couphng procedure would be to pair
a, b and d, e each as spin one entities and then to couple

them together to spin zero. Quarks c,e would be treated
as before. The resulting configuration, denoted by

f abcdef], has the form

[abcdef]=e ~yev Pe a p(oio2)~'bItt cty dtv„

X (o I o.z)„e,fp„.
The quantity [abcdef] obeys the replacement rule

[abcdef] =[defabc J,
and there are twelve distinct spin terms in each such con-
figuration. We can express the H dibaryon in terms of
these bracketed entities to obtain

i
H ) = », [[udsuds]+ [usdusd]+ [dsudsu] [uusd—ds) [ddus—su) f uuds—sd] [suusd—d)

—[duudss] —[udduss]+ [uussdd]+ [ddssuu]+ [ssuudd]+ [uuddss]+ [dduuss]

+ [ssdduu] —[dsuusd] —[sduuds] —[suddus]] .

The equivalence of the wave functions appearing in Eqs.
(8) and (11) is proved as before. The absolute value of
their inner product equals the product of their norms.
This lack of uniqueness in writing down six-quark wave
functions has its bright side, of course. It is far easier to
work with the more compact form of Eq. (8) than it is
with the cumbersome object in Eq. (11).

There is one more six-quark configuration which is
worth studying. Suppose we attempt to obtain a color-
singlet six-quark composite as a consequence of coupling
two color octets. We could then define the construction

I abcdef I =e ~ye" PA, "sA,"e "ePqe'I

&&aamb pncssdsipeaqfys

However, in view of the identity

A.ask~ —,
'
5ys5~+ 2——5yp5—sp

we see that

I abcdef I = —', (abcdef }+(abcde—f),

(12)

(13)

(14)

( abcdef ) =e ~ye" Pe "ePqe '

t
&aamb pncpsdqpeaqf y&

Observe that the colors of the quarks c,f have been inter-
changed relative to their values in the (abcdef) state of
Eq. (8). However this "twisted color" configuration
(abcdef ) has the same spin content as (abcdef) The ap-.
peal ance of the twisted colol confliguratloll ill Eq. (14)
suggests that the [abcdef I construction in which two
color octets are coupled gives rise to yet a third form
[along with Eqs. (8) and (ll)] for the H wave function.
Such is not the case. Upon taking the linear combination
of (abcdef ) as given in the H wave function of Eq. (8},
we obtain a state of zero norm, i.e., the null state. There-

fore the constructions [abcdef I and (abcdef) lead to
identical H wave functions.

This concludes our analysis of six-quark wave func-
tions. We have developed a compact and powerful nota-
tion for dealing with such states, and have successfully
addressed the issue of uniqueness. There is a lesson to be
learned here. %e have seen how changes can be made in
the flavor, spin, or color couplings of the six quarks such
as to yield a different appearing, yet equivalent, wave
function. Thus it is hard to see how to attach physical
significance to such concepts as "hidden color" or the like
for the six-quark states.

The weak Hamiltonian which stimulates the H into un-

dergoing a transition is itself describable in the quark
model. In the following we define the relevant weak
operators. First however consider a technical point re-

garding the AS =2 decay amplitude:

M =M +M (16)

where Mb,„= describes short-range physics ("box" dia-

gram) and Md;, p= describes the action of two b,S=1 in-

teractions with a low-energy intermediate state ("disper-
sive" contribution) between them. We shall provide an es-

timate for Md;, p= in Sec. VI. To obtain a measure of the

Mb, „= and M =' amplitudes, we compute the ap-
propriate weak matrix elements of the initial-state H di-
baryon.

The LS =1 nonleptonic weak Hamiltonian is conven-
tionally written as

GFcosgc slnl9C

2v~2

where c; are numerical coefficients and the I 0; J are
chiral four-quark operators. Because of the flavor-SU(3)-
symmetry structure of the six-quark states, hvo parts of
Eq. (17}with special relevance here are the 27-piet opera-
tors,
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GpcosHC slnHC
H27

=' —— (ciOi+c4Og),2v'2

where c3-0.084, c4-0.42, and

(18)
S= exp(2i5)

P =cot(kb+5),

(23)

Oi ——(du )(us ) + (ds)(uu ) +2(ds)(dd) —3(ds)(ss),

04 ——(du)(us)+(ds)(uu) —(ds)(dd) .
(19) so that even in the absence of interaction between the par-

ticles (i.e., 5=0) there exists a sequence of P-matrix poles

The above shorthand notation for quark bilinears in Eq.
(19) is defined as

( ab)(cd) =a; y"(1+ ys)b;cjy„( 1+ys)di .

