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Systematic study of large CP violations in decays of neutral b-flavored mesons
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CP-violation effects in partial-decay-rate asymmetries of Bq and 8, systems are examined within
the framework of the Kobayashi-Maskawa model. We concentrate on those hadronic final states
into which both B and 2t can decay. The rephasing-invariant formalism is used in our calcula-
tion. We find a quite large asymmetry (-0.6) in some decay modes, such as Bq~D+~,
B,~D+ir, Dog, etc. , but we still need 106—10' bb pairs for testing these effects for 3o signature.
In addition, the contribution of the penguin diagrams and the problem of strong-interaction phases
of final states are also briefIy discussed. We find that for testing CP violations with only the
pellgiliil contribution the best decays are Bs~PECs, B,~PKs, which need, for 3tr signature,
3 X 10' bb pairs.

I. INTRODUCTION

Until now CP violation has been observed only in the
E -Eo complex. ' As of yet, this effect could be entirely
indirect CP violation coming solely from mixing. Only
experimental upper bounds exist for a direct CP-violation
effect (the e'/e parameter).

There are many speculations and estimates for large
CP-violating effects in the B4-B4 and B,-B, systems.
As we know, the charge asymmetry in semileptonic de-
cays, the same-sign dilepton asymmetry, is predicted to
be very small (&10 ). But in nonleptonic decays, the
asymmetry may be large due to the interplay of mixing
and amplitude interference. Bigi, Carter, and Sanda were
the first to discuss this problem in general. They restrict-
ed themselves to the hadronic final states being CP eigen-
states (i.e., f=f, here f denotes the final hadronic state, f
is the CP-conjugate state of f, namely„~ f ) =CP

~ f )).
Chan and Cheng" discussed the case for f&f under the
condition B ~f, B ~f, so they have to calculate the de-
cay amplitudes explicitly. We should avoid this because
we do not know how to calculate the nonleptonic decay
amplitude reliably. Sachs' was the first to discuss the
asymmetry of B4, B4-+D+sr+ without calcul-ating the
decay amplitudes. There are several advantages of Sachs'
idea.

(a) The decay amplitudes have a very simple depen-
dence on Kobayashi-Maskawa (KM) matrix elements.

(b) The decay amplitudes cancel out approximately in
the expression of the partial-decay-rate asymmetries, so
the estimated asymmetries are not sensitive to the hardly
measurable strong-interaction amplitudes and phases.

(c) The amphtude interference will lead to the asym-
metries even when the ri =—

~ p/q ~
=1 (see the text).

Following Sachs' idea, we studied systematicaBy the
asymmetries in norileptonic decays of B4 Ba and B-,-B,
systems. We discuss both cases for f=f and f&f and

avoid calculating the decay amplitudes. Especially we
analyzed carefully the possible two-body nonleptonic de
cay channels. We find that the most promising decay
channels for large asymmetry are B4~D+m
B,-+D+ir, B, -+D P. The penguin contributions are
also examined. %e discuss the two extreme cases: the
penguin-dominant case and the one in which penguins are
negligible. We find that B4,~$ECs are the best candi-
dates for testing CP violation with only the penguin con-
tribution. In our calculation, the rephasing invariants of
the KM matrix are extensively used. That is the only way
that the KM elements can enter into physical calculations.
We want to stress the fact that as long as we limit our-
selves to final states which are strong-interaction eigen-
states, the final-state strong-interaction phases cancel out,
and we are left with phases coming solely and intrinsically
from the KM matrix. This defines a clean and useful
testing ground for the three-generation standard model.

The outline of this article is as follows. In Sec. II we
give the rephasing-invariant formalism. In Sec. III we
discuss partial-decay-rate asymmetries and the exclusive
two-body nonleptonic decays. A different tagging, other
than the leptonic tagging of Bigi, Carter, and Sanda will
be advocated. In Sec. IV we discuss the penguin-diagram
contributions for the extreme cases. Section V is devoted
to the discussion and conclusion.

II. REPHASING-INVARIANT FORMALISM

As we know, all the physical quantities must be
particle-phase independent. In the standard model the
KM matrix appears in the charged current
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f„=(u,c,t), fa ——(d,s,b),
and the KM matrix is

2 2GF fa ma 2M, p ———Bbt tg, [m, +0(mb )]
12

g, o(m, ')I,

2 2

I 12=&r
Gp fa ma i i 8

[g, m, + —,g, g, m, +0(m, /mb )],
Sm

In the standard KM pararn, etrization we have

C1 —$1$3

V= $1C2 C1C2C3 $2$3e C1C2$3+$2C3ei5 i5

$1$2 C1$2C3 +C2$3e C1$2$3 —C2C38
i5 i5

However, our quark fields are defined up to arbitrary
phases. If we make a phase transformation

4a O'=Dita

where g, = V+ V,~ and a =d or s for Ba or 8, .
Bst B——r ——1 under the assumption of vacuum insertion.
Actually, for Ba and 8, systems,

~m =2 IMi2 I

~r= —2II i2I

By spectator dominance we get

GP mb
2 5

2

192m'

U2

U3 D3

where p=3.2 in which we include phase-space and QCD
corrections.

Therefore

and
I

U~ I
=

I D; I
=1. Then V'= UVD will appear as our

new KM matrix. Any physical quantity will not depend
on our phase convention. As proved by Jarlskog and
Wu, the rephasing invariants we can construct from the
KM elements are the nine absolute values of KM matrix
elements

I
VJ I; and the nine 5; defined by

5;,= VJttVkr( V~'„Vktt) (ij,k and a, P,y co-cyclic) . (3)

In Appendix A we list all the nine independent quanti-
ties 5;~. As a trivial consequence we obtain a rephasing-
invariant proof that Imb, ;~=t, where t is a unique CP-
gauging parameter independent of i and a (Refs. 6 and 8).
All physical quantities should be expressed by means of
these rephasing invariants.

