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The anisotropic-fluid interpretation of a stress-energy tensor formed from the sum of three ten-

sors, each of which is the energy-momentum tensor of a perfect fluid or a null Auid in the special
case that the Auids four-velocities are linearly dependent, is studied. The anisotropic-Auid model

formed by an arbitrary number of perfect fluids and null fluids is also studied in the particular case
that all the fluids four-velocities lay on a timelike two-plane. The anisotropic-Auid interpretation of
the Bondi model of self-gravitating spheres is presented. The particular case of an anisotropic-Auid

model formed with three perfect Auids with a stiff equation of state, and the particular case of two
null and one perfect fluid with a p =p equation of state, are used as sources of the Einstein equa-

tions for a cylindrically symmetric spacetime„and these last equations are solved. Also, for these

particular cases the generalization for an arbitrary number of Auid components is indicated.

I. INTRODUCTION

Recently, we studied a model of anisotropic fluid con-
structed with two perfect fluids, one perfect and one null
fluid, and two null fluids. ' This model has been used (i)
to describe anisotropic spheres in general relativity, espe-
cially to study the effects of anisotropy on the structure of
neutron stars, (ii) to find exact solutions representing
self-gravitating anisotropic matter with different sym-
metries, ' and (iii) to generate a particular model of
matter that can propagate as soliton waves. Also, the
special form of the anisotropic energy-momentum tensor
(EMT) that appears in this model has been used in the
study of conformally flat, anisotropic spheres. ~

The purpose of this paper is to generalize the
anisotropic-fluid model constructed with two fluid com-
ponents by the inclusion of an arbitrary number of fluid
components such that all the fluids' four-velocities lay on
a timelike two-plane. A physical motivation to make
such a generalization is that in the study of self-
gravitating anisotropic spheres one of the most used
models is the Bondi model that has an EMT formed by
three fluids: two perfect fiuids and one null fiuid with
linearly dependent four-velocities. Also, the generaliza-
tion of the Bondi model of Herrera and co-workers can
be considered as arising from the superposition of at least
four fluids. Furthermore, one of the most simple and in-
teresting solutions to the self-gravitating two-fiuid model
is the particular example of anisotropic fluid formed with
two irrotational perfect fluids obeying the stiff equation
of state (p=p) in a cylindrically symmetric spacetime.
This solution admits an almost trivial generalization for
the case of a fluid model formed with an arbitrary num-

ber of perfect-fluid components as the ones already
described.

In Sec. II we study the anisotropic-fluid interpretation
of a stress-energy tensor formed from the sum of three
tensors each of which is the EMT of a perfect fiuid or a
null fluid, in the special case that the four-velocities are
linearly dependent. In Sec. III the anisotropic-fluid inter-
pretation of the Bondi model of self-gravitating spheres is

presented together with a brief discussion of the other al-
ready existent models for anisotropic fiuid spheres. '

In Sec. IV the particular case of anisotropic fluid model
formed with three perfect fluids with a stiff equation of
state and the particular case of two null and one perfect
fluids with a p=p equation of state are studied. In the
next section (Sec. V) the Einstein equations coupled to
particular cases of anisotropic fluids studied in Sec. IV are
solved for a cylindrically symmetric spacetime. Finally,
in Sec. VI the generalization of the model for an arbitrary
number of fluid components in the particular case that
the four-velocities of each fiuid component lay on a two-
plane is presented. Also, an application of the generalized
model is outlined.

II. THE MULTIFLUID MODEL

In this section we study some of the algebraic properties
of a stress-energy tensor formed from the sum of three
tensors, each of which is the EMT of a perfect fiuid or a
null fluid, in the special case that the four-velocities asso-
ciated to these three fluids are linearly dependent

Let us start by analyzing the EMT (Ref. 14)

Tp» g tpV (2.1)

(() (Pl +Pl ) (() (() Plg
PV P V PV

PQ ( j)Q ( j)p —1

or the usual EMT for a null fluid, i.e.,
PV P V

P& Q (I)Q (I)

Q j j)Q(j)p —0

(2.2)

(2.3)

(2.4)

(2.5)

Q~~;~, p;, and p; represent the four-velocity, the pressure,
and the rest energy density of the fluid, respectively.
Furthermore, we shall assume that there exist functions

where each t~;") is either the usual EMT for a perfect fluid,
j.e.,
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bi, bz, and b3, not all of them zero, such that

3

g b;u~(;) ——0.