P
i s,=cot(kb) = „

1 2k 1

a=1 k2 2

$2

(25)

which are termed "compensation poles" by Jaffe and
Low. In the presence of interactions the location and resi-
due of the poles should change somewhat and these can be
fit for the lowest-lying resonances. Thus for the case of a
single pole one parametrizes the pole with n = 1 by

For anyone who has done research on nonleptonic weak
interactions, the presence of Eq. (18) is highly ironic. In
kaon and hyperon decays, it is usually neglected in favor
of the octet four-quark operators. However the SU(3)
structure of six-quark states forces H zz

= ' into the
spotlight.

For ES =2 transitions we employ

55=2 ~ 2 2 " 2H~=2= mc cos Hcsin Hcil(ds)(ds), (21)

where g 0.7, and m, is the charmed-quark mass.
The net effect of the weak Hamiltonians Hi7

=' and
H~= is to convert, respectively, one and two s quarks
into d quarks. The resulting states are bag-confined con-
figurations with content uuddds and uudddd, respectively.
In the following sections we detail the decay amplitudes
and describe how to relate the bag-confined six-quark
composites to the baryon-baryon plane-wave states seen
experimentally.

III. P-MATRIX FORMALSIM

Each of the H decay modes mentioned thus far in-

volves a weak nonleptonic transition to a pair of baryons
in the continuum. However, in quark models, such as the
bag model, one cannot treat a continuum state directly
since the six-quark state representing the baryon pair is
permanently confined as a result of the imposed boundary
conditions. The I' matrix represents a rigorous way to
connect this artificially confined six-quark state with the
real strongly interacting two-baryon final state.

In order to see how this is achieved, imagine a pair of
baryons each of mass m artificially confined to a spheri-
cal well of radius b Even if the .baryons do not interact
with each other there is a series of eigenfrequencies corre-
sponding to the bound-state energies. When interactions
are present, these energies are shifted. The P matrix re-
lates the position and residues of these poles to the in-

teractions present in the scattering matrix. For the I =0,
s =0 configuration which corresponds to a 'So final state,
Jaffe and Low showed that the relation is of the form

.—ikb 1 ~~ —ikb5= —e e
1+&P

where k = —,
'

(s —4m )' is the particle momentum in the
center-of-mass frame and S is the usual scattering matrix.
The matrix P is the P matrix (the overbar indicates a dif-
ferent normalization from that of Ref. 7). In the elastic-
scattering region we have

P(s,b)=c, + +cot(kb)—
rp 2m /b

S —So k — /b
(26)

(27)

in the vicinity of the singularity. The corresponding form
of the S matrix is the well-known Breit-Wigner resonant
shape

5 =1+ 2l&l I
2s —m —rml

which has the property

Si,= —1,

BS i
Qg s=m inl

(29)

Then using the form of the S matrix given in Eq. (22),

BS 2i r 1 . 1=—S ~—2E
r (s —so)' 1+P' r

(30)

near the P-matrix pole. Thus in the narrow resonance
limit we can identify the width in terms of the residue as

and fits to experiment for assumed values of the matching
radius b, the residue ro, and pole location so. This pro-
cedure has been carried out by Mulders, for example, in
the case of the 'So NN system. For a reasonable match-
ing radius of b =6.5 GeV '=1.3 fm, a detailed fit deter-
mines the lowest NX "bound" state to have mass
~sq ——2.25 GeV with residue ro 1.35——GeV . This can
be compared with values calculated in various confining
models. Thus, for example, a quark bag calculation of the
So NN mass gives (so'" ~)'~i=2. 23 GeV, in good agree-

ment with the fitted value. A corresponding bag calcula-
tion of the residue is not as successful, yielding a value
only 20% of the experimentally determined parameter.
Ho~ever, this may well be associated with strong color
correlations. In any event all we shall require is the
empirically fitted values.