Take the phase convention as

Cr IB')= IB'&

Bs

B—0 88'

(12)

ZB
Bg

fa,
100 MeV

2
mr V

40 GeV V23
(13)

The uncertainties in determining our mixing paranMter
are the decay constant fa ——50—200 MeV, bag parame-
ter- 1, top-quark mass, and for the Ba system an added
uncertainty of KM elements. Using' the b lifetime
1.06+0.17 psec and the upper limit on
I'(b-+u )II'(b ~c)&4% (Ref. 19) we obtain for the KM
phase convention that

and assume CI'T invariance, then the physical eigenstates
are

$2 ——0.05+0.02, $3 ~ 0.04 . (14)

I
Bi & =u IB'&+e

I
8'&

I
8 & =p IB')—q I

8'),
(5a)

I12
——I"12

2

Define 8:ba, 8 =bct, wher—e a=—d or s. Using the
box-diagram dominance'o ' and assuming (m, /
Ma ) « 1 we get

with eigenvaiues AH t. ——mH L iyIt t /2 w—here the sub-
script indicates heavy or light, respectively. According to
Ref. 9,

' 1/2

M12 ——I 122

In a later calculation, we shall use, for definiteness,

m, -40 GeV, $1-0.231,

$2~$1, $3 0.5$2, $5 1
2

(15)

I
8',h„.(t)) =f+(t) IB')+ f (t) IB'&, (16)

whereas a pure 8 at t =0 evolves as

I
8', „,(t)) = f (t) IB')+f,(t) IB'),

Our physical states evolve in time by e ' '
I BL, H ) with

m being the mass matrix. A pure 8 at t =0 evolves in
time as
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—QI f —iAHff (t)=-, (e —e ) .

We limit ourselves to the final states that both the pure
8 and 8 can decay into

Unlike Bigi, Carter, and Sanda, we do not restrict f to
be a CP eigenstate. Denote the CP-conjugate state off by

III. PARTIAL-DECAY-RATE ASYMMETRY

Since the neutral b-flavored mesons have a short life-
time, we will be primarily lllterested 111 tlnle-ill'tegi'ated ef-
fects. Our CP-violating asymmetry is defined as

I (8i»i. f}—I'(8 i'»y. f}
Cf —— (21)

1(8i'»i. f)+1(8i'»y. f}

where 1(8~»„,~f) is the time-integrated partial decay
rate of a time-evolved 8 (t=0} into the specified final
state f.

We will consider in this paper mainly those decays
where there is no direct CI' violation in magnitude in the
pure 8 and 8 . Namely, that

If &=CP If & . (19) f &
I
=

I
A(8' f}

I
. (22)

Define

A(8' f) A(f) A(8' f) A(f)
A(8 f) A(f) A(80 f) A(f) A (f)=G,ae'~+Gibe'~, (23)

It is readily realized how to accomplish requirement (22).
Take"

(20)

It is easy to see that (q/P)x and (p/q)x are particle re-
phasing invariants. [Since I8H &, I BL, & in Eq. (5) are
physical eigenstates, rephasing6 80,80 must not change
our physical eigenstates. Suppose we rephase

simultaneously rephase p ~e '~p, q ~e '~q. Also
x-+e'~ ~'x. Therefore (q/P)x~(q/P)x. We still have
an overall phase ambiguity of I8tt & to I8L, &, but that
does not concern us here. ] Hence even the phase of
.(q/P)x and (P /q)x has physical relevance.

Now ee are in a position to discuss the partial-decay-
rate asymmetries.

A(f )=Gi ae'~+G2be'~ . (24}

It is clear that to obtain
I

A (f)
I Q I

A (f) I
we need to

have two different strong channels (a+P} and further-
more G, ~Gz must happen too. Therefore as long as we
limit ourselves to decay amphtudes where only one KM
combination appeiirs; or alternatively limit ourselves to a
decay amplitude where only one strong channel is avail-
able we are guaranteed that no direct magnitudinal CP
violations occur in the pure amplitudes. Assuming Eq.
(22} holds, we get, for our time-integrated asymmetry (21),

where Gi, Gq are multiplication of two KM elements, a, P
are the strong-interaction final-state phases, and a, b
denote real amplitudes. Then the CP-conjugated ampli-
tude is

x (1—a)+2y Re +x —+x —2' Im +x —+x
p s'

(25}

2(1+a)+ x + x (1—a)+2yRe +x+~x —2asIm +x++x

where

Assuming box-diagram dominance eve obtain '"
Iu I

((1and""-"

since the final-state strong-interaction phases cancel out
and we are left only with the complex conjugation of our
weak phases (KM elements).

After some lengthy arithmetic we obtain for our asym-
met~ assuming

I A(f&I =IA(f&I. x=x'
diagram dominance

1+0
P

(27)
M[ Ix I (1—a)+yRek, ]—2azlmA,

1+a+ Ix I
(1—a)+2yReA, —MazlmA,

Now if we limit ouiselves further to hadronic final states
which can proceed only through one strong-interaction
channel me get

'2
m, Iili, A,:— x (29)

and g„g, are defined in Eqs. (7} and (8}. We notice that
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g, /g, is rephasing invariant, and the Im(g, /g, ) part in

standard KM parametrization is lm(g, /g, )

= —s, (s3/s2)ss for 8» and Im(g, /g, ) =(si/sz)ss&1
for 8&, so that M is small for 8, and Bz cases:

MI,,=lo-', MI, =( )5xlo-'.

