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Closed-form solutions for the modified potential
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Heretofore, the modified potential had to be described by approximation. Now, closed-form solu-
tions may be developed for the modified potential. Closed-form solutions may now prove the hy-
potheses, which heretofore could only be shown to be plausible, that the quantum-action-variable
quantization is precisely consistent with quantization of wave mechanics and that the Schrodinger
wave function has microstates. An alternate representation of the set of nonlocal hidden variables
for determining quantum continuous motion may be developed in terms of the closed-form solu-
tions. The relationship between this alternate representation for the set of nonlocal hidden variables
and Ermakov"s invariant may now be developed.

The modified potential, which is the keystone for
describing continuous quantum motion, '2 has been deter-
mined heretofore by either numerical computations, i 4

perturbation expansion, or power series. ' The onerous
numerical computations have obscured insight while the
ponderous asymptotic expansions diverge in the classically
"forbidden" region. Consequently, the Bohr-Sommerfeld
quantization of the (effective) action variable for continu-
ous quantum motion for a stationary bound state has been
inferred numerically for only a particular set of potentials,
and a general proof has yet to be offered. The existence
of microstates has only been inferred numerically and by
power-series expansion also for only a particular set of po-
tentials.

Herein, we present closed-form solutions for the modi-
fied potential. These solutions are combinations of prod-
ucts of the pair of solutions to the time-independent
Schrodinger equation. The closed-form solutions render
insight into the foundations of quantum mechanics. With
the closed-form solutions for the modified potential, we
can prove that the action variable quantization for con-
tinuous quantum motion' is consistent with eigenvalue
quantization of the time-independent Schrodinger equa-
tion. These solutions for the modified potential are not
unique, which is a manifestation of hidden variables. We
present an alternate set of hidden variables formed, in
part, from the coefficients of the closed-form solutions.
With the closed-form solutions, we can present a general
proof that the Schrodinger wave function has microstates.
We also present the relationship of these coefficients to
the Ermakov invariant. One dimension suffices for this
exposition.

For stationary states in one dimension, x, the
Hamilton- Jacobi equation for continuous quantum
motion is given by

(am/ax)' + U(x,x,x,E ) E=0, —
2p,

is energy, and )ts is mass. The modified potential, U, is
determined in one dimension, x, by the auxiliary equa-
tion'

rP a'U/a»' 5' a U/ax
Sp E —U 32@ E —U

+

where A is Planck's constant and V is the potential. A
closed-form solution for U and the conjugate momentum
P may be given by

U=E 1/(aP +b—8 +c$8)

8= t) 8'/c)x =(2Is)'~ /(aP +b8 +c$8),
where (() and 8 are the pair of independent solutions to the
time-independent Schrodinger equation, where M($, 8) is
the Wronskian [i.e., M($, 8)=pt)8/tIx —t)(()/t)x8], and
where a, b, and c are coefficients of the products of the
independent solutions of which a and b are positive defin-
ite. The independent solutions (t and 8 are scaled such
that the Wronksian satisfies Mi= 2ls/[A (ab —ci/4)]
where ab pc /4. We shall show later that a pair of in-
dependent solutions to the Schrodinger equation can be
chosen such that the coefficient c may be set to zero.
This closed-form solution for U may be confirmed by
substituting Eq. (2) into Eq. (1) to generate the time-
independent Schrodinger equation.

%'e can now prove that the bound-state action variable
for quantum continuous motion is quantized. For bound
state, the energy, E, is quantized and one solution, arbi-
trarily let it be P,is the eigenfunction that is bound, while
the complimentary solution 8 is unbound. As the vertex
(i.e., turning) points for continuous quantum motion are
at + ao for bound states, the action variable J is given by

J= Pdx'
where W is Hamilton s characteristic function, U is the
modified potential where the dependence upon the entire
set of hidden variables' [x,x,x] is made explicit here, E
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=26 (ab c—/4)' d(8 jQ)/dx
dx

~+b(8/4)'+c(8 jP)
(3)