In the case that a narrow state such as the 0 is coupled
to this channel, it will also appear as a P matrix pole of
the form
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(31)

which is the relationship we have been seeking.
In order to predict the lifetime of the H we need to

determine the residue of the corresponding P-matrix pole
in that channel. This may be cast in terms of a simple
mixing problem. That is, if we denote the confined two-
baryon state as

I 8i8z &, then the effective Hamiltonian
of the coupled H8i82 system can be written as

&27, —,
' IH~='IH&=(-,')'"~c„,

&27, —,
' IH. ='IH&=( —", )'"~c, ,

where

6
A = cos8csinHC2v 10

2 2

X J d r(uu'+11')(u +I ) .

(36)

(37)

P7l0
&8i8p

I
H„ I

H &

&8,8, IH„ IH &

P?lg g
(32) To see how specific final states are produced, we project

the 27-piet states onto the two-baryon channels. In our
phase convention we write

in an obvious notation. The first-order mixing between H
and 8~82 channels induced by the nonleptonic weak in-
teraction H~ then gives the perturbed H state as

Iij'0&=IH&+
1

HAH —my g

I27, -',
& =(-,')'"

I
pX-&+(-', )'"I.X'&,

I27 2 &=«+s)'" Is» &
—(3'0)'" InX'&-o 3

10

whence the residue becomes

&8,8, IH. IH&
'

ra 8 8
lt18 —

Eflux

g

where re q is the residue determined by fitting the empir-
1 2

ical phase shifts in the 8i8z channel. In the next sections
we apply these techniques in order to calculate rates for
decays of tile H d1baryon.

IV. THE hS =1 DECAY H -+Si82

The relative amplitudes are then

&An IH IH&= — ciA,3v3

&X'n IH IH&=(c, ——,'c, )a,

&X p IH~ IH&= (cq+ci)A .1

2

(39)

Ratios of these amplitudes depend only on general quark-
model properties, and so it is worthwhile to comment on
this aspect. The usual octet rule for H would predict ra-
tios

If the H hes in the mass range

lnh+Pl+ g PlH g 2Nlh (35)

X p X n:An "1—

Instead we find ratios

(
t )i/2 (40)

then its de:ay will be via H ='
[Eq. (18)] into n A, nX,

or pX systems. Both 'So or Po final-state channels are
available. Consider first then the parity-conserving S-
wave decay, for which the P-matrix methods described
previously may by applied. By Jaffe's theorem' the two-
baryon state Inust be in a 27-piet and so only 03 and 04
can contribute. Thus we have a unique situation wherein
the octet component of H„ is unable to contribute so
that we may study the 27-piet without the interference of
an accompanying enhanced octet term.

The quark-model calculation of the matrix element of
the weak Harniltoman proceeds in two parts. The spin
and color Clebsch-Gordan coefficients, which come from
summing all the allowed contributions, are model in-
dependent in that any version of the quark model would
give the same results. The remaining part of the calcula-
tion, the spatial wave function overlap, is more model
dependent. We use the spatial wave functions of the MIT
bag model, as they give a good account of the size and
shape of hadrons. Our answer is expressed in terms of
the upper and lower components of the quark's Dirac
wave function [denoted by u (r) and l(r) j. A prime indi-
cates the wave function of the strange quark. The calcu-
lation is straightforward and we find

X P:X n:An::1.:1.06:—0.61 . (41)

I H'(tot)=1. 24X 10 ' GeV . (43)

Note that this is the only situation in hadronic weak de-
cays where the hI = —, amplitude is expected to dominate
its M= —,

' counterpart. The reason is simple and model
independent: The Jaffe theorem only allows a 27-piet fi-
nal state and in the weak Hamiltonian cz, the coefficient
of the 27-piet b,I= —', term is larger than ci, the b,I= —,

'

27-piet coefficient.
The S-wave contribution to the H decay rate and

branching ratios may now be determined. We take the P-
matrix pole in the 5 = —1 'So channel to occur at 2.44
GeV. This is scaled from the observed nn pole by adding
190 MeV to account for the replacement of a nonstrange
quark by a strange quark. The residue is assumed to be
the same as in nn except for an obvious phase-space fac-
tor. Starting then with the decay amplitude evaluation