Assuming so
—=(b y/b, m ) « 1 in addition to all the as-

sumptions needed for obtaining Eq. (28), we get

z(M[ I
x

I
z+ —,'co(1+z )Rek] —2(1——,co z )Imk, )

Cg ——

2+z +z Ix I
+coz(1+z )Rek, —Mz(1 ——s'co z )Iml,

(30)

For the large asymmetries we will encounter below, the M terms can be neglected up to a few percent. That is to say

The accessible final state f in quark content via both a 8 and 8 are presented in Table I for Bs and 8, systems. For
convenience of later calculation, we list in Table II all the expressions for

I
x I, Imk, , and Rek, in the KM phase conven-

tion.
The conventional wisdom is to tag onto the primary lepton of the accompanying Bph„, (Ref. 3). Hence the time-

integrated asymmetry to be measured is

N(fl ) —N(f1+)
N(fl )+N(fl+)

where N(fl ) denotes the number of Bphyp phys
—nfl events integrated over time. The 8080 wave function can be

charge-conjugation parity ( —)' even or odd, and is given by

I BphyssB phys&= IBphy»K& I
8 phys& K&+( )

I 8phys~K& I Bphys~ (32)

For primary leptons (not from cascade decay) we assume that ' ' ' a pure 8 (=ba)~l+—X only, a pure
8 (—:ba)-+l X only, that

I
A(l+)

I
=

I
A(l }

I
and that Eq. (22) is satisfied, namely,

I
x

I

=
I
x

I
. Then we obtain, for

our time-integrated lepton-tagging asymmetry,

(33a}
P 2

N= +x —~x [1—a +( —)'(y +z a )]+[1+(—)']2 yRe +x —+X —za Im +x —+x (33b)

D=2(1+a )+2( —)'(y2 —z a )+ +x +
2'

[1—a'+( —)'(y'+z a )]

+[1+(—)']2 yRe +x++X —za Im x+ x (33c)
p q p

For C odd 8 8 state,
I qjp I &1 will lead to nonzero asymmetry C/i. In addition to the assumptions leading to Eq.

(33) we require also x =x' and box-diagram dominance including co «1 (Refs. 5, 11—13, 10); we get, for the C even
CSSC,

&psCfl-
fl

Nli-zM[ I
x

I
z(3+zz+ ,'ru z )+co(l—~z ) Rek, ]—4z(1 ——,'co z ++co z )Imk, ,

D/i 2+z +z + ,'aPz + Ix I
z (3+z +——„'co z )+2coz(l+z ) Rek, —M2z(1 ——,'co z +—„co z )Imk, .

(34a)

(34b)

At a high-energy e+-e collider, for example, CERN I.EP, we have copious production of Z . Sitting on the Z reso-
nance„bb pairs will be produced and hadronized into BqsB„and 8 s,B„+. Here, the creation of b-flavored mesons is
incoherent, then we can tag on the accompanying charged b-flavored mesons 8„-. Observing the charge of 8„+ (8„)
would confirm the observed decayed neutral b-flavored meson to be 8 q bd (8& bd) or 8——, = bs (8,——=bs) structure at
t =0. In that case, we can use the asymmetry defined by Eq. (21).

Assuming the ratio of the probabilities of creating qq pairs from the vacuum

uu:dd ss =—2:2:1, (35)

the probabilities for producing 8,8„, 8,8„+, according to Eq. (35) are cr(8,8„)=—,', , and for BsB„,BqB„+,
o (BsB„+-}= —,', . In general, having an asymmetry
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TABLE I. The accessible final states f in quark content via both a 80 and 80 are presented for 8q
and 8, systems. The parentheses adjacent to each final state gives the possible decay mechanisms into
this particular f. We employ Chau's (Ref. l) weak-decay classification: spec for spectator; ex for ex-

change; pen for penguin. The subscript attached to the exchange and penguin diagrams tells you what
vacuum pair has been created. For example, ex„ is the exchange diagram with uu pair creation from
the vacuum. %e also list the corresponding parameters x and I,. Note that A, is expressed by KM
phase invariants and q~p~ are the corresponding parameters q and p for E -E 0 system.

(quark decay)

3. b~cu2

4. b~cc2

5. bogus

6. 5-+QCS

7. S~cus

8q-8 q system

uuuu (ex„),ups(ex, )

uc2d(spec, ex'), ucUQ (ex„),

ucss(ex, ),uccc(ex, )

cubed{spec, ex'), cuuu {ex„)

cuss(ex, ),cucc(ex, )

cess(ex, )

uuI( s(spec, pen)

DOE&(spec)

V„b V,g

Vcb Vud

Vcb V~

Vc'b Vc~

VIb V~

~u'b V~

Vcb V~

V.'b V~

V.b V~

Vcb Vus

px

q~

~zz

2
Vz3 ~zz

2

Vz3 ~22

( )
12

( }
22

~12

8. S~ccy

9. h~s

il(KS(spec, pen)

PKs( pen, )qK {psen, spec)

pz

qsc

1. b~uus

2. b~ucs

8, -8, system

uuuu (ex„),uu2d(exd )

ucss(spec, ex, ),ucuu (ex„),

uc2d(exp ),Qccc(ex, )

Vfb Vt~

Vcb V.'s

V~'b V.s

~21

~21
2

Vz3 ~21

V13 ~11

3. hocus cuss(spec, ex, ),cuuu (ex„)

cu2d(exd ),cucc(ex, )

cc2d(exd )

uu j s(spec, pen)

D E,(spec)

V,b V„d

qx

Pj:
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TA&LE I. (Continued).

