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Searching for possible large CP-violation effects in neutral-charts'-meson decays
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Possible large CP-violation effects in the partial-decay-rate asyrnmetries for the 8 -8 system
are discussed. All possible nonleptonic two-body Anal states are studied. It turns out that
Do~a K+, m Ko, bog, n t0, K+K, PKo are the most promising channels. If the Dv-Do mixing

is on -1% level, 10~—106 DOS 0 pairs would be enough for testing these channels.

I. INTRODUCTION IDs&=) ID'&+~ ID'&

There was a common belief in the literature that the
CP-violation effects in D -D decays were very small be-
cause of the small mixing. But some recent data from the
Mark III group seem to show the possibility' that the D-
D mixing might be on 1% level (this corresponds to
hmD/I z -0.1). Although more recent analysis has
failed to support this possibility, it is not excluded. This
inspired a hope for larger CP-violation effects in the
neutral-charm-meson decays.

Theoretically, some authors advocated that the long-
distance effect dominates the Do Dmixi-ng. ' They es-
timated, within the framework of the standard model
with three generations of quarks and leptons, that

gama —10 (Ref. 4),

respectively. They even estimated the upper limit for
hmt)/I D.

Ama
&0. 1 (Ref. 3) .

Obviously, in the extreme case of dmz/I ti-0. 1, the
mixing should be —1% level. Thus, if the Mark III data
are confirmed, this would bring us to the border of new
physics.

Keeping the large D -D mixing in mind, there would
be a hope of large CP-violation effects in D -D decays
owing to the interplay of mixin~ and amplitude interfer-
ence just as in the 8 -8 case. ' The observation of CP-
violation effects in D -D decays will provide another
sign of new physics in addition to the large mixing itself.
In this short paper we shall discuss possible large CP-
violation effects in the neutral-D-meson decays in detail.

II. PARTIAL-DECAY-RATE ASYMMETRIES

Take the phase convention as

Assume the corresponding eigenvalues of Ds, DL are

. ps
ks =ms —t

2

. XL
A,L ——mL —t

2

respectively. Then the time-evolved states are (CPT in-
variance is assumed throughout this paper)

iD,'(t)&=g, (t) iD'&++g (t) iD'&,
(4)

i

D', (t) &
= g (t)

i
D'&+g+(t)

i
D'&,

where

g+(t)= ,'(e '—+e '
) .

We consider only those hadronic final states f which both
D and D can decay into:

DO

D 0

In these cases, we have amplitude interference which will
enhance the asymmetry.

Denote the CP-conjugate state off by f
If}=CP If&.

Here we do not restrict ourselves to the cases f=f. In-
stead, we consider all possible final states. This is dif-
ferent from Bigi and Sanda.

Because the very small lifetime difference of Ds,DL, we
have to consider time-integrated effects. So, we define the
time-integrated partial-decay-rate asymmetry

I (Dp~f) 1(Dp~f)—
PDp~f)+I (D p~f )

CP iD'&= iT)') .

Define

where
(I)

I (Dp~f)= f dt
i (f iDp(t)& i
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» I

=
I
A(D' f}

I
. (10)

In order to guarantee the equality of Eq. (10), some
conditions should be satisfied. Assume that there are two
different strong-interaction channels,

A (Do~f)=A (f)=G,e' +Gee'~,

A(D ~f)=A(f)=Gie' +Gee'~, (12)

where Gi, 62 are Kobayashi-Maskawa factors, and a,P
are the strong-interaction phases. Obviously, if

Of

Gi =62 (13)

Eq. (10) will be satisfied. We shall see later, Eq. (13) is
usually satisfied.

Under the condition of Eq. (10), all the amplitudes can-
cel out in the calculation of the asymmetry Cf.

