
PHYSICAL REVIE%' D VOLUME 34, NUMBER 10 15 NOVEMBER 1986
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Vortex solutions for a spontaneously broken SU{X}theory are explicitly constructed. X Higgs
fields in the adjoint representation are needed in order to ensure topological stability. (X—1}topo-
logically different solutions exist with magnetic flux 4 quantized according to the relation

@={2m /e)n /V N with n =1,2, . . . , N —1. When a Chem-Simous term is added, the model exhib-

its electrically charged vortex solutions. A novel feature of these solutions is that their electric
charge q is quantized in units of the fundamental charge e, q =mne/v 2N, with m CZ. In addi-

tion, their angular momentum J is nonzero and also quantized, J =nm /2X.

I. INTRODUCTION AND RESULTS

Gauge theories exhibit a rich spectrum of stable regular
classical solutions. Vortices, monopoles, and instantons'
are elegant topological objects having relevant physical
implications in quantum field theory and cosmology.

Vortices and monopoles arise in spontaneously broken

gauge theories in two and three space dimensions. For
both kinds of static solutions, the magnetic flux is quan-
tized due to its topological properties. Monopoles admit
an electrically charged generalization with fimte energy:
the dyon. Its charge is classically continuous and only
becomes quantized at the quantum level. 3

Vortices, both in Abelian and non-Abelian Higgs
models5 do not admit finite-energy electrically charged
generalizations. ~ s

The addition of a Chem-Simons (CS) term9 " radically
changes this situation. In the presence of the CS term
vortices acquire electric charge keeping a finite energy
both in Abelian' and non-Abelian' gauge theories. %e
presented in Ref. 13 a charged vortex solution in SU(2)
gauge theory with two Higgs field which spontaneously
broke the symmetry down to Zz. The topological charac-
ter of the CS term leads to the quantization of the vortex
electric charge already at the classical level. As a conse-
quence the angular momentum takes also discrete values
(compare this result with that arising in three space di-
mensions: the addition of a 8 term (Pontryagin density)
does not change the classical dyon charge but, at the
quantum level, renders it noninteger. ' '

In the present article we construct vortex solutions for a
SU(N) gauge theory with Higgs fields. We analyze both
cases: %ith and without the CS term. This leads to elec-
trically uncharged and charged vortices, respectively.

Our analysis shows that N Higgs fields in the adjoint
representation of SU(N) are needed in order to produce
topologically stable vortices. There are (N —1) different
solutions corresponding to (N —1) nontrivial homotopy
classes. This should be compared with the Abelian case
where only one Higgs is necessary and where one finds an
arbitrary number of topologically stable vortices.

The Lagrangian we choose reads in (2+ 1) dimensions

X —1

,' TrFq—„F""+Trg Dq4
"D"4"+TrDqfD&g

V(e,y)+&e.~Tr(F t'A& —-', A At'A&),

where

A ~t', Tr(t't

Dp=&q+e[Aq, ], Fq„——BqA„—BQq+[Aq, A„],
and

4"=F"(p)Q„'(y)(E„+E )Q„(q&),

A ="'P'M, A =0,
e

M =diag[1/N, 1/N, . . . , 1/N, (1 N)/N] . —

(1.3)

(1.5)

In addition, when a CS term is added, one necessarily has
a nonzero Ao field which we take

Ao ———ao(p)M .n

e

e mp=, mEZ .
4w

'

In order to have stable vortex solutions we find that the
vacuum must have special properties: the p field has to
be in the Cartan algebra while
(A =1,2, . . . , N —1) in orthogonal directions (E 's) to
the Cartan algebra for the vacuum state.

Let us briefly describe the vortex solutions we construct
in this work. They bear a Zz topological charge which is
connected to the (singular) gauge transformation Q (p),

Q„(@+2ir)=e''"/ Q„(y). (1.2)

(The roots of unity, [e '"/; n =0, 1, . . . ,N —I], pro-
vide a representation of the Abelian group ZN. ) Asymp-
totically the vortex fields coincide with the gauge
transformation of the vacuum under Q„(g}[Eq. (2.8)].
The field P remains in its (constant) vacuum value in all
space while 4 and A„read
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4= n4o

with

2m 1

vX
When the CS term is present in the Lagrangian, the vor-
tex also bears an electric charge which turns out to be

uantlzed:

Q = —mnQo (1.10)

This ansatz separates the variables in the equations of
motion. The radial functions a(p), ao(p), and F"(p) obey
the system of coupled ordinary differential equations
given in Sec. II [Eqs. (2.52)—(2.54)].