&X p IH IH&=2.2X10 GeV

and employing the ratios of Eq. (41), we can use the P
matrix Eqs. (31) and (34) to obtain I H "'""(tot). For ex-
ample, at an 8mass of 2M+ we obtain
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Before using the S-wave decay rates to provide a life-
tlIIlc cstlmatc fof tllc H, wc must Ilcxt, collsldcr thc P-
wave contributions. In our previous work on the LS'=2
interaction we argued that the effex:t of the P wave was
expected to be small, say, at the 5% level of the S-wave
amplitude. That is not the case here .Several conflicting
factors must be taken into account. First, P-wave decays
are suppressed by three effects: (1}P-wave phase space, (2}
a smaller wave-function overlap

X QQ — QQ + I
=0.29,fd x(u +1 )(uu'+11')

IG
8
6

where the tilde denotes a P-wave wave function, and (3)
the location of the 1P primitives is further from the H
mass and hence the energy denominator is larger. %e es-
timate that the combined effect yields a factor of about 5

suppression in amplitude. However this is compensated
in part by the fact that the P waves can be in an SU(3)-
octet state, and hence can be enhanced in amplitude by the
QCD Wilson coefficients in the weak Hamiltonian, viz. ,

25
ci/c4 —— ' -6 . (45)

Thus in ES=1 decay the S and P waves are expected to
be roughly comparable. The classification of six-quark
states for the P wave has not been worked out and the ex-
perimental information on the P-matrix poles and resi-
dues is missing. Thus we feel that we are limited in
predictive power to this very rough estimate. It will intro-
duce a factor of 2 uncertainty in our lifetime estimates.

Since a precise value for I H (P wave) cannot be given it
might appear that it will be difficult to really learn much
from BS=1H decays. However, that is not entirely the
case. Although we cannot separate S waves from P waves

by the usual technique of measuring a parity-violating
correlation (the H is a scalar and cannot therefore be po-
larized; only final-state e lpsS')S~zP/PI correlations are
possible), it is in principle possible to attempt a separation
by measuring branching ratios for bS=I decay. The

)
O-9

2.06
I l

Ji

2.i4 2.Ie
I

1)

2.22 2.26

X N thr. AA, thr.

point is that the P-wave final state must be antisymmetric
in flavor and must come from the octet component of
H~ '. The relevant final-state wave function is then

~
8„&=(-,' )'"n A —(-,' )'"n X'+(-,' )'"PX- .

Thus we expect, for the P-wave rates (I H')

(46)

(){lH(Gev}

FIG. 1. S-wave M =1 H ~B~B2 lifetime as a function of H
mass. The dashed curve displays the effect of HOAX+, and
thr means threshold.

O
3 3

p{p)(X ) p{p)(Xo ) f,{p)(A ) 1
) k(X n) 3 k (An)

k(X p) 2 k(X p)

as compared to the S-wave rates (I'H'),

0
I II'(X P):I 0'(X n):I H'(An)::1:1.12:0.37

k(X P} X(X P)

(47)

where k(8,82) is the decay momentum for the 8)8z
channel, and we have referred to Eq. (41) in writing Eq.
(48). If the decay momenta were known, it would be
straightforward using Eqs. (47) and (48) to disentangle the
S-wave and P-wave decay rate contnbutions.

An interesting possibility arises if the H mass lies in the

range MA+M„~M& gMX+Mz in which case only de-
cay to the An channel will be allowed. The AN final state
can only be I= —, and hence the S-wave amplitude is
suppressed by the QCD coefficients. The lifetime will
then be somewhat longer than one might otherwise expect.

The H lifetime is given by
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(49)

with

The ellipsis in Eq. (50) refers to modes with final states
other than 8~82 such as H~ANm (see Sec. V). Our
overall results, for all masses relevant to bS = 1 H ~8,8i
decay, are summarized in Fig. 1. Only S-vmve contribu-
tions are plotted there, so that we must remind the reader
of the factor of 2 decrease in r which is possible due to
the P wave. We see a rather long lifetime, somewhat
comparable to the K+ decay, in the range of rH-10
sec. This long lifetime is important for those experiments
which search for the H by attempting to see its decay.
The detector must be large, or the H very low energy, in
order that the decay be visible.