T" =p UI'U" + 5& (2.7)

To study the physical meaning of the EMT (2.1) we need
to cast it in the general form of the EMT for a single
fluid, "i.e.,

' 1/2
' ae)2+pezza'=—acos (I)+p sin2$
pel i+ye)2

a612+pezz
+y sin ()(),

e'I I +ye I 2

11+3 elzy'=—a sin ((t
a612+ Ezz

(2.18a)

S~"U„=o,
U"Uq ——1,
p~O„'

(2.8)

(2.9)

(2.10)

T =au(1)Q (i) +2Pu() )u (2)

3

+'Yu (z)u (z) — g PI (2.11)

where the parentheses enclosing the indices )M and v indi-

cate symmetrization, and

a = (P I +P) ) + (Jzz+Pz)I2)

y—= (S 2+)o2)+(S 2+~3) z'

P=—(Pz+)o2)u) uz

61
Q1 =

b3

&13&22—&23&12

2
&»&22 —&12

(2.12a)

(2.12b)

(2.12c)

(2.13a)

pUL" U" represents the EMT kinetic part and S" ihe stress
tensor. From (2.1)—(2.5) we get

P~1 1 +y~lzp—
~
«»+pezz

sin2(I) +y cos P, (2.18b)

P+ I I +y ~12

«iz+ pezz
' 1/2

sin(fuzz) „(2.19a)u ( 1) = cospu (1)+

«iz+ pe'22

P~1 1 +y ~12
sin())u~(, )+ cogu~(„.

(2.19b)

A direct verification shows that

u ( P)u (2)p (2.20)

The range of the "angle" P is ——,'m &P& —,'m. When

P&0 we have u('(")u(;)„&0and u('Pju('z)„&0; i.e., u('(") is a
future-oriented timelike vector and u('P) a spaceHke vector.
And, when (t) &0, we have the opposite situation, ' i.e.,
u('()u('))„&0 and u('g)u('2)„&0. This fact can be easily
proved taking into account (2.20) and that a timelike vec-
tor can only be orthogonal to a spacelike one. Let us first
assume u(()u('ll„&0and u('z)u('z)„&0. In this case, defm-

lng

~11&23—~12&13

~11~22 ~12
(2.13b) U"—=u('1) ~(u('i)u(')) }'"

X =u (j) l( u (2)u (zkx )

(2.21a}

(2.21b)

P.
QIJ 6JI Q {J)Q{I ))M

~ (2.14)

Note that e;; =1 for a perfect fiuid and e;; =@;=0 for a
null fluid. Also, we shall always assume that u(;) &0,
i =1,2, 3 i.e., fluids traveling from the past to the future
(bona fide fluids). From these assumptions we have a & 0,
y & 0, ay & P, and e;J & 0.

By letting

3
PV

Iz =T Up Uv =a u (i)u (1)v —g A ~

I =1
3

&P&v= ~ Pi —T ~ {2)&{2)a ~
|M V

~=11+12+73 s

we can cast (2.1) as

(2.22)

(2.23)

(2.24)

' 1/2
pe))+ye)2

u(1) —+ cospu(i)— sin(f)u ( P)
a&)2+ pC22

1/2«iz+ pezz
sin())) u ('(") + cos()t u (*j),

pe) +)~y)2

(2.15a)

(2.15b)

T"'=(p+ Ir ) U"U"+ (cr m)X"X" mg—"".. —

From (2.8) and (2.25} we have

S""=(0 n. )XI'X" m(g"" —U4U"), — —

(2.25)

(2.26)

in (2.11) we find

3

T" =a u(()u())+y u(d)u(z) — Q pi
i=1

2{(«iz+pezz)(pe»+ ye) 2)]'"
tan(2$) =

~~» —7~22

U"U@———7"7 =1,
7"U~

——0,
S""U„=O,
5"7 = —og".

