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High-energy photoproduction of W' bosons
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The cross sections and energy and angular distributions are calculated for the reactions
y+n~8' +p and y+p~8'++n. %eak and electromagnetic form factors are used and an

anomalous magnetic moment v of the 8' boson is included. %e give results for the values

x=1,0, —1.

I. INTRODUCTION

With the possibility of a high-energy photon beam at
the Superconducting Super Collider the process of single-
W-boson photoproduction has acquired new interest. ' If
the cross sections are sufficiently large, the reactions

and Smith in that we have included three instead of only

two weak form factors and have been able to use the
correct 8'-boson mass. Most importantly, although we
have kept all masses in the problem and have calculated
the cross section numerically, we have verified agremnent
with the high-energy limit (5) of Mikaelian.

p +p~p +n+ 8'+,

p +n —+p +@+8' (4)

in which the 8' boson is likewise produced at a hadronic
vertex, were considered by Fearing, Pratap, and Smith
and yielded results for the photoproduction reactions (1)
and (2) as a special case. s These authors included form-
factor effcets at the weak and electromagnetic vertices
and derived the high-energy limit of the total cross sec-
tion. In the case of an elementary target, however, their
expression does not simplify to the analogous formula cal-
culated by Mikaelian for a point target of variable charge
Q. For s ~pMii, the cross section obtained by Mikaelian
is independent of Q and increases logarithmically with s
except for the case it = 1, where it levels off at the constant
value

o =~2aGF 4.6X10 cm2 .

Although we have not derived an analytic expression for
o in this paper, Eq. (5) serves as a useful numerical check
on our results.

In Sec. II we review the technique used by Fearing, Pra-
tap, and Smith to handle the problem of gauge invariance
caused by the use of realistic form factors. The same
method has been employed here. The matrix element for
/+Pl —+S +p Is g1ven 1n Sec. III where some add1t1onal
remarks are then made on the gauge properties of the am-
phtude. Curves for the cross sections and energy and an-
gular distributions are presented in Sec. IV. Finally, we
discuss how uncertainty about the form of the weak Wpn
vertex affects the reliability of our results.

Our calculation differs from that of Fearing, Pratap,

(2)

provide a means of directly measuring the trilinear
gauge-boson couphng and thus the anomalous magnetic
dipole moment tt of the W. The related processes

II. GAUGE INUARIANCE OP THE AMPLITUDE

Given the usual electromagnetic and weak vertices, the
Feynman graphs which contribute to the elastic process
y+ n ~W+p ar'e those of Fig. 1. Form factors for the
weak hadronic vertex are well known at least in the space-
like region. Meson-exchange diagrams, for which the ver-
tex structures are much more uncertain, are expected to
contribute virtually nothing to W photoproduction. In
particular the one-pion-exchange graph (Fig. 2) was con-
sidered by Bander and later explicitly evaluated by Fear-
ing, Pratap, and Smith, who found its contribution to be
negligible except very near threshold. The p-meson-
exchange diagram of Fi~. 2 was similarly estimated to be
small at high energies. We have therefore considered
only the standard channels of W and nucleon exchange.

We incorporate strong-interaction effects through
phenomenological form factors as usual. Since inclusion
of weak form factors results in the matrix element losing
explicit gauge invariance, an extra term must be added to
preserve it. This is analogous to the case of pion elec-
troproduction where a term proportional to k"/k~ is add-
ed to the amplitude for the same reason. Electromagnetic
form factors, of course, pose no such difficulty in pho-
toproduction as they are simply given by their static
values.

The method used to restore explicit gauge invariance is
explained in detail in Fearing, Pratap, and Smith, but we

(c)

FIG. 1. Feynman diagrams for the process y+n~8' +p.
The circles indicate vertices where form factors are included.
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FIG. 2. Meson-exchange diagrams with neghgible contribu-
tions at high energies.

outline it here for completeness. For the purpose of illus-
tration, we will describe the Wpn coupling [Fig. 3{c)]by
only two weak form factors, vector and axial vector:

X (Fyy +Fgy y5)u(pi),
p, — —M

(6)

where e~(k) and ep(k') are the photon and W polarization

p.y~""
( I ', q )

FIG. 3. Weak and electromagnetic vertices defined in Eqs.
(13), (14), and (16).

