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Spontaneous compactification is shown to predict a novel type of localized four-dimensional
horizon-free objects. These are cores of scalar fields confined by means of a static domain wall.
Their surface area is at most —,

' the area of an equal-mass black hole. Altogether, they make ex-

cellent candidates for Einstein's gravitational bags.

8„„—4 g„+ —x'T„„. (la)
The latter equations exhibit some diverse features, such as
the tracelessness of the energy-momentum tensor, and
have the advantage of treating the cosmological constant
as a constant of integration rather than as a universal
quantity. Einstein invoked Eq. (la) while trying to resolve
what he called the problem of matter: namely, the frus-
trating impotency of Eq. (1) to account for the structure of
the electron. He suggested that "in the interior of every
elementary corpuscle„where the density of electricity is
other than zero, there subsists a negative pressure the fall
of which maintains the electromagnetic force in equilibri-
um. " In this Rapid Communication we construct gravita-
tional bags without sacrificing general relativity. In fact,
we show that a core of a scalar field, confined by a static
domain wall, is predicted by local spontaneous compactifi-
cation. z The surface area of the domain wall is at most —',

the area of an equal-mass black hole. It is quite reasonable
that such objects accompany string theories as well.

Our starting point is the Freund-Rubin (FR) mecha-
nism2 for spontaneous compactification. It requires the in-
troduction of sophisticated potentials A. . . (m; =0,
1, . . . , n+3); the total number of its indices is correlated
with the total number of ordinary spacetime dimensions.
The associated action is given by

S- d'+"xi —g (R —2A) ——'F' (2)
16+6 4$ s

where

Fmnpq -ri[m~npqi . (3)

It is amusing to recall' that Einstein was actually ready,
at a certain point, to abandon his field equations

R„„—2 g„+ ~ —xT„„,
in favor of

It is the vacuum expectation value (VEV) of this antisym-
metric rank-4 tensor field which drives compactification of
the n extra dimensions. It has not escaped attention that
such a mechanism is automatically embedded in the bo-
sonic sector of the 11-dimensional N 1 supergravity, 3

only with A 0, of course, as required by supersymmetry.
At any rate, making no commitments concerning the ori-
gin of the FR mechanism, we momentarily allow for an ar-
bitrary cosmological term.

For the sake of simplicity, the line element of interest is
taken to be of the block-diagonal form:

d 'd '
ds2 dst 1 (x")+a (x")

(1+—„' ky )

with the notations p 0, 1,2,3, and a 4, . . . , n +3. The
extra-dimensional space is maximally symmetric, and the
four-dimensional piece ds&41 is consequently y indepen-
dent. This configuration has an SO(n+ 1) isometry group
if k happens to be positive. It is important to notice that
the overall scale of the extra-dimensional manifold is
treated as a four-dimensional scalar field. We thus deal
with the local extension of the FR mechanism.

The generalized Maxwell equations (1/v —g )8
x (4—gF "Pq) 0 are satisfied by

4—g(4)(F„„i„)-k s„„i
30

with the proportionality factor X, being a constant by
means of the Bianchi identity. e„„q denotes the four-
dimensiona1 Levi-Civita tensor density„and g|4~ =detg„„.
Substituting the above VEV into the energy-momentum
tensor one finds T„„—(X /a2")g„„, and T,tt +(A,2/

a ")g,tt, with a noticeable opposite sign.
Another technical step is still needed before decoding

the effective four-dimensional picture. To ensure the
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recovery of general relativity after the dimensional-
reduction procedure, it is crucial to invoke the proper
Weyl factor. 4 The dictionary then reads

gc:ff ~~ng

indicating that, in principle, a singularity in g„„may be
the effect of the Weyl factor itself.

Revvriting the Einstein equations such that R„'„
I

—zg„'„R„'f stands on the left-hand side, the effective
four-dimensional picture becomes clear. It involves a sca-
lar field

1/2
n (n+2)

2
1na,

subject to a very special potential (which is not of the
Higgs style)

V(p) 12exp —3
2n

n+2 y
—

2 kn(n —1)exp —2
n+2
2'

& 1/2

ttt +Aexp

' 1/2

(s)

The %,
2 term makes the potential bounded from below, al-

lowing for the existence of a classical absolute minimum, a
physical property which is badly needed in the traditional
Kaluza-Klein (KK) scenario. It is this potential which
stabilizes the FR mechanism, and furthermore predicts the
formation of gravitational bags.