We shall now change the integration variable in Eq. (3)
from x to (8/P), which renders the intergrand algebraic.
The bound solution, P, for the ¹h eigenfunction has
( N —I ) nodes (((} also has two additional zeros at
x~+ ao, —00, but these zeros are not nodes ). The cor-
responding unbound solution, 8, has N nodes, so that one
solution has an odd number of nodes while the other solu-
tion has an even number of nodes. If we arbitrarily set
the solution with an odd number of nodes to be negative
and the other solution with an even number of nodes to be
positive as x~—ao, then M($, 8) ~ 0. Hence, as
x~ —ao, (8/P)~ —oo, and as x~oo, (8/P)~oo. In
addition, we note that (8/P) has singularities for finite
points at the nodes of P where the hmiting value of (8/P)
depends upon which way the nodal point, x„,of P is ap-
proached. Let ego, then we have that

lim [8(x„—e)/((}(x„—&)]= oo
m~0+

and

lim [8(x„+e) jP(x„+e)]= —~
e~O+

regardless of whether P has an odd or even number of
nodes. Thus the passing of P through one of its nodes be-
tween x„—e and x„+egenerates an additional Riemann
sheet. Between adjacent nodes of p or between a zero and
its adjacent node of p, (8jp) monotonically increases as x
increases because

d(8 jQ) /dx = M($, 8)jP & 0 .

As x monotonically increases through a nodal point
where P(x„)=0, our new integration variable, (8/P), com-
pletes one Riemann sheet at (8/P) = 00 and immediately
begins an additional sheet at (8/P)= —oo. Thus, for the
Nth eigenfunction, changing the integration variable in

Eq. (3) from x to (8/p) generates N Riemann sheets, each
with integration limits at + 00, and poles at

c+(c' —4ab)' '
—2b

c+i [(2p, )
' /A'M]

—2b

We may now evaluate J as

b —c /4)'S=2NX, d(8 j(t )
a+c(8jP)+b(8 jP)'

(3')

where h =2M. Thus J is quantized in accordance with
the order of the eigenfunction. The quantization is in-
dependent of the coefficients a, b, and c, which manifest
a unique microstate' of the Schrodinger wave function as
specified by particular form of the modified potential, Eq.
(2). Equation (3') is general and consequently also speci-
fies the quantization for cases for which closed-form solu-
tions to the Schrodinger equation do not exist. Equation
(3) now proves that the action variable quantization for
different microstates is consistent in general with energy
quantization —a hypothesis that heretofore had been
shown to be plausible for specific cases. We note that the
quantization of the action variable for continuous quan-
tum motion, which is a whole integer quantization of h as
shown by Eq. (3'), differs with the corresponding WKB
half-integer quantization of the action variable, i.e.,
&wits (N —,——)h. —

%e note that our setting the solution with an odd num-
ber of nodes to be negative and the other solution with an
even number of nodes to be positive [so that (8/P)~ —00

as x~—00] was arbitrary and the quantization represent-
ed by Eq. (3') is independent of our convention as long as
we consistently specify M. Also we could have changed
variables to (P/8).

I.et us now show that the coefficient c may be set equal
to zero. We choose an independent set (g, g) of solutions
such that g and g are, respectively, the cosine and sine
forms of the trigometric representation of the ansatz' for
the time-independent Schrodinger wave function. Then
the set (g,g) may be represented as a function of the set of
closed-form solutions ($,8) of the time-independent
Schrodinger equation. We may reduce these functions
whereas

g=(aP +b8 +cg8)'~ cos f (ab c /4)'~ M(—$,8)(ag +b8 +cg8) 'dx'

=(aP +b8 +cg8)' cos arctan
b(8/ )+c/2
(ab —c /4)'

=[a cj(4b)]'i P—

g=(aP +b8 +cg8)' sin f (ab c /4)' M($, 8—)(ag +b8 +cg8) 'dx'

=b' 8+cgj(2b' )=(a((} +b8 +cg8)' sin arctan b(8/+)+c/2
(ob c'/4) '"—
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Thus, the set (g, g) is also another set of independent solu-

tions for the time-independent Schrodinger equation. For
this new set, the conjugate momentum P for continuous
quantum motion and the VAonksian P may be given,
respectively, by

&=(2p)' /(aP +b8 +c$8)
=(2p)' /(g'+g')

and

P (g, g) =(ab c /4)'/ —P ($,8) .