An electromagnetic tensor can be introduced in order to
characterize the vortices:

Tr[MF„,]pv (1.7)
Tr[M ]

Then, the fiux associated to the magnetic field &,2 reads
for the n-vortex solution in SU(N):

8nS~S+iu
2

co(U~ ), (2.2)

where ru( U ) is the winding number of the gauge
transformation,

co(U )= J d'x e ~"
24m

&&Tr(U '8 U U 'BIJOU U 'B&U )

co(U~)=m, mEZ (2.4)

which characterizes the homotopy equivalence class to
which U belongs. Only for homotopically trivial Uo
does co(UO) vanish. Then, the requirement that the phase
exponent of the action be gauge invariant enforces a
quantization condition on the parameters p and e (Ref.
10):

(2.3)

Equation (2.3) can be converted to a surface integral
which is not zero but takes an integer value m:

with Qo e/v'2——N and m EZ defined by the quantization
of the CS coefficient, Eq. (1.2). In addition, the vortex
has a nonzero angular momentum

4m@
2

B. Vortices in SU(X)

(2.5)

J=-
2S

The quantization of the angular momentum in units of
1/2N is characteristic of Ziv-symmetric field theories. '

Concerning the charge quantization, being of topological
origin, one should expect it remains valid at the quantum
level.

The paper is organized as follows. In Sec. II we discuss
the topological aspects involved in the construction of
SU(N) vortices (Sec. IIA and IIB) and give an explicit
example for the SU(3) case (Sec. II C). In Sec. III we dis-
cuss the principal features of the vortex solution both in
the neutral and charged cases.

In particular, we prove Eqs. (1.8)—(1.11) for the flux,
charge, and angular momentum of the vortex solution.
For large N it follows the SU(N) vortices asymptotically
become the U(l) Abelian vortices.

Finally, we discuss in an appendix the symmetry-
breaking pattern far the SU (3) case.

II. TOPOLOGICAL ASPECTS

A. The Chem-Simons term

The Chem-Simons term Pcs added to the Higgs La-
grangian,

(2.1)

violates both parity and time-inversion invariance but not
charge-conjugation in variance. Although it leads to
gauge-covariant equations of motion, it is not itself gauge
invariant; rather, it changes by total derivatives under a
gauge transformation. It then follows that the response of
the action S to a gauge transformation U (x) is

Vortex configurations exist whenever the gauge symme-
try is spontaneously broken via Higgs fields, leaving the
vacuum invariant under a subgroup H of the gauge group
G. Then, in order to have topologically stable static solu-
tions in two space dimensions, the relevant homotopy
group ll, (G/H) must be nontrivial.

Let us consider G =SU( N) and the Higgs fields in the
adjoint representation. It is convenient to have maximum
symmetry breaking so that the vacuum is invariant only
under the unit matrix in the adjoint representation. Since
the matrices of the center of SU(N),

I, e2 k/XEz,ye S (2.6)

with Iz the X&&X unit matrix are mapped onto the unit
matrix in the adjoint representation, IIi(G/H)
=Ili(SU(N)/Ziv) =Ziv and one has (N —1) topologically
nontrivial classes besides the ordinary vacuum (trivial
class). One can obtain a representative of each of these
classes by a nontrivial gauge rotation A„ESU(N),
n =1,2, . . . , X —1, of the trivial vacuum.