8. b~cc2 |()Ks (spec,pen)
~eb V.d PX

10. b~s

pits(pen, )

PP(K I)' )(pen)

Pq(pen, spec)

~~b Vr~ pSC

Vrb Vrd

Vrb Vr'

Vrb ~r.

~23

If g has some glue in it, the penguin will by far dominate the spectator diagram.

TABLE II. Expressions for
~

x ~', Im)(, , and Rek. .

fx )'

1. $~hu2, oui

2. b~uc2

3. 5 ~cud

4. 5~ccZ)Pcs )Z

$2 +$3 +2$2$3cg
4 2

4$ 2

Sz +$3 +2$2$3Cg2 2

Bq 8d syste-m

—sin25+2s2$3sq

(S2 +2$3Cg )Sg

S) $32

sl $3[$2+2$3cs]$5

$2 +$3 +2$2$3C2 2

( —)
2$3($2+$3C5 )$5

$2 +s3 +2$2$3cg

cos25 —2$2$ 3cg

(szcg +$3cos25)

$( $3
2

s ) $3(szcg+$3cos25)(—
$2 +$3 +2$2$3cg

$2 +$3 cos25+ 2$2$3cfj

$2 +$3 +2$2$3Cg

$2 +$3 +2$2$3cg

S 2

$2

$2 +$3 +2$2$3CS

$2
( —) —+2c~ s~

$3

s3(sz+ 2$3cs)sg
( —)

$2 +$3 +2$2$3cs

$2—cg +cos25
$3

$3($3cos25+szcg )

$2 +$3 +2$2$3cg

1. b ~uuZ) uus

2. b —+ucs

3. 6 +cus—
4. 5~pcs, cc2

$2 +$3 +2$2$3cg
$2

$2

$2 +$3 +2$2$3cs

$2 +$3 +2$2$3cg

$) $3

$4$2

SZ +$3 +»2$3CS

8,-8, system

( —) z

2$2$~($3+Szcg)

$2 +$3 +2$2$3cg

$2
( —)—s~

$3

( —)
$2$3$g

$2 +$3 +2$2$3cg

2$ ) $2$3$g
2

sz +$3 +2$2$3cg2 2

szsg
2

$1 $2$3$g

sz +$3 +2$2$3cg

»3($2+$3CS)SS

sz +$3 +2$2$3cg2 2

$2 COS25+$3 +2$2$3cg

$2 +$3 +2$2$3cg

Szcg +$3
$3

$3(SZCS+$3 )

sz +s3 +2$2$3cg2 2

$3+$2Cg
( —)

S) $3

( —)
S) $3($3+SZCg)

$2 +$3 +2$2$3Cg

sz +$3 COS25+2$2$3Cg

Sz +$3 +2$2$3cg2 2
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slid desiring a 3cT slgilaturc (5A = 7~A), wc Ilccd

I —An++n =9
A

So, if

r(80,,„, f ) —1(8:„„,j)
I'(8 h„, f)+1(8 „„, f}

is the asymmetry, for 3o accuracy, we need the number of b, b pairs

1 —Cg

o(8 8„)8(f+f)
where a =4 or s, c' is the inverse of our detection efficiency, and

8(f+f)=—8(B,phI, ~f)+8(B,phd, ~f)=8(8 p, ~f) 4+2z +2z ~x
~

2+2I0z(1+zI)RCA,

2(1—4al z )(1+zi)

(36)

(37)

(38)

As a challenge to experimentalists and therefore being op-
timistic, we assume the detection efficiency of a 8 to be-
50%. However for the other particles we are reahstic and

their efficiencies can be read off Table III.
The B~~~f branching ratios are whenever possible

taken directly from experiment: 8 (f+f} 8 (Bapure ~f}
1+z

(41)

thc «rm «Cf,B(f+f ), and &y& are considerably simpli-
fied:

—2z Imk,

2+z +zi ~x
~

I

8(Bg~D Ir+)-2% (Ref. 21),

8(Bg~QE )-0.1% (Ref. 22) .

for C even

Cp ——
—4z Imk,

2+z'+z'+
)
x

~

'z'(3+z') (42)

TABLE III. Detection effjciency for various particles.

Particle Detection efficiency {%)

50
10
33

100
100
40

1

50
14

If not yet available we extract them from Eq. (39} with

the help of KM elements. Whenever only the exchange
diagram leads to the final state we assume the exchange to
be significant and thereby get an estimate of this branch-

ing ratio again with the help of Eq. (39). Whenever the
internal 8'-emission diagram is being encountered, are do
not color suppress it. All that is not unreasonable extra-
polating from our accumulating knowledge of D-+,D,D
decays from Mark III data. I

Now we make numerical estimates for exclusive two-

bIIdy nonleptonic decays.
A good approximation is setting M =0, co=0. Then

where Iml, ,
~
x

~
can be read off Table II, and z can be

calculated by use of Eqs. (12) and (13}. Thus from Eqs.
(40), (41), and (37), we can estimate the number of bb
pairs N&~ for exclusive two-body nonleptonic decays. We
list them in Table IV. In these tables we also present
some possible two-body hadronic final states, Cf z aIld
the branching ratios. Note however that final-state phases
have been entirely omitted in constructing these tables.
Also, we take the values of the parameters given in Eq.
(15). The only exception is for b ~IIIId, IIIIs processes for
the B~-8& system, where, we take 5=45 to increase the
asymmetry. All the values of

