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Instanton —anti-instanton contribution to the vacuum energy is used to analyze the stability of the

vacuum in massless supersymmetric @CD. It is pointed out that if this contribution is not canceled

out by other nonperturbative effects the vacuum energy has a stable minimum, which fixes the vacu-

um expectation value of the scalar fields. This vacuum energy, though, signals an explicit breaking
of supersymmetry in the Higgs phase of the model.

Supersymmetry breaking has been studied extensively
in the past few years. ' Whereas perturbative effects
cannot induce such a breaking due to the nonrenormaliza-
tion theorem, it may happen that nonperturbative effects
can induce it. To that end the role of instantons in super-
symmetric theories has been studied. However, because of
the fermionic zero modes of the Dirac operator in a topo-
logically nontrivial background, instantons cannot induce
supersymmetry breaking. Indeed, correlation functions
which were calculated in a background of instantons do
not show signs of supersymmetry breaking. '

An attempt to study the nonperturbative contribution
of topologically trivial configurations, such as an
instanton —anti-instanton, in supersymmetric QCD
(SQCD) was made. The contribution of an instanton to
the F term in a superpotential, or equivalently the contri-
bution of an instanton —anti-instanton to the potential,
was claimed to have been found. This superpotential,
though, turns out to be zero in the massive theory because
an infinite action configuration was used to induce the
tunneling. (The divergence is due to the infinite contribu-
tion of the mass term of the classically nontrivial scalar
fields. ) A finite action configuration, defined by zero
classical scalar fields in a background of instantons, does
not help either as it does not generate a superpotential.
This was pointed out recently. In the massless theory, on
the other hand, the superpotential of Ref. 2 does not
reproduce correctly the anomalous commutation relation
for composite operators, as was pointed out in Ref. 7(a).
Thus, one cannot rely on the claims that supersymmetry
is not broken in SQCD with a vacuum at infinite expecta-
tion value of the scalar fields in the massless theory (or fi-
nite expectation value in the massive one). ' '

A direct analysis of the instanton —anti-instanton con-
tribution to the path integral in supersymmetric Yang-
Mills (SYM) theory and in SQCD was then carried
out. ' Et turns out that a negative vacuum energy is in-
duced, which signals an explicit breaking of supersym-
metry if it is not canceled out by other nonperturbative ef-
fects. However, it is only in massless SQCD that there is
an infrared-finite contribution induced by instanton-
anti-instanton and nonzero classical scalar fields. In SYM
theory and in massive SQCD the scalar fields are neces-
sarily zero in a background of an instanton —anti-
instanton, thus making the contribution to the vacuum

energy infrared divergent. (Such an infrared-divergent
contribution can be found also in the massless theory. ) As
a result, only when the infrared divergence is properly un-

derstood can the pure instanton —anti-instanton contribu-
tion (with zero scalar fields) to the vacuum energy be
unambiguously determined.

We concentrate in this paper on the infrared-finite non-
perturbative contribution to the vacuum energy in mass-
less SQCD. In particular we point out that if this contri-
bution is not canceled out by other nonperturbative ef-
fects, a stable minimum in the vacuum energy can be
found, which fixes the vacuum expectation value of the
scalar fields. The theory can then be defined around this
vacuum even though not supersymmetrically. Further-
more, the gauge symmetry-breaking scale in the Higgs
phase of this model is tied to the fact that supersymmetry
is explicitly broken by this contribution. The other
infrared-divergent contribution may not be relevant to the
analysis of supersymmetry breaking nor to the Higgs
phase of the model. (The scalar fields have zero vacuum
expectation value. )

We start by defining the model. It is an SU(2) gauge
theory with one matter and one antimatter supermultiplet
transforming under the fundamental representation of the
gauge group. The Lagrangian is defined by

WsvM = —
4 F&vF +X t'D&X ~V

with

(la)

A„' are the vector potentials and iF are %eyl spinors.
They are expressed in the %'ey1 basis with Dirac matrices
being