(2.17)
A direct compotation shows

(2.27)

(2.28)

(2.29a)

(2.29b)
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p=+ z («i)+ rezz+2Pe)z —2~)

+ -,' [(«» -mezz)'

+4(«)z+Pezz)(P&i) +}'&)z)] '" (2.30)

1o' = —
2 (&&i i +}'&zz+2Pe) z

+ —,
' [(«»-}ezz)'

+4(«iz+Pezz)(Pe»+ }'eiz)l'" (2.31)

Note that the density p and the pressures 0. and m are pos-
itive quantities. In the case that u i'(")u )') )„&0 and

uig~ui'z)„~0 we find that we must change (1)~(2} in
(2.21) and that the expressions (2.24), (2.30), and (2.31)
that give n, p, and 0, respectively, are kept as they are.

The EMT (2.25) describes an anisotropic fluid with a
pressure o ~ m along the spacelike direction X" and a pres-
sure m on the plane defined by the two other spacelike
directions that are perpendicular to both XI' and U~.

The expression (2.25) is identical to the one obtained in
the two-fluid case, but the expressions for p, cr, and m are
different. In general, the inclusion of the third fluid com-
ponent is equivalent to having a different equation of
state. We shall return to this point in the following sec-
tions. The quantities defined for the two-fluid model can
be recovered from the corresponding ones of the multi-
fluid model by letting u ~~$) —p3 —pi —0.

The multifluid model studied in this section presents a
great number of parameters that need to be either speci-
fied or related via "equations of state" or other equations.
The restrictions on these parameters will depend on the
specific applications as we shall see in the following sec-
tions. A discussion of this point for the two-fluid model
can be found in Refs. 1 and 6.

The EMT (2.25) is defined by eight functions: p, o, ir,
and the five independent components of U" and X". Note
that the EMT built out of two fluids is defined by ten
functions pi, pz, p, ,pz, and the six independent components
of uii) and uiz). Thus, given a particular EMT (2.25},we

can always find a two-fluid model with an equivalent
EMT. Since the number of independent functions that
define the two-fluid model is greater than the one that de-
flnes the anisotropic one-fluid model with EMT (2.25), we
have that the two-fluid model is not uniquely determined

by the specification of (2.25), alone. Also, given a particu-
lar EMT (2.25), we can always find a three-fluid model
with equivalent EMT. The problem of uniqueness already
mentioned worsens in this case because the number of in-

dependent functions needed to specify the three-fluid
model discussed in this section is 12: three densities p;,
three pressured p; and the six independent components of
the three linearly dependent u~[;], i =1,2, 3.

III. SELF-GRAVITATING ANISOTROPIC SPHERES

In this section —as an application of the multifluid
model presented in Sec. II—we study the anisotropic-fluid
interpretation of the Bondi approach to the contraction of
self-gravitating spheres in general relativity. This ap-

proach consists in the supposition that the EMT associat-
ed with the fluid sphere when expressed in pure local
Minkowski coordinates and vie~ed by an observer moving
relative to these coordinates with velocity m in the radial
direction is formed by three parts: (a) a perfect fluid of
density pi, pressure pi, and four-velocity uii) (eii ——1); (b)
unpolarized radiation of energy density pz and four-
velocity u iz) (ezz ——pz ——0); (c) isotropic radiation of energy
density pz ——3pz, pressure p&, and four-velocity u (3)
(ez3 = 1).