I II, {pl p2) —
+ cosec(Fvyp+FAypy5)

2V2

Fv and Fq are functions of q ={p2—pi) . Because the
weak form factors in diagram (a) of Fig. 1 are evaluated
at values of q3 different from those in (b) and (c), it can
easily be checked (Sec. III) that restoring gauge invariance
to the total W photoproduction amplitude is equivalent to
making each diagram gauge invariant by itself. Hence the
following procedure is carried out for each of the Feyn-
man graphs separately, although it will prove instructive
to examine the gauge invariance of the amplitude as a
whole as is done in the next section.

As an example, consider the contribution of diagram
(c). The matrix element is given by

M3 —— cos8cM3~@ (k)ep(k')
2 2

with

5M 3~ Fi' u (p——z )(a'A a+P'B +y'C )u (p i )+b M ~~

where a', P', y' are arbitrary scalar coefficients and
k ~' ~=0. The gauge invariance condition (8) then re-
quires

a'k A+P'k B+y'k.C=1; (10)

i.e., the scalar coefficients must have singularities in k.
Redefining a'=a/k A, P'=P/k B, and y'=y/k C
yields the constraint

With the exception of this condition, the choice of a, P, y,
A, 8, C is completely arbitrary. Note that terms propor-
tional to u(p2)y'(k y)y~u (pi ) and those with
momentum-dependent coefficients may be absorbed into
the explicitly gauge invariant ddM ~, which must neces-
sarily be neglected. a, P, and y are thus taken to be con-
stants.

We now state the particular choice of parameters made
in this paper. Since the singularities in k of a', P' and y'
depend on the choice of A,B,C, it seems desirable to pick
these four-vectors so that only singularities already
present in M will occur in lLM i~, ddt z~, and d8f 3~, i.e.,
so that no new singularities will be introduced into the
amplitude via bM~~. Defining Ai'=2k'u, Bi'= —2pii'

C"=—2p~q would ensure this, and, in fact, is the choice
made by Fearing, Pratap, and Smith ' with small con-
stant coefficients. Their results indicate a relative insensi-
tivity to the form of the added terms: with

(
a (, ~ P ~,

~ y ~
&1, variation of these parameters changed the total

photoproduction cross section by only about 10%%uo. For W
production via muon beans, o varied by at most 20% for
small coefficients, with the minimum cross section for all

a I, I & I, I y I ~ m occurring w"en a= 1 and &=y =0.
This last result agrees with what might be expected; in the
case where only the 8' pole survives in hM, the extra
singularity added to preserve gauge invariance is very far
from the physical region because q is negative and M~
is large. With this justification, we have chosen to keep
only the W propagator singularity in &M~ ~UM2, and

vectors, respectively, M and H the mass and anomalous
magnetic moment of the proton, and y +(iH/2M)e "k„
the proton-proton-physical photon coupling.

o""=(—i/»[y" y") .

To test M3 for invariance, contract M3 e$(k') withk:
k M3 s$(k') =u(p& )(F&y~+F„y~y5 )u (pi )ep(k') . (7)

We must therefore add a term EM3~ to M3~ such that

k.(M, '+~, ')elk )=0 (8)

in order for the amphtude corresponding to diagram (c) to
be gauge invariant. Consider first the vector part of
EM3, which can be expanded in terms of y~ and of any
three independent four-vectors A, B, C of the prob-
lem:
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AMs, constraining the relevant coefficient to be unity by

Eq. (11}. All results presented in this paper are calculated
for this definition of A"= —2k'", a=1, and P=y=0.
Further remarks on the form of bdltI are made in Sec. III
once the entire matrix element has been given.