V. THE AS=1 DECAY H —+AN+

If the H exists at the mass predicted by Jaffe it is below
the threshold for decay by pion emission. Only in the 38-
MeV range of H mass from AA threshold down to 2.193
GeV is the decay ANrr kinematically allowed (the XNn
channel is always closed}. Given such limited phase space
we would ordinarily expect that the pionic mode would
make only a small correction to the lifetime obtained
from H8&82. However there is a symmetry considera-
tion which can make the pionic mode important when en-
ergetically allowed. Previously we have argued that for S
waves H~8, 82 proceeds only through the (suppressed)
27-piet portion of H~. The decay H~ANn can occur
via the (enhanced) octet operator in H and hence could
be large. In this section we provide an estimate of the oc-
tet contribution to 8~iUVm.

When dealing with pions it is useful to employ the
soft-pion theorem which relates a pionic amplitude to one
with the pion removed:

lim(Pm"(q) (0~ a) = (P ( [Fs,O) ) a)+ . (51)
q~o p

In the case of the weak Hamiltonian the commutator of
Eq. (52) leaves its chiral structure unaltered:

[F5,H ]=—,'H„. (52)

Thus in the soft-pion limit the pionic amplitude is related
to one calculated in the previous section:

r{H~APn)=3. 9X1.0 ' MeV (56}

which would be equivalent by itself to a lifetime of
1.7X10 sec. Thus the pionic mode does not overwhelm
the BiBt channel calculated in the last section. To com-
plete the calculation one needs to add in the Annmode.
(a 50% increase of I ) and account for phase space:

3

piet operator, and we will drop this contribution. A study
of Jaffe's dibaryon states (see Table I) shows that the only
state which can occur is the J=1 octet state. Thus the
only pole terms which are important have the pion in a
P-wave state I.t is these which we must estimate.

The overall transition amplitude for H ~AN n is
beyond the technical capability of present quark-model
methods due to the number of particles in the final state.
Likewise the strong pion vertex is not presently calculable.
For our estimate me will use a method that utilizes the
theory of P-wave hyperon decays. The P-wave ampli-
tudes for 8~8'm are themselves treated by pole dia-
grams, as we wish to do for the H. We will treat the H
as an SU{3)-singlet combination of 8182 and then use the
experimental 8& ~Am or 82~Nm amplitudes as our pole
amplitudes. The other baryon is treated as a "spectator. "
Of course, P-wave phase space will be included to ap-
propriately account for the various possible H masses.
For the decay H~ANm there are only tvvo 8~82 com-
binations which are relevant, viz. , 8& ——= (with:-~Am),
82 N, an——d Bi ——A (with A~Nm'), Bi A. In ——this ap-
proach, then, we have

I (H ~Ape ) =2C(AA)I p(A~pm ) X(phase space)

+C(:" p)I p(:" ~An. )

X (phase space),

where C(AA) and C(:- P) are the probabilities of finding
AA and = n in the H and I p is the rate due to the P
wave only. The amplitudes do not interfere because the
two decays populate different regions on the Dalitz plot.
An SU(3) singlet has the composition

1= (AA+XDXO+2X+X +2P= +2n" ) .
14

This leads us to use C(AA)= —,', , C(:" p)= —', . Phase
space scales as (q/q )3 due to its P-wave character. I.et
us first give an estimate of the decay rate at the largest
possible mass, i.e., at AA threshold. Using the experimen-
tal P-wave amplitudes we find

lim (ANn ~H [H)= (AN [H ~H) .
q 0 " 2I*' I'(H AN@ )=(6X 10 ' MeV)

100 MeV
(57)

We have seen that the latter amplitude proceeds only us-
ing the 27-piet. This shows that in the soft-pion limit
there is no octet contribution from the commutator.
However in standard usage of PCAC (partial conservation
of axial-vector current) the commutator term must be
supplemented by dibaryon poles, where the H emits a
pion via the strong interaction to become an I=1 SU{3}-
octet dibaryon, which later makes a weak transition toA¹When the weak and strong processes occur in the re-
verse order, the H~dibaryon transition must use the 27-

This contribution is displayed by the dotted curve in Fig.
1.