%hen viewed by this moving observer, the covariant
EMT is

P&+P2+ &73

—P2 Pi+P3+P2
0 7 & +P'3

0

0

P&+73,

(3.1)

To describe the contraction of the sphere the spacetime
line element is usually written in either Schwarzschild
coordinates

ds =e"dt edr —r(d8 +—sin 8di)}z),

or Bondi radiation coordinates

ds =e ~[( Vjr)du +2du dr]

r(d 8 + si—n 8d P ),

(3.2)

(3.3)

—(1—~')(p) +p3)], (3.4a)

z [(p)+p) +4pz)~'+(1+~)'pz
1 —N

+(1—~z)(p) +p3)1,
e —( @+i,)!2

T '=
z [(pi+I)+4pz)co+(1+co) pz],

1 —6)

T z=T'z= —(pi+pi),2 — 3—

and in Bondi radiation coordinates to

g) r(1 —co)e
(pl+p) +4p3 )

V 1+co
—2P

[~(p) +p) +4p3)1+6)
—( I + to)(p) + pi )],

y —2P

, [~'(pl+pl +4p3)+(I+~)'pz
r(l —co )

+ (1—co )(p i +P3 )],
T z=T 3= —(p)+pi) .2 — 3—

(3.4b)

(3.4c)

(3.4d)

(3.5a)

(3.5c)

(3.5d)

We notice that (3.4) and (3.5) have exactly the form

where v and A, are functions of t and r only and P and V
are functions of u and r only. In Schwarzschild coordi-
nates we find that the above described EMT reduces to

—V

, [p)+p +)4p +z(I+~)'pz
1 —Q)
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(2.1)—(2.5) and that, in each case, the fluids' four-
velocities are given by

l + —v/2, & +~ —x/2 0 0
(1 2)1/2 '

(1 2)1/2

(u(1) ) —(u(3) )— e
—v/2 ~

—A /2

(1—co ) (1—ro )2 )/2 ' 2 )/2 ' ' '
and

(3.6b)

(1 io—)(r/V)' e ~ co( V/r )' e

( 1 2) I/2 '
( 1 2)1/2 (3.7a)

0 (1+co)(V/r)' e
u(2) = 0~ ,0,0 (3.7b)

respectively.
Since the three four-velocities u(;), i =1,2, 3, are linearly dependent we have that the Bondi EMT can be cast in the

form (2.25), i.e., describes an anisotropic fluid with energy density and pressures given by

p Y~(p) pl +2P3)+ 2 l(p)+pl +4P3)(p)+p) +4P3+4p2) j

2 (Pl pl 2P3)+ 2 [(pl+pl +4P3)(pl+pl +4P3+ p2)]

~=P1+P3»

(3.8)

(3.9)

(3.10)

respectively. The anisotropic fluid four-velocity and the
direction of anisotropy are given by (2.21a) and (2.21b)
with

P2

Pt+P t +45'3
' 1/2

p~+S ~+41 3

sin(t)u (2)u ( j )
= cospu ( ) ) +

slnfu (1)+ cospu (2)

(3.11a)

respectively, where

(3.11b)

—, tan(2$) =1 P2

pi+u~+&S 3
(3.12)

T"v= d&ag|p» —pr» —px» —pj. ~ » (3.13)

where p, and pj are the radial and the tangential pressure,
respectively. Recently, Herrera and co-workers con-
sidered a generalization of the Bondi model obtained by
replacing in (3.1) the first fluid component by an amsotro-
pic fiuid component of EMT similar to (3.13).

The anisotropic Auid components associated with the
Vaidya model can be easily computed using the expres-

and u~()) and u~(2) are given by (3.6) for Schwarzschild
coordinates and by (3.7) for Bondi radiation coordinates.

A different approach to the problem of contracting
spheres is Vaidya's' who, following an idea of Tolman, '

considered a two-fluid model with a perfect- and a null-
fiuid component. In order to reduce the number of un-
knowns the perfect-fluid component is taken as being
comoving to the system of coordinates. Hence, Bondi's
approach can be considered as a generalization of
Vaidya's. A completely different approach is the one due
to Bowers and Liang' who consider prima facie the EMT
for the fluid sphere as

sions presented in Sec. II. Moreover, from the discussion
presented at the end of Sec. II we conclude that the aniso-
tropic fiuid considered by Bowers and Liang can be con-
sidered as a multifluid model with at least two fluid com-
ponents. Thus, the EMT considered by Herrera and co-
workers can be considered as being formed by at least four
fluids with EMT like (2.2) and (2.4). We shall come back
to this point in the last section of this paper and in the fu-
ture.