III. MATRIX ELEMENT

The interactions used to write domain the amplitude for
y+N~W+N' are those of the standard model except
for the WWr coupling, for which we take

/I "[(8~W„+—B„W„+) W"—(BqW„—B„Wp)W"+ —@BE(W"+ W„—W"W„+ )]
(g 2+g ~2)1/2

in order to accommodate an arbitrary anomalous magnetic moment t~ of the W boson. g and g' are the usual gauge cou-

pling s:

g= . , g =g tan8p
stn8~

where e is the electric charge with a =e /4n = », . The three-gauge-boson vertex, Fig. 3(a), is then

I "p„(k,k', q) = ie [gqp—(k' q) —gp (k—'+ok)q+g~(ak +q)p] .

The standard couphng is recovered from Eqs. (12) and (13) when ~= 1.
Diagrams 1(a)—1(c) contain the weak and electromagnetic vertices shown in Fig. 3. The electromagnetic hadronic ver-

tex has the standard form

I ~ (p„p2)= ie f1—(k )y0, + f2 (k )o ~" (14}

where a is the nucleon anomalous magnetic moment„and

fl(0}=f3(0}=f2(0}=1fl(o)=o.
The weak proton-neutron- W coupling of Fig. 3(c) can be parametrized most generally by

WWW'
—~gc™C 2 . & „2 Z . 2 2I p. (p1 p2}= [f1(q }y,+tf2(q }o,~"+f2(q }q„+g1(q )y,ys+ig2(q }tT,~"ys+gs(q }ysq, ]

2 2

with g /SM~ ——Gt;/v 2, where M& is the W-boson mass and GF the Fermi constant. For spacelike q =(p2 —p1), the
conserved-vector-currmt hypothesis requires fs ——0, as well as

fl(q'}=f1(q'}—fl(q'» f2(q'}= i&f3(q'} &"f2(q')l—
2M

since the weak current, its conjugate, and the isovector part of the electromagnetic current form an isospin triplet. Neu-
tron p decay gives g1(0)= —1.25, and the absence of observed second-class currents thereof implies g2 ——0. For simplici-
ty we neglect the gs term and rewrite Eq. (15) as

ig cos8c
1
— i(FV(q )

(q}= - Fv(q'}y1, +F~(q'}yt ys+ op+"
2&2 2m

so that the vector form factors are normalized to one:

F,'(0)=F,'(0)= 1, F„(O)=—1.25.
The matrix element for y(k, a)+ tt (p1)~ W (k', p)+p(p2) 1s

(16)

M'"= cos8c(M1+M2+Ms )NPe~(k)ep(k'),
2 2

where M1, M2, and Ms, the amplitudes corresponding to graphs 1(a)—1(c), are

qIJ.QV
gpv

M1p [g&p(k' q) g~—(k'+ttk)" —+g~—(«+q)p]
q —Mw

Xu(p2) Fy(t)y"+Fg(t)y"ys+ F1 (t)orat' u (p1),
2M
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Mz~ ——u(pz) Fyy~+F~y~y5 —Fya k„' f„(0)y + tr "k„u(pt),
2M " p)+k —M " 2M (18)

M3~ ——u(pz) fz(0)y + cr "k„Fvy~+Fzy~ys — Fyo~k„' u(p~) .
2M "

Pz —It —M 2M

t =qz=(k —k'}z and Ev=Fy(Miv ), etc.

Although the electromagnetic form factors are evaluated at k =0, f~& and f i have not been replaced by their static
values here in order that we may easily obtain the amplitude for y+p~S'++n by letting f~i{0)~f",(0) and
M&~ —M& in the above.