Define

A(f)
A(f) '

A(f)
A(f)

f)= f, «
I &f IDt (t) & I'. (9)

We only discuss the following cases where there is no
direct CP violation in the magnitude of the amplitude in

pure D,D decays, j..e.,

2y(1+z')(1 —y')
z +y

2y(1+z )(1—y )

6+ —=f «g+(t)g (t) =
2y(1+z )(1—y2}

6 =f dt Ig (t)I2=

~~ =~S—~L

PL +Os

In Eq. (17),

Am

y
is the mixing parameter, while

hy (20)
2y

Because y is the same order as z (Ref. 3), even in the ex-
treme case of z -0.1, we still have

In that case

(21)

16+
y
Z2 2
Z +P (22)

2y

P +EZ6+
y

After a lengthy but straightforward calculation, we arrive
at

(z +y ) +x —+x

&+(z +y ) +x + ~x
2

r

+2yRe &x —&X —2zlm &x —&x

+2yRe &x+&x —2 Im &x+~x
(23)

This expression is rephasing invariant because ( q/p }xand (p/q)X are phase-convention independent (see Ref. 6).
If we assume

&x = &x e'~, &x'= &x' e (2&)

that is, (q/p)x and (p/q)x" just have opposite phase.
Substituting Eqs. (24) and (25) into (23), we have

r 2

( 2+ 2)I

2

4+(z'+y') Ix I'

+2y Ix I

+2y Ix I

cosy' —2z Ix I

c~—2z Ix I
sing

(26)
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In the case of the 8 -8 system, the short-distance effect
dominates bm, hy. There we can calculate q/p, p/q
by means of the box diagram. It turns out that

I
q/'p

I
—Ip/q I

—1 is a very good appro»mation.
the D -D case, the long-distance effect dominates
hm, hy, and we do not know how to calculate q/p and

p/q. In order to estimate the order of magnitude of C& in

Eq. (26), we here, as in Ref. 2, assume

We use a superscript a to denote the theoretically estimat-
ed branching ratios in the Table I.

For the number of D -D pairs needed for testing the
asymmetries, we use

(32)

for one-standard-deviation (1 u) signature, and

((1 9 E ((1 (33}

Substituting Eq. (27) into (26), we have
r

—z ~x
~

sing for ~x ~
(1,

—4z [x [sin4 for )x (
&)1.

4+2(zz+y ) [ x [

z

(28)

—0. 1 sing for
~

x
~

'= 1,
C/= ' —5.3X10 sing for ~x

~

=2.8SX10
—0.7sing for ~x

~

i=351.

For the branching ratios, there are already experimental
data for most of the two-body decays. For the processes
for which there are no data we can estimate the corre-
sponding branching ratios through the known data. For
example,

We have searched for all possible two-body final states
of D -D decays. Only D,D ~K K do not satisfy the
condition of Eq. (10). All other decay modes satisfy Eq.
(10) and are listed in Table I. They have only three dif-
ferent values of

~

x ~, namely, 1, 2.85X10, and 351.
Here we have taken c&-c2-c3—1, si-0.231, s2-st,
$3 0.5s2 ~ If we take the mixing parameter z -0.1, we
have

for 3o signature. In Table I we present only Nn~ for the
lcr signature, but for different values of sing (sing= 1 and
sing =0.1).

Because the leptonic tagging asymmetries CfI are the
same order as Cf (so: the next section}, we estimate NDD
only by use of Cf. In addition, in Table I we also give the
quark diagrams responsible for the decays. Here, spec
means spectator diagram and ex& means exchange dia-
gram with a q q pair created from the vacuum.

III. LEPTONIC TAGGING AND CHARGED-CHARM
TAGGING

In most cases D D are produced in pair. So we have
to consider whether the D D pair is produced in the
charge-conjugation-even or -odd or orbital-angular-
momentum-even or -odd states. %e use g„gI to denote
charge-conjugation parity and angular-momentum parity
of the DD pair, respectively. Then

+ 1 for C even,
—1 for C odd;

+1 for1 even,
Ql —1 for1odd.