IV. ANISOTROPIC FLUIDS WITH IRROTATIONAL
AND NULL FLUID COMPONENTS

~ij =~ji =gawk(i IN(j ) ~ (4.2)

For an irrotational fluid with p; =p; equation of state we
have'

1

Pi —5'~ —
2 (4.3)

The theory developed in Sec. II applies only in the case
that the four-velocities of the three fluids are linearly
dependent. In case (a) this condition is equivalent to the
existence of functions b =6;/(A, ;; )'/ such that

In this section we study the model of anisotropic fluid
presented in Sec. II in the particular cases that (a) each
one of the three fiuid components is irrotational and has
equations of state p; =p;, i =1,2, 3 and (b) one of the fluid
components is irrotational with pl ——pl equation of state
and the other two are null fluids. The condition of irrota-
tionahty for a fiuid is guaranteed by the expression'

(4 1)

where P(;) is the velocity potential, the comma denotes
partial differentiation, as in (|)(;)„——I3$(;)/()x", (I)(";)

=g""((}(;) and
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3

g b P(;)„0——. (4.4) e;J =A.;~/(A, ;;A.JJ
)' (4.6)

~22~13 ~'12~23
CK=A11 1+ I 11122 112

(4.5a)

In the next section we shall give a particular example
wherein (4.4) is automatically satisfied. From
(2.12)—(2.14), (4.1), and (4.2) we get

'2

u (1) = cosfu(1)

y A, (2+P(A, ))A,zz)
'~

+ sill u (2)«(2+P(~()~zz)
'" (4.7a)

The anisotropic fluid variables in this case reduce to

1+ ~11~23 ~12~13

P= (A, ()i,zz)'~

(~22~13 ~12~23)(~) 1~23 ~)2~) 3 }
X 22

(A, ))A22 —l(. )2 )

(4.5b)

(4.5c)

ai 12+P(A 1 lkzz )

y)(iz+P(~)) ~zz)'"

+ cospu (2)

sin(t) u ~() )

(4.7b)

p= z (a+y+2P~» 2~)+ ,—' [(a y-)'+4—(P+«»)(P+y~»)]'",

(T = ——,
' (a+y+2Pe(2 —2~)+ ,' [(a—y)'—+4(P+«)2)(P+yE)2)]' ',

z ( ~11+~22+ ~33 } ~

[( )al (+2P(~11~ )22(y~lz+P(~11~22) ]
—,
' tan(2$) =-

(a —y )(A, 1 li 22)
'

(4.8)

(4.9)

(4.10)

(4.11)

For the second case we have two null fluids that we

shall take as fiuid 1 and fiuid 2; in other words, we take
p=(ay)'"~)z

o =(ay)'1/2

(4.19}

(4.20)

71=12=~11=622=O ~
(4.12)

b 1 u(1)p + bz u(2)p +b 3(t (3),p (4.13}

instead of (4.4). From (2.12)—(2.14), (4.1), (4.2), and (4.12)
we get

a =p) +43(ez3/e (2)'

y =pz+43(~)3«)2)'

P ~33~23~13/e 12
2

(4.14a)

(4.14b)

(4.14c)

The anisotropic fluid variables in this case reduce to

2) ~zu(*))) ——u~(, )+(y/a)) ~zu~(, ), (4.15a)

(4.15b)

and one irrotational perfect fluid with p3 =p, equation of
state. In the present case relations (4.1)—(4.3) hold only
for i =3. Now we shall assume

V. SOLUTIONS TO THE EINSTEIN EQUATIONS

In this section we shall study solutions to the Einstein
equations coupled to the two particular cases of the multi-
fluid model presented in Sec. IV for a cylindrically sym-
metric spacetime. The Einstein equations coupled to (2.1)
read

3
1 pvR„——,g„„R=—g t~(;) .

i=1
(5.1)

(4.21)

Note that (4.19) and (4.20) tell us p=o. From the com-
parison «(4 16)—(4 18) with (4.19)—(4.21) it is clear that
the addition of a third fiuid to the two-fluid model has
the effect of considering a more general equation of state
for the amsotropic fluid pressures and density. Note that
the previous remark is also valid in the general case.