~

x
~

I, ImA, , and Rek, are
shown in Table II only for quark processes. For final
physical states, care must be taken. If the final state is a
CP-odd eigenstate, an additional minus sign should be
added to A,, x, Imk, , Rek, in Table II. Also, the relative
signz4 of A, for a BO~PIP2 (Pi z pseudoscalar) decay
versus 8 +VIPI (Vi the ex—cited vector state of Pi) is,
neglecting differences in matrix structures,

o o8 -+V)P'2 8 ~PII'2 '

For example,

8 ~/DO 8 -+D +e B ~D+m'

when neglecting final-state phases. The sign of A,ao
S
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aie opposite. However, an open question is

how to fix the overall sign of the A,'s. For completeness,
~e assume that 8 ~LjI K, and 8 ~D K, are described
by the A.'s in Tables I and II. Then all the sign of A,'s for
other physical final states will be fixed. In Table IV we
still use the A, s in Tables I and II. Thus, foi jndjvjdual
exclusive two-body decays, a minus sign might be needed
to multiply the A, . This essentially will cause a sign fiip of

Cf, but not change the number of bb pairs needed. For
details see Appendix B.

Notice that the 8, system has the best asymmetry for
8, -+Dog with —10 bb pairs needed. If exchange dia-
grams prove to be important, 8,~a+~ has also a pure
LU= —, transition and only needs -7&10~ bb pairs. For
the Bd case, even if nature is so kind as to provide us with
a large mixing parameter (bm iy)~ -0.1, still Bd ~QKs

TABLE IV. Some possible two-body hadronic final states, corresponding decay diagrams, z =Am/y, Cf, branching ratios, and
numbers of bE pairs.

Case

3. E~cfl2

4. E~c&;
CC2,

1. E-eidud

QQS

2. QcY

4. E ~ccs
CC2

E ~t7c2
E ~casI$2

~d phys ~f

~0
D m+

K+

Kg

gag
xs

5'K,

0.1

0.044

0.1

0.1

0.1

0.1

0.8

0.8

0.8

0.8

0.8
0.8
0.8

Asymmetry

Cf

0.1

—0.61

—2x10

0.08

0.19

0.04

Asymmetry

Cf

0.38

0.23

—0.022

—0.054
—0.013
—0.4

d pure f l

g10
1.8x 10

F10
6.1 x 10

10-'
10-'

5x10-'
Sx 10-'
2x�1-'
02x�-'

10

10

10 4

10-'
5x 10-'
5x 10-'

10 3

2.5 x10-'
10-4
10-'

5x10-4

~ ~&s pure ~f ~

10-'
10

5x10-'
2x 10-4

2x 10-'
2x10-4

10-'
10
10
10

5 x10-'
3x10-'

2.7x10-'

5�x1-'
02x�-'

5.7x 10-'
10

2.1x10-'

~ 5.6x10'
4.7x10'

~ 5.6x10'
3.5x10"
3.5x10'
3.5 x10'
0.5 x10'
7x 10'

0.5 x 10'
0.5x 10"
1x10"

1.4x10"
8.8x 10"
1.3 x10"
2x 10'

5.3x10'
8.8x10'
5 3x10s
3.3x10'
2.2x 10'
1x10'

&bc

6.7x10'
6.7x10'
2.0x 10
1.4x10'
7x10'
7x10'

1.4x10'
5 x10'

2.4x10'
2.4x10'
4.8 X 10'
1.1x 10
9x 10"

4.7x10'
1.2x10"
3x10

1.2x 10
8.4x 10'
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requires 2&& 10' bb's (with leptonic tagging we encounter
11ci'c constructive 111tcIfcI'cIlcc; wc coUld 1Ilcfcasc ouf
asymmetry by a factor of 2). However, most estimates
atMQnd predicting smajjer ' ' mixing parameters and
for (&I /y)s, -10 —5X10 we require -4X10~ bb

for 8&~D+m. (T. his decay however is plagued with
two final-state isospin phases. ) Or, again, if exchange is
important 8~~I'+K -4& 1.0 bb pairs are needed.
(The detection efficiency of F+ is 10% relative to that for
D+ )

In Table V we show the maximal value of Cf and Cf(
and the corresponding mixing parameter for various pro-
cesses. The maximal value of Cf (Cfi) is reached for a

mixing parameter typically of order 1 (0.5). However, the
blued process is an exception, due to the large ratio of
amphtudes

~ xJ =1756 the maximum is reached
3X10 '(2X 10-').

If nature chooses a tiny mixing for 8 -8, the highly
Cabibbo-sUppressed process $~pd m&ght be a good
choice to observe CP violation.

For mixing parameter of order 1, the processes
b~uud, uus, ccs,ccd, s, ucs, cus, lead to large asymmetries
for 8~ system (see Table V). And b~uud, uus, ucs, cus, d,
lead to large asymmetries for 8, system. If mixing in the
8, system is large (z & 5), Cf( is unsuitable due to the z
dependence in the denominator of Eq. (42), and Cf must

TABLE V. The maximal values of CJI and Cf and the corresponding mixing parameter z. Here
s~ ——0.231, s2 ——0.05, s3 ——Ts2, 5=90' but for b~uu2, Quoin Bs decays, 5=45'.