0 X„
y„= —,2„=X"= ( I,cr; )X„O

and Tr(X„X„)=2g„„with the Minkowskian metric

~=~SYM+ ~matter r

where ZsvM is the super-Yang-Mills Lagrangian given in
the Wess-Zumino gauge by
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g„„=diag(1,—1,—1, —1). W,«„ is the tnatter-field La-
grangian

~ .«-= (~1 It i)'~ "0i+(~i:42)'~"'It2

+it i&~i &"iti+itIZ&~i:&"42

+ (4 i&~'4i+NZ&II '42}
2

(fir ({)i—pzv (1}2) +H.c.
32

(lb)

Here Ig;,P; I (i =1,2) form the matter supermultiplets,

&&——B„l+igA„'H/2, and r /2 are the SU(2) generators
in the fundamental representation.

The vacuum of this model is given by'

(ii) The vacuum is topologically nontrivial; then the sca-
lar fields are characterized by the same index as the gauge
potentials (Pontryagin index), and tunneling is induced

by instantons (anti-instantons) accompanied by

(x —xi }„7„
0' lI 4'2l

(x x2)~rq-
~1I ~2I

[( )2+ J1/22

where ~„=T„=(I,i r; ) and.
U is a constant two-vector.

The action in both cases is finite:

(3b)

8 2

+4~2~ 2p2 (4)
g (p)

The second tenn in Eq. (4) is the contribution of the topo-
logically nontrivial scalar fields in case (ii) whereas it is
zero in case (i).

This analysis is valid for the massless theory only. If a
mass term is added to the Lagrangian, the topologically
nontrivial configuration has an infinite action due to the
divergence of the mass term Therefore, . only the topolog-

where n is the Pontryagin index. Tunneling between va-
cua differing by one unit of topological charge is mediated
by instantons (anti-instantons), which are finite action
configurations in Euclidean space-time:

g,„„(x—xi)„
A

2 2g (x —xi) +pi

g,~„(x —x2)„
Ap' ———

2 2g (x —x2) +P2

Here 21,&~TI,&„are 't Hooft symbols; xi,x2 and pi, p2 are
the location and size of the instanton and the anti-
instanton, respectively.

As to the scalar fields there are two possible configura-
tions which can induce the tunneling, depending on the
topology of the vacuum in (scalar) field space.

(i) The vacuum is topologically trivial; then the tunnel-

ing is induced by instantons (anti-instantons) and

(3a)

ically trivial configuration of case (i) can induce the tun-
neling (in a background of an instanton —anti-instanton).

As was mentioned above instantons do not contribute to
the path integral when there are massless fermions due to
the fermionic zero modes of the Dirac operator in a topo-
logically nontrivial background. Therefore, in the super-
symmetric model (which contains massless fermions) vac-
uum energy stays at zero and supersymmetry is not bro-
ken by instantons (or any other topologically nontrivial
configurations}. For nonperturbative but topologically
trivial configurations, such as the instanton —anti-
instanton, there are no fermionic zero modes, " and a
nonzero contribution to the path integral is possible.
Indeed, it was shown in previous publications ' that
these contributions are not zero and the induced vacuum
energy is negative. However, it is infrared divergent in
case (i) above and in SYM theory because the integrations
over p&,p2 do not converge, thereby introducing an in-
frared cutoff p, . In case (ii) on the other hand, the contri-
bution of the scalar fields to the classical action intro-
duces a Gaussian factor which makes the integration over

pi,p2 finite. To avoid the problems resulting from the
infrared-divergent contribution of case (i) we concentrate
here on case (ii) which is valid for the massless theory
only.