(}}=45',and

p =[P+{ay )' "]~(2——,
' 43,

a= [—P+(ay)'"l~)2+ —,'43
1

VT'=@3 ——
2 w33 .

(4.16}

(4.17)

(4.18)

3

gr(i)v 0~ (5.2)

The integrability conditions for the system of equations
(5.1) (Bianchi identity} give

It is instructive to compare Eqs. (4.16)—(4.18) with the
corresponding relations for the two-Avid case. These are
obtained from the former, in the limit p(3)

——0, and we get i~(;").„——0, i = I,2, 3 . (5.3)

where the semicolon denotes a covariant derivative. The
simplest way to implement (5.2) is to assume
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B&(V'—gg""(()(;)„}=0,i =1,2, 3 . (5.5)

%e shall consider a spacetime with the cylindrically

For the cases that we shall consider in this section this as-
sumption is enough to give a complete set of equations.
Note that for some particular cases (5.3) may become too
restrictive.

The Einstein equations (5.1) together with their integra-
bility conditions (5.3} for the model of three irrotational
fluids with p; =p; equation of state can be cast as

3

g 0(i),p4(i), v ~ (5.4)

symmetric metric

ds =e"(dt d—r ) y—,bdx'dx (5.6)

Tab lba ~

det(y)=r )0.
(5.7a)

(5.7b)

From (5.4)—(5.7) and the fact that cylindrical symmetry
implies that the P(;) are functions of t and r only, we get

where the sum convention is assumed in the indices a and
b that take the values 2 and 3, (x,x',x,x ) =(t,r, 8,z),
y,b and (o are functions of t and r only, and

Rop+Ri) ——(in') pp+(in~) )i ——,'(y b()y'()+y, b )y') }—to o(inv) ()
—to )(in') )

= —g [(((){) o) +(4'( ) i) ] (5.8a)

2R()) ——2(ln7 ) ())
——,

'
y,b ()y') —(o p(inr) )

—p) )(ln~) ()

3

2 g 0(i),o(( (i), ) ~ (5.8b}

«y.b oy )o. «y, .—b, iy )i=o,
('r0( ) o }o

—(&(()( ) i },i =0

where y' is defined by

ob

(5.9)

(5.10)

(5.11)

~ —= g [ ((((}i,)o')+((((})(, )')] +»(& ,)oo

+(»&),» —
~ (y.b oy,'o+ y.b, )y', )'»

3
B=—2 g $(;) (Ht'(;) )+2(lnr), o) i y b, oy, )

(5.14a)

(5.14b)

(~),op
—(~) )) ——0. (5.12)

We have not listed the equation that results from
Roo —R i) due to the fact that it is a consequence of the
other field equations. By taking the trace of (5.9) we get

h=~p —v i ~0 .2 2 (5.15)

The integrability of the differential form (5.13) is
guaranteed by Eqs. (5.9), (5.10), and (5.12). Moreover, we
have that ~ can be cast as

From (5.8) we find that

dco=(r/k)[(ATp —BT i)dt'+(B1 p
—A1 ))dr]

where

(5.13)

3

p) = in(b, /~)+0+ g:-;,
where d 0 and d:-; are the exact forms

(5.16}

f~ (4/~I )] t [( yioo+yo, b, )y', ) )~o 2y boy—')&)]dt+ , [2,yob oy'i &o (y boy', (—)+yob)y'))~)ld, r I, ,

—[&/(4~)]( ([((({i)0) +(4'( ), i} ]ro 24( )y(i)l+ i']dt+, I 24(i) 4(i))ro [(((',(') 0) +(4('), ) ) r, ) ]dr) .