The scalar potential (see, e.g., Fig. 1) is nothing but the
effective four-dimensional cosmological "constant", i.e.,

For A 0, as a pedagogical example, one faces
Vm;„& 0, reproducing the well-known supergravity result
of an effective anti-de Sitter, rather than flat, vacuum
geometry. This is why we hereby constrain the potential to
vanish at its absolute minimum, being ready to pay the
price of fine-tuning A; that is,

' 1/(n-1)
A- ,' k(n ——1)'k (n —1)

2X,2

From a cosmological point of view, this would guarantee
Aeff~ 0 as the Universe, after undergoing an inflationary
era, through oscillations settles in its ground state (we
note in passing that the associated cosmic evolution is soli-
tary„driven by the collapse of the extra dimensions). As
far as gravitational bags are concerned, on the other hand,
Eq. (9) is essential for maintaining asymptotic flatness.

From this point on, we concentrate on the static three-
fold radially symmetric case. The r ~ limit is obviously
associated with the absolute minimum of V(p), obtained

r=rO

r ~ 1/a

FIG. 1. The scalar potentiaL a exp[[2/n(n+2)I'f2&1 is the
extra-dimensional scale. The gravitational bag is associated with
Q ~Ogpu.

I

for
v'n(n+2)

1
2X2

242(n —1) (n —l)k '

thus fixing the asymptotic radius of the extra-dimensional
sphere already at the classical level. At asymptotic dis-
tances, the physics is therefore of the Schwarzschild type
perturbed by the Yukawa tail of a scalar field of mass
m =—82V/8&2(;„. It is remarkable that, due to Eq. (9),
and on dimensional grounds, m2 also sets the scale of the
potential itself. Of particular interest is the local max-
101uffl

' 3n/2(n —1)
s(n —1) „, k(n —1)

, (10)(n+ 2)

with the proportionality factor being a decent 0(l) func-
tion of n

To analyze the complete r dependence, we first focus at-
tention on the scalar field equation of motion. Using iso-
tropic radial marker, for which

ds 2 ~ T2df2+R2(dr2+ r2d O2)

this equation takes the form

1 „+ T'+ R'+ 2, dV
R2 T R r dy

For the sake of transparency, we momentarily use the
Gaussian radial marker p, defined via dp/dr R(r), for
which Eq. (11) represents a familiar mechanical problem.
Treating p as "time" and P as "position", Eq. (11) then
describes a particle moving in a potential —V, with

1 dT+ 2 dR+ 2 dtt5

Tdp R dp Rp dp

serving as a friction term. In this Coleman language, ~e
are searching for a solution in which the particle comes to
rest at infinite "time" at p;„(in which —V is actually
maximal). Such a solution always exists, as can be
demonstrated numerically by starting at the asymptotic
region, where the analytic behavior is well known, and
then going backwards with r. In fact, reflecting the asym-
metry of the potential with regard to p

—p, there exist
two inequiualenf nontrivial solutions to the problem. In
the asymptotic region where p-p;, +(s/r)exp( —mr), s
being the scalar hypercharge, they correspond to s & 0 or
s ~ 0, respectively.
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0' 2 V(p)dn 26Vmgx

where d, is the normal thickness of the wall. A finite cr, or
l

(i2)

At this stage we can already have a qualitative descrip-
tion of the object called gravitational bag. It carries a pos-
itive hypercharge (s & 0), so that p(r) ~p;, is a mono-
tonically decreasing function of r. With regard to local
variations of A,tt(r) =V(p(r)), the space is now divided
into two spherically symmetric regions of negligible A,tr,
separated by a potential barrier. As m ~, and so does
Vm, „by virtue of Eq. (10), this barrier is expected to be-
come a thin domain wall, 9 and the internal structure of the
gravitational bag gets significantly simplified. In this ap-
proximation it remains to match (it is a four-dimensional
matching) (i) the exterior region (r & ro), where
P(r ) pmm gives rise to the familiar Schwarzschild
geometry, with (ii) the interior core (r & ro), where the
geometry is dominated by a massless scalar field
P(r) & pmm. The two regions are separated by a domain
wall of surface tension cr ( surface energy density), '0

t ~'2

even o-m, leading to 5-1/m2 or 1/m, respectively, is
fully consistent with the thin-wall approximation.