VI. BS=2 DECAYS

If the H mass were below m„+ niz, all AS=1 decay
channels would be kinematically forbidden and the H
would need to decay via ~=2 to an nn final state. This
possibility seems unlikely, but it has ban raised recently
as a possible vvay to explain the unusual events associated
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FIG. 2. S-wave AS =2 H~NN lifetime as a function of H
1Ylass.

with radiation from Cygnus X-3 (Ref. 2). We have previ-
ously published a calculation of the short-distance M =2
transition due to the box diagram. After a brief summary
of this result, we address the possible long-range disper-
sive component which makes use of two bS =1 transi-
tions.

Because it has hypercharge I'=2, the nn state is au-
tomatically a member of the 27-piet. The M =2 Hamil-
tonian is also in a 27-piet, and is a partner of the M= 1

operators 03 and 04. The hadronic matrix element can
then be obtained from Eq. (39) by SU(3) Clebsch-Gordan
factors or by direct computation. The result is

6 2

(nn ~H ~H)= m, cos 8csin28crlA'
16

3 3&10—&6 GeV (58)

A'=2& 10 fd'x(uu'+ll')2 .

%%en combined with P-matrix techniques, this yields the
lifetimes displayed in Fig. 2.

We turn now to the dispersive component. In a six-
quark bag picture there will exist two types of diagrams as
shown in Fig. 3, which differ as to whether the W ex-
change is between two separate pairs of quarks 3(b) or
among just three quarks 3(a). Here the wiggly line
represents an effective AS = 1 Hamiltonian.

Consider first Fig. 3(b). In this case the intermediate

FIG. 3. Dispersive contributions to the hS =2 H~NN am-
plitude.

six-quark state must by Jaffe's theorem by an SU(3) 27-
piet. Denoting this positive-parity configuration as 27+,

(nn ~H
=

(disp) (H)3~

&nn IH."='I»+ &&»+ IH."=' IH &

(60)

Of course, since a sum over a complete set of intermediate
states is implied here a precise evaluation is impossible.
However, we can estimate this contribution by calculating

( nn
(
H ='

[
27+)= cos8csin8cc~ (nn

~
0& [

27 )
2 2

&27+ iH. ='iH&.
C4,

(62)

&»+ IH~
'

I

H &

'
cos8csln8ec4(27+

~
04

~

H)
2 2

=c46X 10 GeV . (61)

Thus only the 27-component of H =' is involved so this
contribution is somewhat suppressed. However, the con-
nection of the 27 state to nn can proceed by the dominant
octet transition, i.e.,
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Also we estimate

m& —rn + -E,' —E„' —150 MeV

&nn ~H„(disp) ~H)' -2.4X 10 ' GeV (63)

which is comparable to the box-diagram contribution.
Likewise from Fig. 3(a) we have a contribution from a
class of six-quark intermediate states with all quarks in
the 1S,&2 spatial levels. By Jaffe's theorem these states
must be members of the SU(3) 27, and our results from
the previous section [Eq (39)] should apply. However, it
is also possible for an intermediate state wherein one
quark is promoted to the 1P1&2 level. In this case we have
negative-parity octet intermediate states (denoted as 8 )

&nn [H
=

(disp) [H)p'„,„,
&nn [H. ='[8-)&8- )H. ='/H)

mH —m -E, —E„——200 MeV .lS 1P (67)

Thus we have

& nn
~

H =
(disp)

~
H )p'„,„,

-0.4&nn i HN (disp)
i
H) . (68)

While the sign change in Eq. (67) associated with the
P-wave excitation energy suggests the possibility of can-
cellation between dispersive contributions from Figs. 3(a)
and 3(b), the very rough nature of our estimates forbids us
from concluding more than that the size of the dispersive
component may well be comparable to that of the box dia-
gram. Both the short-distance and dispersive effects have
characteristic lifetimes of a fewx10' sec —a few days.
Given the uncertainty of our methods this is about as well
as we can do at present. However it is clear that a life-
time as long as ten years cannot be accommodated in the
M =2 decays of the H (unless its mass is so close to NN
threshold to render it almost stable). This poses difficul-
ties for the H explanation of the Cygnus X-3 events.

and there is no H =' (27) suppression. However, P-
wave bag-model overlaps tend to be somewhat smaller
than their S-wave counterparts so we take [see Eq. (44)]

& nn [H~~='
(

8-) -0.3, (65)
&nn ~H

=' ~27+)

&8 iH~
=' iH) ci

y0.3-2, (66)
&27+ i'=' iH)

Finally we estimate

guided practice. A given six-quark quantum state can
take on several very different looking forms. The key to
properly characterizing such states is with symmetry (as
in Table I) which alone respects the central role played by
the Pauli principle.