The density vacuum of the energy as given in Ref. 10 is
bounded by '6 ' '6

E(g) 3 1 8m A 4

4480m (x+1} g (U)

which is the contribution of a widely separated
instanton —anti-instanton configuration, represented by an
instanton in half of the space and an anti-instanton in the
other half [Eq. (7) in Ref. 10J. Here A is the
renormalization-group-invariant scale:

A =p exp5 5 87r'

g'(p )

with p being the renormalization point and ~ is a measure
of the minimal distance, b,o, between the instanton and the
anti-instanton where the approximation is valid;
b,o

——z(pi +p2 ). To get this bound the integrations were
done to the leading order in g using the largest value of
the interaction action between the instanton and the anti-
instanton (within the range of validity of the approx-
imation). Thus ~ has effectively the value
(a+ I) =8+/g (v).

However, to get a better estimate of the contribution to
the vacuum energy it is important to notice that the aver-
age of the interaction action in group space is zero, so one
can take a' to be the point where the instanton —anti-
instanton interaction action introduces a hard-core repul-
sive potential. This was estimated in Ref. 12 to be
a.=3.37. %'ith this we can replace the inequality in Eq.
(5) by an approxiinate equality, and we find that the con-
tribution of far separated instanton —anti-instanton to the
vacuum energy has a stable minimum given by

U~;„=eA,

where the renormalization-group equation
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g'(v) g'(p)
is used to get U;„. The mimmal contribution to the den-
sity of the vacuum energy is then

r ~

E(8)= —
s q

— A
3 1 5 4, (9)

448Op (~+ 1) e

This contribution, though, makes sense only if it is
within the range of the vahdity of the approximation.
Here we have two kinds of higher-order corrections: (i)
perturbative corrections resulting from the Feynman dia-
grams in a background of an instanton —anti-instanton;
(ii) higher-order corrections in b, , where b is the dis-
tance between the instanton and the anti-instanton. These
were proven to be equivalent to higher-order corrections
in the coupling constant when the interaction between the
instanton and the anti-instanton is properly included.

For both corrections the effective expansion parameter
is g /16ir, so the approximation is valid provided

g /16m & 1. Indeed, the minimum of the induced vacu-
um energy is within this range:

2
g (v;„) =—g1

16m

We can thus conclude that if the contribution of an
instanton —anti-instanton to the vacuum energy is not can-
celed out by other nonperturbative effects, the induced
vacuum energy has a stable minimum (within the range of
validity of the approximation), which fixes the scale of
gauge symmetry breaking. This scale turns out to be
v;„=eA for SQCD with gauge group SU(2).

If this picture turns out to be valid, the minimum can
be used to define the theory even though not supersymme-
trically. This minimum links the Higgs phase of the
model to the breaking of supersymmetry whose scale,

Am =cA (c=lO ), is much less than the scale of masses
generated by breaking the gauge symmetry,
u;„=eA g~hm. Furthermore a gauge hierarchy protect-
ed by supersymmetry is expected not to be violated by
such a supersymmetry-breaking mechanism. This makes
supersymmetry an approximate symmetry, and it opens
the way for the study of phenomenological models based
upon global supersymmetry.

We would like to comment now about the validity of
such a picture. Other known nonperturbative effects
which could contribute to the vacuum energy are the to-
rons. However, a detailed analysis of such contributions
in SYM theory shows' that, even though there is a
nonzero contribution to the path integral, it does not shift
the vacuum energy, simply because the torons contribu-
tion to the path integral is not proportional to space-time
volume (unlike the contribution of instantons). Therefore,
they cannot induce supersymmetry breaking. %hether
such contributions exist in a theory such as SQCD is not
known, but even if they do exist they are unable to contri-
bute to the vacuum energy, and they certainly cannot can-
cel the contribution of the instanton —anti-instanton.
Thus, unless some other nonperturbative effects in Yang-
Mills theory are found, the instanton —anti-instanton con-
tribution to the vacuum energy in SQCD cannot be can-
celed out.

Finally, one could use the same analysis for the
infrared-divergent contribution found in SYM theory,
massive SQCD, and in case (i) above, when a cutoff p, is
introduced. The minimum of the induced vacuum energy
will fix the value of the cutoff. However, since there is an
arbitrariness in the way such a cutoff is introduced, the
result is not very meaningful. Therefore, we will not
elaborate on this point anymore.
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