It has not escaped our attention that, up to an exponen-
tially decaying Yukawa tail, the scalar field is practically
confined within the boundaries of the bag. When
penetrating the bag, the scalar field grows until reaching
its singularity. Using the KK language, the associated
gauge coupling g is inversely proportional to the extra-
dimensional radius

P ' 1/2
2

n (n+2)

so that the singular behavior p +~ corresponds to
g 0. Such a classical short-distance phenomenon highly
reminds us of "asymptotic freedom. "

The rest of the paper is devoted to probe the consistency
of the matching in the thin-wall approximation, and to cal-
culate the size of the gravitational bag. Let ds«;i refer to
ds, tt in the exterior (interior) region, respectively. Expli-
citly we have

2 Qgg
e dt +

4 &
(a,r + 1 ) (dr +r d 0 ),

Q,~ + 1 Q,4r4 (i3a)

a,' i "— C, (a;r+1)"r+"
ds —C dt2 + (dI 2+rzd II2)

Q;r+1 (13b)

The only external parameter is the gravitational mass
M, 2/a„while the internal parameters" are analogously
the would-have-been gravitational mass M; 2p/a;, and
the scalar hypercharge st2+M; 4/a;z. The kinematical
constraint —1 ~p ~1 is imposed by the underlying Ein-
stein equations (p 1 is the Schwarzschild limit). It is
worth pointing out that it is gravity which makes the ener-
gy of the gravitational bag finite in spite of the singularity
(at r 1/at) of the scalar field. This would be impossible
with a scalar field alone in a flat four-dimensional space-
time. 'z Note that this singularity corresponds to a naked
singularity of the exact solution. Now, the positive in-
tegration constants Ci,2 can be easily determined by con-
tinuity arguments apphed in the tangent space. The non-
trivial normal matching involves the Gauss-Codazzi for-
malism'

p~'2
cFllp„Tpgdn ~disc(II~„ II'~~), (14)

where h„„ is the three-metric intrinsic to the domain-wall
l

2+%» " i,
a;

—,
' &p& —,'(2 —A) '+—„'(2+%) ',

Qg ae

(is)

with the special point p a, /a; 1 resembling the
Schwarzschild vertex. The solution itself is given by

I

hypersurface r ro, and Ii„„=h„"ni,„denotes the associat-
ed extrinsic curvature. n„ is the normalized (n„n" 1)
normal vector. Since bee-h&&, Eq. (14) decomposes into
two algebraic equations. The o-independent combination
is the restrictive one, while the other is just used to verify
that the positive-energy condition (cr & 0) is not violated.

Consistency is achieved only provided that Eq. (14) ad-
mits a solution for which ro& 1/a, ;; i.e., the wall is not
shielded by a horizon or by a singularity. For this to be the
case, our analysis shows that the various parameters must
lie inside the "triangle" [in the (p, a, /a;) plane]:

—48(p' ——,' )&Oa

2ae &0 .(a,ro+1)

a; a, Q) ae+ 8@-
ac Qg ae ag

2a, 2r p2 2a;(a;ro —p )
O'

(a,ro+1)' (a roz —1)

.
&/2

(16)

For a given gravitational mass M, =2rs„we find a re-
markable upper bound for the size of the gravitational bag,
namely,

r '"-(2++3)r

The isotropic location r -—,
' (2+@3)M, corresponds to a

l

circumferential radius of 3M„hence, the invariant area of
the spherical domain wall is therefore at most —,

' the area
of an equal-mass Schwarzsclrild black hole At any rate, .
it should be clearly stated that the gravitational bag does
not have an event horizon at all. In fact, for 0&p (1,
r 1/a; is a real singularity for which ds vanishes com-
pletely.
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In summary, we have introduced a novel physical object
referred to as a gravitational bag. From the effective
four-dimensional point of view, it consists of a localized
scalar field confined by means of a static spherically sym-
metric domain walL The existence of such an object can
be regarded as a signature of local spontaneous conpactifi-
cation, although in principle it may have life of its own. If
current conjectures concerning the dilaton potential's are
to be realized, gravitational bags would accompany super-
string theories as well. Moreover, they may contribute or
even dominate the missing mass, provided they were abun-
dantly produced in the very early Universe. It may well

be, however, that the actual role of gravitational bags is
played in the microscopic world. In that case, the non-
Abelian characteristics of confinement and asymptotic
freedom may find an unexpected gravitational realization.
Einstein's conjecture might once again prove correct.

Enlightening discussions with Jacob Bekenstein and Da-
vid Owen are very much appreciated. After submitting
this work we became aware of related work's (using how-
ever the vacuum Einstein equations, i.e., without the mo-
tive of spontaneous compactification) by M. Yoshimura.
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