(5.17)

(5.18)

Thus, the solution of Eqs. (5.9) and (5.10) determine completely the solution of the Einstein equations (5.4) and (5.5) for
the metric (5.6). Equation (5.10} is equivalent to the usual cylindrical wave equation when expressed in the coordinates
defined by the solutions of (5.12), i.e.,

~=6+(r r)+G (t+r), —

$=G+(t r) G(t+r ),— —
(5.19a)

(5.19b)

where G+(t+r) are arbitrary functions of the indicated arguments. ' The system of Eqs. (5.9) is well known and has
been studied by a variety of authors in different contexts. '

To interpret this solution as an anisotropic fluid, we first need to check if the condition (2.6) is satisfied. Indeed, this
is the case since the four-velocities of the thrm fluids are on the plane (t, r }. The anisotropic fluid variables are given by
Eqs. (4.7)—(4.11) with
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~ij e ('(({i),0{t'(j),0 0(i), 10(j),1) ~

~[(~ )2 (~ )2] 1
(('(2))04'(3).{ '4 2), 14'i 3),0

4(1),A'(2), I 0( {), {0(2),0

2

~[(~ )2 (~ )2) 1
(I'(1),14( 3), 0 0{1),OA3), 1

I [(0(1),0)' —(0(1),i )'][(4'(2),0)' —(0(2), 1)'] )
'"

4( 1),14(3),0 '(t'{ 1),0{t'(3),1 (t'(2), A'(3), 1 (t'(2), 14(3),0
() ), (2), 1 (1),1 (2),0

(5.20)

(5.21a)

(5.21b)

(5.21c)

~pv Plu({)pu(1)v P2u(2)pu(2)v (((3),p 1'{{)3, v~

(p(u({)u (i) ).v=0, 1 = 1,2 .

(5.22)

(5.23)

The Einstein equations (5.1) together with thar integra-
bility conditions (5.3) for the model of one irrotational
fluid with a P3

——p3 equation of state and two null fluids
can be cast as Eq. (5.5) for i =3 and

In other words, we found that a cylindrically symmetric
irrotational fiuid with stiff equation of state with polar-
ized electromagnetic radiation going in and out of the
symmetry axis is equivalent to the anisotropic fluid
described by (4.16)—(4.18) and (5.28)—(5.30).

To end this section we want to point out that in both of
the examples considered to has the form

For the particular metric (5.6) we choose the null vec-
tors as [u~~&)]=(1,1,0,0) and [u~~q)]=(1, —1,0,0). In this
case conditions (5.23) give the equations

N =CO~ +Nm

where

(5.31)

to„=in(b, /~)+Q,
5.24a

(5.32a)
Pl, o+Pi. ) +P{[2(to,o+ , 1)+(&0+&, 1)/&] =0

P2 o—p2, {+P2[2(to,o—, 1)+(~,0—&, 1)/~] =0

that can be easily integrated yielding

(5.24b)

p, =~ 'e F+(t r), —

p2 ——r 'e F (t+r),
(5.25a)

(5.25b)

where F+(t+r) are arbitrary functions of the indicated
arguments. From (2.26), (5.23), and (5.6) we find, as in
the preceding case, that the solution of the Einstein equa-
tions reduces to the integration of (5.9) and (5.10) with
i =3 and to the computation of co that is given by

(5.26)co= ln(j)},/r)+0+=3+A++A
where A+ are the quadratures

A+ —— I'+ t+r d t+r2

+,0++, ]

The vectors u ~{{) and u ~{2) defined above together with
u (3) —((){3)/(A 33) are on the plane (t, r ) and consequent-

ly they are linearly dependent. Hence, the solution to the
Einstein equations (5.22) can also be interpreted as a solu-
tion for an anisotropic fluid with variables given by
(4.16)—(4.18) with

(5.28a)

(5.28b)

(5.28c)

[4(0(3),0—A3), {) +&

[ 4 (4(3),0+0(3),1) ++ F—] ~

[(4'(3),0) —(4(3),1) ]

E)2 =28 (5.29)

and

3/2[u{'() ]=[1+(y/a)'~, 1—(y/a)'~, 0,0],
V 2[u{'f)]=[1—(a/y)', —1 —(a/y)', 0,0] .