Now we use the method of the previous section to make Mi, Mz, Mz each explicitly gauge invariant. After contract-
ing each amplitude with k and adding to it a term with a 8'-propagator singularity as described earlier, we have

r

kaMtot&}'t(k')=u(pz) [—f)(0)Ey+fi"(0)E'y+Ey{t)]y~+[—ff(0)F„+fi(0)Fg+Eg(t)]yt'y,

[—f~j(0)Fy+f ) (0)Fy+Fy(t)]trek„' Fy(—t)trek„u (pi )et't(k') (19)

r

ra
~M~'g&~(k)&t't(k') =—,u{pz) ff~i{o}Fv f & {o)Fv —Ev{t)]y~+—[f~i(0)E~ —f ~ (0)F~ —E~ (t)]y~y5t —Mg

[f~j(0)Fy—f ( (0)Fy —Fy(t)]trek'„— Fy(t)a~k„u (p ) )e (k)et't(k') .

(20)

Fy(q )= 1—
4M2

2

Gz(q ) — Gst(qz)
4M

pe(q }= 1—
2

' —1

[Gst {q'}—GE{q'}],

GE(q )= 1—
2

—2

2Pl y
(21}

2 2

G~{q')=(1+/')
fit y

F„(q )=—1.25 1—
2

—2

2
ltd g

m~ ——0.84 GeV, the electromagnetic dipole value, and in
E„we take rnid

——0.95 GeV (Ref. 8). We have used
M~ ——82.42 GeV, M =1 GeV and 8'= j..79, x"=—1.91
in the calculation.

Because the forms of Ev, Fy, and F„are almost un-
known in the timeHke region, particularly for values of t
as large as Mivz, we have considered two different Possi-
bilities for their behavior. Results are presented for con-
stant weak timelike form factors, i.e., with their static
(t =0) values, as well as for dipole timehke form factors
falling off exactly as is in the spacelike domain. The di-
pole parametrization of the weak form factors is given
below.

While imposing gauge invariance on Mi, Mz, M3 indi-
vidually results in only the constraint (11) on an added
term of the form (9), consideration of the total amplitude
suggests another desired grogerty of LLM«, . With only
Fy and Fz included in I, the sum M«, of the three
diagrams is obviously gauge invariant by Eq. {19)for con-
stant form factors. Therefore, in this case ~„,must go
smoothly to zero as the form factors approach their static
values. Equation (20} satisfies this condition. We note
that M«, is no longer gauge invariant for constant form
factors when Fy is included.

The analogy with pion electroproduction now becomes
more illuminating. In e+N~e+N'+zr, where the am-
plitude is similarly gauge invariant for static form factors,
the term ~ k"/k which restores gauge invariance is mul-
tiplied by a combination of form factors that vanishes at
k =0. For our process, however, the coefficient does not
vanish at q =0 so that a term of the same form would in-
troduce a singularity which is in the physical region and
not present in the original amplitude. Although a term
~q"/q is thus ruled out when only I'z and Fz are in-
cluded, the form of hM«, given by Eq. (20) has a pole
with zero residue exactly as does the term added in pion
electroproduction. It has already been mentioned that the
results of Fearing, Pratap, and Smith are fairly uniform as
long as the residue of the extra unphysical pole is small.
For 8'photoproduction the bM«, of Eq. (20) is therefore
probably the optimal choice as the residue of its pole is
identically zero when Fv(t) =0 and is small otherwise.
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proton target is larger by & 4%. For no form factors, this
confirms the finding of Feuing, Pratap, and Smith that
the magnetic moment parts of diagrams (b) and (c) are ap-
proximately equal and that the leading terms of the cross
section are symmetric under tbe interchange p~n. %%en
dipole form factors are included this result is obvious be-
cause the only contribution comes from (a) and is in-

dependent of the type of target nucleon.
The total cross section for tr= —1, 0, 1 with no form

factors or with dipole spacelike and constant timelike
form factors is plotted in Fig. 4. o for x =1, 0, —1 with
dipole spacelike and timelike form factors is shown in
Fig. 5. At large photon boun energy r0, the cross section
in Fig. 4 is several orders of magnitude greater than the
high-energy limit cr-10 cm for a pointlike target.
This arises from the dominance of the tri' and ~" terms; by
explicitly setting these contributions to zero, the limit (5)
is achieved. The inclusion of dipole form factors severely
damps o by about 9 orders of magnitude. Note that in
this case the cross section for a.= —1 is greatly suppressed
relative to those with a =1 and x =0. The contribution of
diagram (a) goesi'3 essentially as (1+a)~, so that o for
a =1 is about 4 times larger than 0 for tr=0, etc., with W
exchange contributing almost nothing to the process when
K= —1.

