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We present a new and simple proof of the Lee-Quigg-Thacker theorem concerning the
equivalence of longitudinally polarized W and Z bosons and their would-be-Goldstone partners.
The proof rests on the Becchi-Rouet-Stora invariance of the gauge theory.

The Higgs sector comprises that part of the standard
model of electroweak interactions which has neither been
tested experimentally nor really understood theoretically.
Therefore, it will be an important task to look for the ac-
tual existence of scalar particles with the properties of
Higgs bosons. In case such states will be found with low
masses (<500 GeV) the case of electroweak interactions
may be essentially closed. But if the Higgs particle will
not be found below 1 TeV then many new options will be
opened. If one continues to stick to the orthodoxy of the
standard model, one has to believe in the existence of a
heavy and (consequently) very broad Higgs particle which
probably will never be identified unambiguously. Fur-
thermore, the Higgs-boson self-coupling constants (both
H* and H?®) necessarily become large such that lowest-
order calculations of amplitudes involving Higgs particles
cease to be reliable. This fact would not be too disturbing
at energies below 1 TeV (if one neglects higher-order con-
tributions to nonscalar amplitudes), were it not for the
fact that strong-interaction effects should also show up in
the interactions of (longitudinal) vector bosons.""? It is the
“mixing” of (a priori massless) gauge bosons to the (non-
physical) Higgs particles which besides giving masses to
the vector particles induces the strong interaction of the
scalars into the vector sector.

Mathematically this effect can most clearly be formu-
lated within the R, gauge® in which case a one-to-one
correspondence between vector particles and the corre-
sponding unphysical scalars (which are “eaten up” by the
vectors finally) is inferred from the beginning by the
specific gauge-fixing functions:
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Fa[W’(P]: aFZu—é‘MZX, (1)
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Here the complex Higgs doublet has been parametrized in
the form

=11 .
\/E(U+H+'X)

[H denotes the physical Higgs particle and (1/v2)v
=(o") ]

The physical relationship between longitudinal vector
particles and the corresponding scalar (would-be Gold-
stone) bosons can then be expressed by means of the so-
called equivalence theorem, which roughly says that ma-
trix elements describing high-energy processes involving
longitudinal vector bosons can be calculated (within the
R gauge) by replacing the vector particles by their
respective scalar partners.’ This theorem which in essence
has been known already by Cornwall, Levin, and Tikto-
poulos* and Vayonakis®, has been first formulated in a
nonperturbative way, together with a sketch of a proof, by
Lee, Quigg, and Thacker? (LQT). A complete but very
complicated proof has been presented recently by
Chanowitz and Gaillard.® Since the theorem will play an
important role in understanding the strong-interaction re-
gime of (longitudinaly polarized) W and Z bosons, partic-
ularly if the Higgs particle turns out to be very heavy, it
may be worthwhile to present here another proof of this
theorem which is much simpler than the one of Ref. 6.

The basic ingredient of the LQT theorem is contained
in the identity

(A,out| T[F, (x,) - F, (x,)] | B)in)en=0, (2

where F,(x) is given by (1), and | B,in), | 4,0ut)are phys-
ical states. By physical state we mean here a state which
(asymptotically) contains only physical fermions and
Higgs particles, as well as gauge bosons with physical po-
larizations; i.e., no Faddeev-Popov (FP) ghosts are con-
tained in | B,in) or | 4,0ut).

Before proving (2) we would like to make clear why it
directly leads to the equivalence theorem. We replace F,
in (2) by (1) and transfer the resulting matrix element into
S-matrix elements. Thereby use can be made of the fact
that 3, W/’ satisfies the Klein-Gordon equation

(O+EM, 23, W= —£3,J¢ 3)

which includes the same mass as the unphysical Gold-
stone boson ¢,. J¥ denotes the total current to which W,
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is coupled (both matter and self-coupling). In this way
one ends up with a relation which connects S-matrix ele-
ments involving longitudinal W’s and ‘“S-matrix ele-
ments” where the W’s are replaced by their corresponding
would-be Goldstone bosons carrying the same momenta
(therefore eventually being off-shell). It is exactly the re-
lation (2.1) of Ref. 6 from which those authors could easi-
ly derive the equivalence theorem.

We are not going to write the general relation down nor
repeat the further derivative steps, but only sketch here
the case n =1, mainly for demonstrative reasons. In this
case we get, from (2) immediately,

PN
—iﬁ—S[B—»A +W,(p,M)]=S[B—A+¢,(p)] . 4)

a

Here, 6“(p,k)§[B—>A+ W,(p,A)] denotes the S-matrix
element for the indicated process B—A+ W,(p,A),
whereas S[B— A4 +¢@,(p)] represents the “S-matrix ele-
ment” for the connected reaction where the vector boson
is replaced by the corresponding unphysical scalar boson
with the same momenta. For a longitudinal vector parti-
cle the polarization vector has the form

I
e"(p,)»:L):%l—-{—v“(p) ,

where the components of v#(p) are of order M /E. There-
fore, at sufficiently high energies we get from (4)

(=i)S[B—>A+W,(p,A=L)]
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Equation (5) exhibits the equivalence theorem for the case
of one longitudinal vector particle.