Proaes

5 ~(QQ2, QQX)

h ~QC2
b ~Vugg
b ~(ccXVc2, s'),
h~ucs
8 ~ious

Bs 3» sy-stem

z = (max)
hm

r
0.58
1 9&10—z

0.81
0.58
0.33
0.74

Cg] (max)

0.65
—0.736
—2.20' 10-'

0.531
0.686
0.362

b ~(uu2, uuy)
5~ucy
hocus
b ~(cH', cc2)
iS ucZ
b~cud

B,-B, system
5m

(max)
y

0.57
0.33
0.75
0,59
2.0x 10-'
0.81
0.58

0.509
0.700
0.370

—2.90' 10-'
—0.723
—2.20X 10
—0.529

Process

5~uud, uus
b~ucZ
S~CQ2
b ~ces,cc2,s
b ~ucs
b ~cus

Bq 3s system-
s(max)

1.00
3.3 x 10-'
1.41
1.02
0.58
1.28

Cf(max)

0.500
—0.635
—1.48 x 10-'

0.408
0.573
0.256

8,-8, system
z(max}

6~QQ2, Qus

b ~Qes
5 ~CQS
b ~ccs,cc2
blued

cud

0.98
0.58
1.30
1.03
3.4x10-'
1.41
1.02

0.393
0.583
0.260

—2.22x 10—'
—0.627
—1.48 X 10-'
—0.407
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be used.
Foi large 8,-8, mixing, beaus due to the soft varia-

tion on z is particularly promising, less so are the
b~d, uud, uus processes, and even less promising is

b ~ups.
A copious supply of bb is expected from the Cornell

Electron Storage Ring„LEP, and the Stanford Linear Col-
lider. There 10 —10 e+e abls per year seem not im-

possible. So, we hope experimentalists will search for
these asymmetries.

I ~,(Bg~m Ks) -6,
I o (Bg~n Ks)

2I ~„(Bd~me) . V,b V,d
=5Cp -2& 10

I P (Bd~mn) V„bV„g

2
I'p n(Ba~fKS},~ib Ve

=5CP P(vac~cc }T(ZF)

(47a)

(47b)

IV. PENGUIN-DIAGRAM CONTRISUTIGNS
=5 X 10 P(vac~cc )T(ZF), (47c)

We follow the analysis of penguins of Guberina, Peccei,
and Ruckl and neglect the absorbtive part of the

penguin diagrams. It will be shown that we can neglect
the penguin contribution safely for B~QKS decay. 3"
For B~~m Eq, the penguin mill be shown to dominate
over the spectator diagram, however, not extremely. So,
this will be a bad CP testing ground. For the
extreme case I ps„(Bg~@Ks) &&I o+ (Bd~n Ks), we ob-

tain

and for 8, system

I „(8, K ) VbVg0 2

=5cp — =2X l0
I o, (8, ir'Ks)

(48a)

~p (Bs~VKS), Vsb Vsd
=5Cp P(vac~cc )T(ZF }

0+ s Ks sb sd

aq~e xs
23

(43)
= 5 X 10 P(vac~cc)T(ZF), (48b}

where pen denotes penguin contribution, O+ stands for
ordinary-diagram contributions defined in Ref. 26.

Guberina, Pixcei, and Riickl got for the penguin b~s
decay the additional effective Hamiltonian

I p n(Bs~P P+), Vsb ~g,
=5Cp P(vac~cc)

ro, (8, F-P+ } V,b V„

= 5 X 10 P(vac ~ca ), (48c)

Hg" =Cp Vsb V„'sy&(1 ys)A, —b(cy"A, ,c+u y,"A,u,
2

I
p (B. =5 X 10 P(vac~cc )T(ZF) .
0+ s~ (48d)

+dye'A, ,d+syl'k, .s)

+H.c. (44)

where

a, (K ) m, i
Cp = ln

12~ . EC' .
(45)

In the above, Ei is the momentum transfer carried by the
gluon and we assume E2=m~ . T'he mass correction
term ln[K l(K +m, )] has been neglected and
Cp-(2 —5)X 10 2. We take Cp-0.03 in later estima-
tion. Different A,„y" structure of the penguin operators
as compared to 0+ operators provides an enhancement in
the inclusive rates over the small penguin coefficient
Cp.

The ratio of the partial widths for the decay
Bd~K+nn generated by penguins and 0+ operators,
respectively, is given by

I ~„(Bg +K+nn) —
( V,b V„(

=5Cp 2
&4. (46)

I o (B~~K+n~)
~ V„b V

In the above the inequality arises from the experimental
limit (14). We have used the KM parameters in Eq. (15)
for definiteness.

Applying those ratios (46) to exclusive two-bcidy decays
we see

In the above P(vac~cc } denotes the probability of creat-
ing a cc pair out of the vacuum [P(vac +cc) &1]—and
T(ZF) stands for Zweig-rule-forbidden penguin transition
[T(ZF) & 1]. We take the square roots of the above rate
ratios to obtain the relative strength between the penguin
amplitudes (with KM combination factor) and the 0+
operators (with different KM combination factor).

However, for 8& +n Ks, we -cannot claim any
knowledge of asymmetry. Taking the amusing limit of
infinite penguin dominance, we get

I ~„(Bg~m Ks)
(49)I o,(Bu~a'Ks)

then

Bg—+e Es
23

In KM phase convention, this means

—&3$s(s2+$3cs )
ImA, +&s

$3 +$3 cos25+2$2$3cs
ReA,

s, '+s, '+ 2s,s, t.-~

(50)

(51a)

(51b)

Even in this extreme case, care must be taken to see how
the mass effects of m, versus K enter. They give rise to
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a V,b V,', term. For details consult Ref. 25. Back to reah-
ty, for Bd~m Ks, we obtain comparable amphtudes for
penguins and the spectator diagram, and hence even the
assumption of

l
A(8~ n Ks)l=lA(Bq m Ks) l

does
Ilot hold due to peilgunls [Gi+G2, see Eqs. (23) and (24)).

The estimates (46} and (48) have been derived from per-
turbative @CD calculations. See Ref. 27 for a discussion
of experimentally isolating penguin contributions through
exclusive 8-meson decays, that will test the predicted
penguin strength.