Hence, we may always find another set of independent
solutions in which the coefficient for the cross product of
the new solutions is zero.

If we set /=ad in Eq. (4) where ct is a coefficient, then
Eq. (4) is an identity with a=[a c /(4—b)]'/. Therefore,
the coefficients, a, b, and c only effect the normalization
of the Schrodinger wave function and do not change the
predictions of uantum measurement of an observable
(i.e., fpt0&/ PtP where 0 is the operator for an ob-
servable). Nevertheless, the coefficients determine dif-
ferent modified potentials, U, which induce different con-
tinuous quantum motion in phase space. ' The different
continuous quantum motions for the same energy eigen-
value determine different microstates of the same
Schrodinger wave function. ' Thus, Eq. (4) renders a gen-
eral proof that the Schrodinger wave function does indeed
have microstates and, therefore, is not an exhaustive
description of natural phenomenon.

The set of hidden variables [xo,xo,x'o), which are neces-
sary' and sufficient to specify a unique microstate of the
Schrodinger wave function, also determine the particular
modified potential associated with the unique microstate.
In turn, the particular modified potential determines the
coefficients for a and b [assuming a set of independent
solutions have been chosen where c =0 and where
P(xo)&0 and 8(xo)&0]. Thus we may describe continu-
ous quantum motion with an alternate set of hidden vari-
ables [xo,a, b]. We have by Eq. (2) that the alternate hid-
den variables a and b are given by

1 B8/c]x

y~(y, 8) (Z U)'"

8aU/ax
4(E —U) [x,x,x]=[x,,xo, xo]

3/2

t) A/t]x +(2pli)1 )(E—V)A=1/(fi A ) . (6)

If we substitute A = [2p(E U)] —'/ into Eq. (6), we gen-
erate our auxiliary equation given by Eq. (3) (Ref. 11). So
our auxiliary equation is equivalent to the auxiliary equa-
tion of Ermakov and Lewis. Thus the Ermakov invariant
could be specified with the solutions to the Schrodinger
equation and Eq. (1). Had we substituted
A=P '/ =(BW/t]x) ' into Eq. (6), we would have
generated the alternate Hamilton-Jacobi equation for con-
tinuous quantum motion

(t) W/t)x )
V

fi t]—W'/t]x '

2p 4p t) W/t]x

, 2
3))'i t] W/t)x+
8p t) W/t)x

We inay now evaluate I for the closed-form representa-
tion

P=ak+P8,

where a and p are coefficients that satisfy the boundary
conditions imposed upon the Schrodinger equation, and

P —I/2 (&y2+b82+cy8)1/2/(2 )i/4

After some more tedious but again straightforward alge-
bra, Eq. (5) may be evaluated to render

We note that for c=0, then M($, 8)a:(ab) ' . Had we
arbitrarily chosen to double both P and 8, then in com-
pensation both a and b would be quartered in accordance
with the above equations.

We note that the coefficients, a, b, and c may be related
to the Ermakov invariant, which is an exact invariant that
had been developed to tackle the time-dependent one-
dimensional classical harmonic oscillator. ' In this dis-
cussion, we generalize for c&0. For systems obeying the
Schrodinger equation, the Ermakov invariant is given by

I=[(f/A) +R (QdA/dx —At]Q/t)x) ]/(2p)'/

where A satisfies the auxiliary equation of Ermakov and
Lewis'

1 /AU/Bx
4(E—U)'"

aP +ba caP—
ab —c /4

t)P /t]x
(E U) [x,x,x]=[x—,,x, ,x, ]

1/2
Thus, the Ermakov invariant may be expressed in terms
of the alternate set of hidden variables.
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