Having indicated how (2) leads to the LQT theorem we
return to the proof of equation (2). It is based on the sym-
metry of any quantized gauge theory under Becchi-
Rouet-Stora (BRS) transformations.””® In particular we
need the following properties of the generator Sgrg of the
BRS transformations:’

Sprs( | 4, ))=0. (6)

The validity of (6) is based on the fact that if the field ®
represents a physical particle (with physical polarization)
then the propagator

(0| T[Sprs(®)Sprs(P)]]0) )

does not have a pole at the mass of any such physical par-
ticle. [The anti-BRS operator Sggg is described in Ref. 7.
When applied to physical fields it has the same effect as
Sprs With the ghost field ¢, replaced by the correspond-
ing antighost ¢,. Consequently, Sgrs (Sgrs) changes the
ghost number by + 1 (—1).] In fact, Eq. (6) is used as a
definition of a physical state | A4,qy), in the canonical
quantization of non-Abelian gauge theories.>!® It
represents a natural generalization of the usual (Lorentz
gauge) Abelian condition:

A4t | 4)=0.

Notice that the matrix element of any operator (string)
with nonzero ghost number between physical states van-

M ishes identically.
=S[B—A+@,(p)]+0 |—=|. (5 The BRS symmetry of a non-Abelian gauge theory, to-
E gether with (6), implies that
|
n
0= 2 (A,out ‘ T(O](x,,) Tt Ok_l(xk_]){SBRs[Ok(Xk)]} e O,,(x,,)) ‘ B,il’l) (8)
k=1

for any string of local operators O;(x;), where | A,out),
| Bjin) are physical states as defined above. This relation
will be the starting point for the proof of (2).

We will utilize (8) for cases where the operators O;(x)
either denote the antighost fields ¢,(x) or the gauge-fixing
field combinations F,(x), their respective BRS transfor-
mations being given by

SBRS[Ea(x)]=—éFa(x) (9)
and
oL
S Fy(x)]=—
ksl ] 9¢, (x)
=— oL oL =—L. . (10

Ca

&, "3d,z,)

The last relation expresses the well-known fact that the
BRS transform of any gauge-fixing function is propor-
tional to the equation of motion of the associated
antighost.”?

Finally, we also need the equation of motion for a
Green’s function'! written in the form (notice the con-
vention
_ oL
3P

(A4,out | T[Lg(x)O]|B,in)

Le —3,[3L /3(3,®)]) ,

a0

T oP(x)

= i<A ,out

B,in> , an

which is valid provided that the asymptotic states
| A,out), | B,in) do not contain the particle carried by the
field ®.

Equipped with this information we present now a sim-
ple proof of (2) using induction.

(i) n =1. We choose O(x;)=¢,(x). Then (8) and (9)
imply

(A,out|F,(x)|B,in)=0. (12)

This together with (1) gives
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(A4,out| F,(x,)|B,in) ., =0 . (13)

(ii) n=2. Now we choose

01(x))=F, (x1), 05(x;)=5,(x;) .

If inserted in (8) we get, using (9) and (10),

1
—E<A | T[Fal(xl)Faz(xZ)] IB)

— (4| T[L; (x)6,(x;)]|B)=0. (14)
a4

Since no antighost field appears in the physical states
| A), | B) we can apply (11) to the second term
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é(A | T[F,,(x1)F,,(x2)]| B)
+i8(x1—x2)8g 4,4 [B)=0. (15)
In turn, (15) immediately implies
(0| T[Fy,(x1)Fq,(x2)]|0) = —i&8(x; —x2)8; 4,  (162)
and
(A,out | T[F,(x;)F,(x,)]| B,in)¢,=0 . (16b)

(iii) The induction proof is finally completed by assum-
ing (2) for n < N—1 (N >2), and proving it for n=N.
Indeed using

0i(x))=F,(x;), i=12,...,N—1,

_ . (17)
< A I T[Lfal(xl )Caz(X2)] ‘B>= +18(x| —X2)801,a2<A lB), ON(xN)=-c-a|(xN)
which leads to together with (8)—(11) we get
]
i(A | T[Faz(xz) et FaN_l(xN_l)] |B)8a1aN8(x1——xN)+ e
1
+1<A I T[F,,l(x, )ee F“N—Z(xN"z)] IB)SaN_laNa(XN_l-—XN)-}-E(A | T[Fal(xl) et FaN(XN)] IB)=0 . (18)

Since (2) is already assumed to be valid for n <N —1, (18) implies

(A,out | T[Fal(x,)' .- FaN(xN)] | B,in)¢n=0,

thereby completing the proof of (2).
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