In this presentation we look at final states where the
penguin diagram does not contribute to the asymmetry or
at worst, if it is present we can safely neglect it. Our ap-
proach can be contrasted with Chan and Cheng's analysis
of CP violation in the neutral 8 mesons. First, they con-
sider Anal states that cannot be fed simultaneously from
80 and 8 . So, in that case no interference of A (B~f)

and A(B~f) will occur. Such cases we do not consider
at all in our papr Sec.ond, they consider final states into
which both 8 and 80 can decay. However they con-
strain themselves to the case f=f, and they do not look at
final states which arise solely via penguin operators. We,
however, discuss later large CP asymmetries predicted in
Bq,~QKs for which only penguins contribute.

It is our belief that to estimate the penguins involves
more theoretical uncertainties. And to extract their rela-
tive strengths from experiments in the years to come is
much more problematic (see Ref. 27) than to obtain the
strengths of the spectator and/or the exchange diagrams.
The strength of spectator and exchange suffices for the
large asymmetries that we obtain. Therefore we avoided
the penguin diagratns in this paper or we looked at decays
where we can safely neglect them, or we looked at decays
where only penguins contribute.

Note that the result for B,~K+K in Ref. 4 is

Imka x+x =2sts3ss .

Let us check this. We know that

So, ImA, =O. This is in good agreement with Chau and
Cheng's original result because ImA, =2s2s3ss is very
small.

We must emphasize that for some processes, such as
Bq,,~pEs, only penguins contribute. We can obtain po-
tentially large asymmetries. We take only the leading
term ln(rn, /K ) of Eq. (44) and neglect the mass-
correction term ln[K /(K +m, )]. The asymmetry for
B~ +/K—s involves penguin transition b ~s and can reach
—0.1. While the asymmetry for B,~QKs invokes b~d
penguin transition and can reach up to 0.4. In boih cases
5&(10s bb pair is needed for testing these asymmetries.
All these results are listed in Table IV.

Now we estimate the branching ratios:

I'p-(B~NEs }

I o (Bg~D n+)

Vg V„—SCz2— F~F,~y (vac ~ss ),
cb ud

where Eq. (46) has been used. The factor —,
'

arises from

l (Es lK )
l

. F~ is the phase space, F,» is the multi-
plicity factor, p(vac~ss) gives the probability creating an
ss pair from vacuum. We put them all together as
F&Fmt„g(vacss) —1 to obtain

B(8~ yKs) SX-10-',

8(B,~QKs)-2. 5)&10 s .

The last number 2.5X 10 is obtained from

B(B,~QKs) Vgb V~

B(Be~as) Vg V„

These branching ratios are also listed in Table IV.

V. DISCUSSION AND CONTI. UNION

I ~„(Bg~K+K ) z Vg, V„
=5Cp &4 .I,,(8, K+K-) (52)

I A(f}
I

=
I A(f} I (53)

Taking the representative values Eq. (15) we get for the
ratio ill Eq. (52):

I ~(8,~K+K ) -6.
I o (B,~K+K )

Hence, the penguins and 0+ amplitudes have the same
order of magnitude. If Chau and Cheng still have

l
A (f)

l

=
l A(f ) l, assuming penguin dominance they

should obtain, up to some mass corrections which intro-
duce V,'b V„ in penguin amplitude,

A(K+K )-
A(K+E-)

~is~u VIV~X= = 1+Glass correction .

X=X

to derive our asymmetries.
Now, criterion (S3) is always satisfied when no penguin

diagram contributes to the final state [see discussion
around Eq. (22)]. It is also satisfied quite accurately for
those processes where penguins are negligible or dom-
inant. For Bq~m. Ks Eq. (53) cannot be justified. But
Eq. (S4) is not always satisfied even when Eq. (53) holds
true. The hurdle is the problem of final-state phases. For
example, consider B~~D m+ and 8 ~~D+m . After a
lengthy analysis ' we have

V„b Vg a3g2(Dm }e' —i/2ai~2(Dg )
X (55)

V„e V,g a3gz(Dn. )e++ v 2a, ~2(D~)

Similarly we get

Vgg V,g a3)2(Dm)e' v2a ig2(Dn')—
B+n i5V,i, Vge a3g2(Dm}e' +v 2aigz(D~)
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where

~=b3n —b]iz

For x + ——xa + to hold, we need the KM stripped

from the right-hand side of Eqs. (55) and (56} to be real.
That does not happen in general. So in general

xn ~ Qxn (58}

The dray 8, ~ir+m seems promising, since the weak
effective Hamiltonian allows only I=0 and I= 1 chan-
nels. Because of Bose statistics this final state can
proceed through I =0 channel only. Unfortunately, the
branching ratio for this decay mode is very small

( & 10 ). For analogous reasoning the decay

B~~K+E should also have a pure isospin channel.
But the rescattering through the multipion intermediate
states involves I=1 channels, so makes Eq. (54) prob-
lematic. The decay B,~D m+ or B,~D+rr has only
I= —,

' channel. These two decays seem promising. The

only open question is how much do those virtual inclusive
states "D zr+ (pairs of n}"or "D+rr (pairs of ir)" intro-
duce phases to our rescattering. 32 The only drawback is
that the branching ratio might be by a factor of 10 small-

er than what we optimistically assumed —a scaling argu-
ment for exchange diagrams from the observed D de-

cays.
B,~D P suffers from the final-state phases. The

eigenvectors of the S matrix is a linear combination of
D P and F+E and therefore

A(B,~D Q)=V V„'g(ae '+be ~), (59)

5„5s bemg final-state phases.
The decay Be~as does not suffer from final-state

phases because of Eq. (B7), although there is a rescatter-
ing of D F++-PEs. For non-CP eigenstates our quanti-
tative argument based solely on KM angles turns sadly
into just a qualitative one. Further work is definitely
needed to elucidate final-state phases. An especially
promising way to study CP violation is via inclusive or
semi-inclusive channels, due to their larger branching ra-
tios. How&ever, progress is also hampered due to our
lack of understanding of final-state phases.

