
PHYSICAL REVIE% D VOLUME 34, NUMBER 2 15 JULY 1986

Cylindrical gravitational waves with two degrees of freedom: An exact solution
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The exact two-parameter solution of Einstein s equations described below represents ingoing and

outgoing cylindrical gravitational waves with two degrees of polarization. It has been obtained from

the Kerr metric by applying a well-known trick but, unlike the Kerr metric, it has no singularities.

There exists a well-known trick to obtain cylindrical
time-dependent solutions from axially symmetric station-

ary solutions of Einstein's equations. The trick is thus

applicable to Kerr's metric with mass m and angular
momentum ma+0 in 6=c =1 units. It gives an in-

teresting new solution which comes about as follows.
Start from Kerr's metric in Boyer-l. indquist coordinates

x, r, 8,$ Go t.o "isotropic coordinates" x,R,8,$ with

r =m+R+(m —a2)/4R .

e =1+(a —1)(1—A,„A,„)/[(1+A,„)(1+A,„)j,
e =[a (1—A.„A,„)+(A,„+A,„)]/[u = +(A.„—A,„)2],

Q a(tz 1)1/2I 2[1+(1 tz
—2)1/2]

—=(k I, ) '"(A, +A,„)2
X[a (1—A,„A,„)+(A,„+A,„)2]

in which

Next go to cylindrical coordinates x,p, z, p with

p=R sinH and z =R cosI9 .

Now employ the well-known trick of setting

x =iz, z =it, a =ia,
and then introduce cylindrical coordinates T,R,Z, P de-

fined with

M =m +a, T=M 'at(1+M /4R ),
(4)

R =M 'ap(l —M /4R ), Z =z —Za 'm(m+M)P,

and /=a 'MP.
As a result of these transformations we obtain from the

Kerr solution a metric which has the Jordan-Ehlers-
Kundt-Kompaneetz (JEKK) form.

ds =e ' '(dT dR ) e(dZ+—Qd@)—

:-=1+&„&„+2[(1—u 2)A,„A.„]'/2 .

We shall employ the chart I ( T,Z, R,@)~R 'I

—oo & T» & oo ~0 &R & oo,0 & @& 2n I, where spacetime
points with 4=2Ir are identified with those with @=0in
the obvious way. The parameter a=M/a varies from 1

to oo and for a= 1, that is, m =0, the space is flat.
determines the total energy of the waves (see below). The
other parameter a ranges from 0 to oo and plays the role
of a length scale.

The metric (7) is the only known analytic cylindrical
wave solution of the form (5) with two degrees of freedom
or, what is the same, two polarizations. Solutions with
one degree of freedom were found a long time ago. 6 A
plane wave solut-ion with two degrees of freedom has also
been found. That solution can be obtained from the Kerr
m«ric by a procedure which is quite different from ours.

Our new metric is regular everywhere. On the axis
R =0 there is no conical singularity. At past and future
infinite I+(T=+oo), the s-pacetime is Minkowski flat.
At spatial infinity I (R = oo ) it is conical.

ds =a (dT dR ) dz Rd—+——

where I, 4, and Q are functions of U=T —R and
V =T+8 that appear in the following combinations:

a —1[(a 2+ U2)1/2

A,„=a '[(a + V )'/ + V] .

I, %', and Q are given by

[notice that z is the one defined in Eq. (3)]. At future null
lllflIlity J ( U = oo ), @=0,Q= —oo, aIld

e "=(a +A,, )/(1+A, , ) . (10)

At past null infinity Jr (V= —oo) the metric is similar
with g„instead of A,„(Ref.9). Einstein's energy flux per
unit height through a surface ( U, V) =const over the flat
background Is
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FIG. 1. 3~I in units of its maximum value in terms of R/a and T/a in the ranges 0& 8/a &20 and —10(T/a & 10. (a) is for

&=1.01 and (b) for +=10. Bql (max) scales like (a2 —1}/a for a=1 and like 1/a for a&&1. The tendency towards a singular

behavior at R =0 for o,'~ ao appears already for o, = 10.

The metric (7) thus describes a flow of ingoing-outgoing

packets of waves on a flat background. A wave packet

emerges at W, reaches its highest concentration near the
axis R =0 at time T =0, and is refle:ted out to W+. The
total energy that comes in and goes out is —,

' (a —1).
Figure 1 displays Bal, which is related to the energy

flux; it is positive definite:

, (A,„A,„—1)(A,„+A,„)
=2a '(a —1)e

(1+A,„')(1+A,„'
The behavior of t))t I is representative of the behavior of other quantities in the metric.

(12)
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