8(m.+K )
~

V„gV,',
~

so we can deduce

8(n-K+)-2. 85X10 'B(n.+K )

—1.6X 10

(30)

(31)

In most cases, g, =g~. In some cases, g, = —gI. For in-
stance, in the processes

e+e ~y —+DD,
e+e ~y —+D D+DD ~DDT,

g, =gI ———1 because DD is in a P-wave state. In the
processes

e+e ~y*~D'D+D D ~D Dy, e+e ~y*~D'D '~D D+my, e+e ~2y'~D D,
g, =gI ——l because D D is in a S wave. For the processes

e+e ~y'~D D '~DD+m. m, yy,

g, = —1, gI ——+1, i.e., g, = —gI if DD is in a S wave. In all the above cases, we can always write the time evoluted
state as

~i }=~Do(k), ti)D (kz, tz)}+g ~DO(kz, t2)D (ki, t))}, (37)

where q=q, or qI.
Assume that D ~1+X,D ~1 X only. Then we can use semileptonic decay to tag on one of the two time-evolved

states Dt (t) or D t (t). So we define the leptonic tagging asymmetry Cft as

N(1,f) N(l+,f)—
N(1,f)+N(1+,f )
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Cf1 =
D '

where

(41)

+2(l+g)
I
x

I y —+ cos((t —z sing

= —4(1+rI) Ix Izsiny, (42)

D= 4+( 2+r))(z2+y 2) Ix I +2(1+g)
I
x

I y + + + cos4 —z +—~ sing
s' e s'

-4+2(2+i))(zz+y )
I
x

I
+4(1+rl)y

I
x

I
cosp . (43)

Thus

for C(1) even,
Cfi —— 4+6

I
x

I
(z +y )+8

I
x

I y cog
0 for C(l) odd .

The corresponding values of Cfi for different decay modes are given in the Table I. They are in the same order of mag-
nitude as Cf.

Sometimes, a charged-charm meson D+ (D ) is produced along with a neutral one, D (D ):

e+e ~D D X, e+e —+D D+X. (45)

Tagging on D+ (D ) we can know the other partner to be D (D ) at r =0. In that case we can still use the asymmetry
defined by Eq. (7).

IV. THE PENGUIN-DIAGRAM CONTRIBUTION

The penguin diagram can only cause c~u and c~a decays. The effective Hamiltonian is

6
H~„g"g,„——Cq V„b V,guy~(1 y5)ANc(uy"A—,u +d. y"A,,d +, sy"A.,s)+H.c. ,penlucn p &~~ g (46)

a, (m, )
Cp

—— ln
12m

7tl y
2

=0.013 .

But the ratios between the penguin and the spectator or
exchange diagram contributions are very small, namely,

In view of Eq. (46), for the two-body final states, the
penguin diagram can only contribute to

~exchange(D ~ ~ )
I Vcct Vutg I

g2 ~{
-4.8 y IO-', (48a)



SEARCHING FOR POSSIBLE LARGE CP-VIOLATION. . . 3433

-Cp si -4.8X10, (48b)

addition to PK,PK, the rescatterings of
D K q E m and D K 'g mI%: also con-
tribute to the decays of D ~mK and D ~m K,
respectively.

Now we turn to the final results given in Table I. From
the table we can see that the most promising decay chan-
nels to observe CP violation in D -D decays might be

-Cz sz -4.8&(10 . (48c)

So, the penguin contributions can be completely neglected.

V. DISCUSSION

In our estimations, we have used two conditions: Eqs.
(10) and (24). Equation (10) is always satisfied, but Eq.
(24) is not because of the final-state interactions. The de-
tailed discussion can be found in Ref. 6. Here we only
want to emphasize that 7=x is just a qualitative ap-
proximation. The only decay channel where x =x' might
be exact is D ~4K o or pK . These two modes have only
one isospin final state so that x =x' might be true. Un-
fortunately, the rescattering of D ~K o'rid% op,
D ~Ko'ri +K' a-lso contribute to these decays, and
the rescattering involves different isospin states, that
makes x=x' even for D ~/K, PK, approximate. In

Do m K+,m K,m ri, m co,K+K,PK

They would need only —10 D D pairs if sing is the or-
der of unity. At the SI.AC e+e storage ring SPEAR
the Mark 111 group has collected 3762+42 D D pairs
within the integrated luminosity of 9.2 pb (Ref. 10). It
seems not difficult to collect —10 D D pairs at the
g(3700) resonance for longer running time. So we hope
our experimental colleagues will undertake these efforts.
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