(5.30a)

(5.30b)

3

three p =p fluids
, i=1m= '

:-3+A++A, one p =p and two null fluids,

(5.32c)

(5.32b)

i.e., in the coefficient t0 the contributions of the vacuum
and the matter are uncoupled. Particular cases of the
solutions presented in this section have been studied by a
number of authors. ' Also, both of the solutions
presented in this section can be easily generalized by add-

ing to the respective EMT an arbitrary number of irrota-
tional perfect fluids with a p=p equation of state. As a
matter of fact we only need to add the corresponding
functions = to the to given by (5.32c) to have the solu-
tion of the Einstein equations coupled to an arbitrary
number of irrotational perfect fluids with p =p equations
of state and the two null fluids already described. We
shall come back to this point in the next section.

VI. DISCUSSION

The anisotropic-fluid model with three fluid com-
ponents presented in Sec. II can be easily generalized to
the case of an arbitrary number of fiuid components in
the particular case that all the fluids' four-velocities lay
on a two-plane. Note that this is the case for the multi-
fluid interpretation of the model of Herrera and co-
workers as well as for the cylindrically symmetric multi-
fluid solution described at the end of Sec. V. If all the
fluids' four-velocities are on a two-plane, we can choose
two different four-velocities, say u~{) ) and u~~q), as a basis
to describe the rest, i.e., we can always set

(6.1)Q (i] =Q(i) i 3M ( i) +Q(i)pQ (2],I
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where n is the number of fluid components and

a( & ~&
=a ~2v. = & *

Q(~)p =Q(2)~ =0 .

From (6.1) and (2.14) we have

&tj&z2 —&2)&12
Q(j)f

&r&&22 —~~2

&2j&i &

—
&&J&iz

a(j)2= J J „g=34 . ~ . n
2

~11~22—~12

The EMT for the n fiu-id model

Ti'"= g r~(;")

can be cast as

T =txQ i i gati i i ) +2pQ i i gati i z i +7 ti (g gati i 2 i
—'irg

where

iz= g (p;+p;)(tti;i&)',

g (pi +pi )u(i)lu(i)2 ~

(6.2a)

(6.2b)

(6.3b}

(6.4}

(6.5)

(6.6a)

(6.6b}

(6.6c)

(6.7)

given, as before, by (2.17), (2.19},(2.21), (2.30), and (2.31).
Now the quantities a, P, y, and n appearing in these for-
mulas must be replaced by the respective expressions (6.6)
and (6.7). Hence, we have that the EMT associated to the
model of Herrera and co-workers as well as the EMT as-
sociated to the cylindrically symmetric multifluid solution
described at the end of the preceding section can be cast in
the canonical form of a single anisotropic fluid.

To cast the EMT (6.4), with four-velocities satisfying
(6.1), in the form (2.25) we have made use of the fact that
one can easily guess two of its eigenvectors [cf. Eq.
(2.18)]. To achieve the same result one usually solves the
eigenvalue problem for the EMT (6.5) directly. ' We have
preferred the first method because in the present case it is
simpler.

The model of two fluids with irrotational perfect-fluid
components can be used to describe solitary waves of
matter in general relativity. In particular we found a par-
ticular model in which the velocity-potentials were
governed by an integrable system of equations. In this
case we have interaction between the fluid components,
and each fluid component no longer obeys a "conservation
law" like (5.3).

The multifiuid model can also be used in this context to
give a more general system of integrable equations. In
particular we found an integrable system that can be
described as the hyperbolic version of the integrable sys-
tem studied to find instantons in the SU(N) gauge theory.
In this case we also have interaction between the fiuid
components. Work along this line will soon be reported.

Since expression (6.5) is formally equivalent to (2.11) we
conclude that the EMT for the n-fluid model under con-
sideration is equivalent to the EMT for a single anisotro-
pic fluid (2.25), and that the anisotropic-fiuid variables are
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