The angular distribution dtr/d cos8it of the W boson
is given in Fig. 6 for photon beam energies of 5 and 10
TeV. The curves for no form factors (or dipole spacelike
form factors) are nearly flat, while those with dipole time-
like form factors included are strongly forward peaked
and become more so as the photon energy increases. In
Fig. 6 we have also shown da/d cos8ii with dipole form
factors for co =5 and 10 TeV and a = —1, 0,1.
drJ/d cos8it for a =—1 is relatively flat even with dipole
timelike form factors; in this case the effect of diagram (a)
is canceled and (b) and (c), though severely reduced by a
constant scale factor, dominate just as in the absence of
form factors.

From the energy distributions of the final nucleon (Fig.
7) we see that the primary effect of dipole form factors is
again to change the shape of do/dE~ from fairly flat to
very strongly peaked at small Ez, except when x = —1 for
the same reason as before. Without form factors,
drr/dE~ becomes slightly more peaked at small E~ as co

increases, but when dipole form factors are used the shape
of these distributions is more or less independent of the
photon energy.

Finally, we wish to examine how lack of information
about timelike weak form factors inight affect our results.
To check how tr changes when these form factors fall off

o".
re= lO TeV

- u=8 TeV

0~6 —~= 5TeV

~ t 1 I ~ I I 1 ~ I \ \
l

l
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to'o-
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FIG. 7. The differential cross sections d o /dE~ for
y+n ~8' +p. The upper curves correspond to no form fac-
tors (or constant timelike form factors) and x= —1, 0, 1. The
lower curves correspond to dipole form factors with photon en-

ergy m=5 TeV (dashed curves) and m=10 TeV (soHd curves).
Note the change of scale.

FIG. 8. Total cross sections for y+n ~8' +p with photon
energy co=5 TeV, as a function of the parameter mv (m& ) of
weak form factors in the timelike region where n~ has been set
equal to in~ [Eq. (21)). my ——0.71 GeV2 corresponds to the
electromagnetic dipole. Electromagnetic and dipole spacelike
form factors have been included.
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less rapidly than an electromagnetic dipole, we have set
mt ——m„ in Eqs. (21) for timelike form factors and have
plotted the cross section for co=5 TeV as a function of
rnid in Fig. 8. For a.=0 or 1 a is uniform provided that
the form factors fall off at almost any reasonable rate;
only when tttt &8 GeV, far above the electromagnetic
dipole value 0.71 GeV, do dtagrams (b) and (c) begin to
contribute once more to the cross section. When a = —1,
however, 0. is extremely sensitive to my, suggesting that
for this value of the IV anomalous magnetic moment the
shapes of the curves are more reliable than their magni-
tudes. Such a result is to be expected since the contribu-
tion of diagram (a) is neghgible in this case.

In summary, realistic form factors drastically reduce
the size of the cross section without significantly changing
its shape in the region of interest. The energy and angular

distributions in contrast become strongly peaked at small

E» and at large cos8+, except for the case tc= —1 where
they remain relatively flat. The 8' boson emerges at ex-
treme forward angles and carries off most of the energy.
A luminosity of 0.6X 10 cm 2/yr for the proposed 10-
TeV photon beam' yields an event rate of 0.09/yr for
x=1, clearly ruling out elastic 8' photoproduction as a
possible means of measuring tc at the SSC.
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