If discovered, the H particle considered here, a genuine
six-quark bound state, would be of considerable interest to
particle physics. Its mass would reveal to us a significant
clue regarding how quarks bind with gluons. Its lifetime
and branching ratios would test our understanding both of
the nonleptonic weak Hamiltonian and also of the symme-
try structure of the multiquark states.

Although we were forced to make rough estimates at
several junctures (especially for the P-wave 2$ =1 ampli-
tudes and the dispersive contribution to the bS =2 decay),
our results were in fact quite decisive.

(i) A very tightly bound H (MH ~M„+MA) has a life-
time on the order of days rather than of years. It is there-
fore not likely to be associated with the hadronic com-
ponent, if any, in the emission spectrum of Cygnus X-3.

(ii) A less tightly bound H (Mz &M„+M&) probably
decays with a lifetime (depending on its mass) in the
10 -sec range, which is rather longer than a naive esti-
mate based on A decay of about 10 ' sec. Moreover we

anticipate a major violation of the dd = —, rule in the S-
wave amplitudes. Needless to say, this phenomenon alone
would attract substantial attention.

It is hard to imagine doing much better on the thorny
issues of either P-wave AS=i decay or the dispersive
M=2 amplitude. A proper P-wave calculation would
first entail a group-theoretical analysis of six-quark states
in which one of the quarks is excited. This should prove a
lengthy exercise. As for the M =2 dispersive amplitude,
it is well known in mesonic systems (especially E -K
and DO-D 0) that a knowledge of low-energy particle in-
teractions greater than that now available is required.

We indicated in Sec. I that for all H masses except
those very near the AA threshold, we expect our descrip-
tion of a true six-quark bound state to be valid. There is
another issue of potential concern, viz. , effects of SU(3)-
symmetry breaking which result in configuration mixing.
In principle such configuration mixing could drastically
affect our conclusion regarding S-wave decay of the H by
allowing the octet part of the weak Hamiltonian to contri-
bute. However this is not likely to be important. The
point is that an SU(3) singlet and 27-piet would need to
mix. However, the dominant part of SU(3) breaking is oc-
tet in nature, so configuration mixing occurs to second or-
der in symmetry breaking. It is estimated to be small.

%e can only hope that our paper succeeds in motivat-
ing experimental searches for the H. Some theoretical
work exists on formation mechanisms, ' which together
with our analysis of weak decays should provide the ex-
perimentalist with usefu1 advice on how to find this
elusive yet fascinating particle.

In this paper we developed a methodology for con-
struct&ng quark-model states ~n the s~x-quark sector and
then applied it to compute weak decays of the 0 particle.
We found that to attribute the six-quark wave function
with "intrinsic" properties such as hidden color is a mis-

ACKNG%'LEDCiMENT

This research was supported in part by the National
Science Foundation.



3443

'R. L. Jaffe, Phys. Rev. Lett. 38, 195 (1977).
2G. Baym, E. Kolb, L. McLerran, T. P. %alker, and R. L. Jaffe,

Phys. Lett. 1608, 181 (1985).
3M. L. Marshak et a/. „Phys. Rev. Lett. 54, 2079 (1985).
~R. E. Chrien, in Intersections Sehueen Particle and Nuclear

Physics, Lake Louise, Canada, EN6, edited by D. F. Geesa-
man {AIP Conf. Proc. No. 150) (AIP, New York, 1986), p.
325.

~J. F. Donoghue, E. Golovnch, and B. R. Holstein Phys. Lett.
8174, 441 (1986).

6For example, consult J. F. Donoghue, E. Golo~ich, and B. R.
Holstein, Phys. Rep. 131, 319 (1986).

7R. L. Jaffe and F. E. Low, Phys. Rev. D 19, 2105 (1979).
~P. J. Mulders, Phys. Rev. D 28, 443 (1983);26, 3039 (1982).
9J. L. Rosner„Phys. Rev. D 33, 2043 (1986).
~OA. T. M. Aerts and C. B.Dover, Phys. Rev. D 29, 433 (1984).