We want to point out that if the mixing of Be~8 e is
extremely small (even smaller than to observe reasonable
Be~D+w asymmetry, which nests z&10 for good
event number Nb~), we still could hope for asymmetries in

the pure decay rate 8~~+ It'~. Here penguin and 0+
operators have the same order of magnitude but different
KM structure. Therefore assuming different final-state
strong-interaction phases, a large decay-rate asymmetry
&Be~,~m Es) versus I (Be~,~m Es) could result. So
we have CP violation in magnitude. The same remark
Imght apply to 8,~m+m . In general, whenever we have
two decay channels with different weak and strong phases
this remark might apply.

Probably, the best approach, in the event of negligible
8 -80 mixing, would be to look for partial-decay-rate

differences of the charged b-flavored mesons (i.e.,
8„+,~f versus B„,~f) (Refs. 29, 30, and 31).

Now we come to our conclusion.
(a) CP-violation effects in nonleptonic decays of 8

meson can be quite large owing to the mixing and ampli-
tude interference. The best decay modes for testing CP
violation are Bd~D+m, .B,~D+m, and B,~D P
They need 4X10, 7)&10, and 10 bb pairs for 3o signa-
ture, respectively. For testing CI' violation with only
penguin contribution, the best modes are Bd, ~PEs
which need 5)& 10 bb for 3o signature.

(b} The problem of the strong-interaction phases of the
final states is very difficult and subtle. It needs further
investigation.

(c) According to the prediction of the standard KM
model, the Cabibbo-Kobayashi-Maskawa-favored decays,
braces (e.g., 8,~PP, F F, etc.), b ~cud (e.g.,
B,~D ES) for 8, decays and b~cud (e.g., Be~D n+,
etc.), b~ccs (B~~QEs} for Bd decays have very large
decay rates (so branching ratios) but very small asym-
metries. The only exception is the Be~as where the
asymmetry could be large, however, probably suppressed
by small mixing. If we find a large asymmetry in all the
processes mentioned above, new physics wi11 emerge. So
it is worthwhile to make the efforts.
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APPENDIX A

We list the invariants of the KM matrix:

~11 V22 V33( V23 V32 }

Rek]] C]$2$3Cs( 1+C] ) C] ($2 +$3 )
2 2 2 2

Rekzz Clsl $2$3(cs —C]S2$3);2

633= Vl l V22( Viz Vz] },Re633 —C l S ]

~]z= Vzz V3]( Vzi V33)'

Red]2 —Sl $2($2+C]cs$3);2

b, ]3——Vzl V32( Vzz V3])',

Rek]3 Clsl $2(C]$2+Cs$3) j
2

~z]= Viz V]3(V33V]z}'

Rehz] ——s] s3(s3+c]cssz};2
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~23= I'31 I'12( V32 I'11}'

Re623- —C1$1 Sz(C1$2+Css3);2

~31= Viz vz3( I'13 Vzz)'

Re631 S1 $3(C1 $3+C1Cssz);2 2

~32 V13 ~21( ~11 ~23 )

Re632 —Cis 1 $3(C1$3+Cssz );2

IIQAg~ =c ) c2c3$ ) sg$3$g
2

(84)

In the above, the sign + merely reflects whether we deal
with CP-even ( + }or CP-odd (—) eigenstates f.

In reality our decay may proceed via several strong
eigenchannels with unknown final-state strong-interaction
phases. Now

(85)

=cisi szsiss for all i,a

(where we have taken cz -c3 1 $2 $3 «S 1 ).

Assume that only one weak phase enters

iP~kQ~= Q~ e

where P„k does not depend on a. Then

(86)

APPENDIX 8

When dealing with final states that are CP eigenstates,
special care must be taken. Assume for simplicity that
only one weak phase contributes to our process. Then the
claim is that for CP-odd states we obtain —A, (not A, ), for
CP-even state we obtain A, .

Proof. We have a couple of different strong eigenchan-
nels labeled by a. Define

,„,&f,aiB );„=a e (Bla)

Put

I5
ou1&f~tr I

B )in=aae

CP lf &=+ If &

(8 lb)

(82)

i.e., + for CP even
~ f), —for CP odd

~
f), for in-

stance, (+ ) for f=D+D, ( —) for f=PKs.
Choose the phase convention

(83)

Applying CPT onto (Bla) and (8 lb), we obtain

+e rPCOk

~oake

a out & out e

a out

(87}

~P1P2 ~V1P2 ~ (Bg)

where, we have neglected the difference of the strong-
interaction phases and the kinematical considerations, and
Pi,Pz are pseudoscalars, Vi is just the excited vector
counterpart of Pi.

Eq. (87) means that x will be essentially a ratio of KM
combinations (note here we only have one weak phase, i.e.,
one KM combination) and the + sign reflects what CP
eigenstate we deal with. Because x changes sign for CP-
odd eigenstates, A, does also. That completes our proof.

For final states that are not CP eigenstates, for in-
stance, D+n. , D +m, etc., we have also a sign ambigui-
ty in A, . In general, for B ~P1P2 and B ~ I 1P2, owing
to the odd relative CP parity, we should have24
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