Since we are working in two space dimensions, infinity
is characterized by an angle q& (the direction in which one
goes to infinity) so that 0„is a mapping of the farm0„=Q„(y).This mapping must be in one of the homoto-
py classes referred to above and satisfies, when one makes
a turn around a closed contour,

Q„(2')=e '" Q„(0), n =1,2, . . . , N —1 . (2.7)

Condition (2.7) can be realized for an Abelian subgroup of
gauge rotations:

0„() =di g[e'"~,e'"~, . . . , e'"~

e i ( i —I/N)ny]—
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the last element being adjusted so that detQ„(g)= 1 for all
qr. With this choice, the ansatz for the gauge-field config-
uration corresponding to a vortex may be chosen to be in
the Cartan algebra of SU(N):

(2.9)

where t, are the SU(N) generators normalized as in (1.2)
and M is given by:

(2.10)

theory in order to have vortex solutions. The scalar fields
are obviously constant for an ordinary vacuum and they
will be taken either in the Cartan algebra or in the orthog-
onal direction to it (defined by the E generators). The
potential V will be then chosen so that the vacuum results
in this way. We call f',f, . . . , |(t the Higgs fields in the
Cartan algebra and N', 4, . . . , 4 those in the E direc-
tions.

The q dependence of the fields for the vortex configu-
ration follows from the action of the gauge transforma-
tion Q„(p)on the ordinary vacuum (concerning the Ao
component, see below). In addition, we take P to be con-
stant everywhere, thus leading to the ansatz

Let us call H;, (N —1) diagonal matrices spanning the
Cartan subalgebra of SU(N) and E+a the remaining gen-
erators of the standard Cartan-Weyl basis for the SU(N)
generators, satisfying

4"=Q„'(p)F"(p)Q„(y), A = 1,2, . . . ,8,
(2.19)

[H;,E+a j=+atE+a,
N —1

[E,E ]= g a;Ht,
(2. 1 1)

A~= —a(p)M, A =0.
The Ao potential will be chosen parallel to A„in internal
space:

N —1

M= gm'H;, (2.12)

where o.; are the roots and we choose an orthonormal
basis so that o.'=o.;.

We can then write M in the form

Ao= —ao(p)M .
e

Concerning F"(p),

F"(p)= gF"(p)E,

(2.20)

(2.21)

X —1

m a= g m'a;eZ, (2.13)

where we have written a=(a'), m=(m').
Now, sirlcc f1111tc act1011 r'cquircs tl1at

where m; are related to the "magnetic" weights intro-
duced in Ref. 17. One can easily prove from (2.10) and
(2.11) that they verify the condition

it must take the vacuum value at infinity

F"( oo ) =r), A = 1,2, . . . ,8 . (2.22)

D~4"=8~4"+ina (p) [M,4"]
but since

(2.23)

Ansatz (2.19) yields to a covariant derivative for 4" of
the form

F„~Ofor phoo (2.14)

A„must be a pure gauge at infinity. Moreover, the Higgs
fields P have to take there their vacuum value and also

D&Q=B&P+ie[A&,gj +0 for p~— oo . (2.15)

This condition can be achieved in two ways. Either P
does not depend on y at infinity (and commutes with A~)

n [M,4"]=i 8+4"

one then has

D 4"=[1—a(p)]B 4",
Do@"= —ao(p)~, @"

and hence, the finite energy condition leads to

a( oo ) = 1, ao( oo ) =0 .

(2.25)

(2.26)

(2.27)
X —1

P=P~ g C~H) for phoo (2.16)

P =@~Q„'(qr)FoQ„(g)for p~ oo

with

(2.17)

so that each term in the covariant derivative vanishes or

Fpv P &vaPF +Jv
P 2 aP (2.28)

Let us now discuss the main problem in the search of vor-
tex solutions, namely the separability of the equations of
motion under the ansatz (2.19) and (2.20).

The equation of motion for A„reads

(2 lg) where the current J"is given by

and it is the sum of both terms in D~ [Eq.. (2.15)] that
cancels. It is this last possibility which is topologically
nontrivial.

Let us then describe the vacuum structure in the SU(X)

R
J„=ieg [D„4",4"] . (2.29)

(Because of our ansatz, g-type fields do not contribute toJ„.)
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Concerning the scalar fields, their equations of motion
Iead

where F. is the step generator associated to the az root

and f (p) is a scalar function, gives for (2.38a):

(2.30)

Let us first analyze Eq. (2.29). Inserting the ansatz for

A& one gets

'2

+ao' [M,[M,4"]]= „.(2.31)
5@3

For simplicity, we shall consider potentials such that

(2.32)

C„"=n(m-a~)

or, according to (2.13)

C„=(k„")n, k„"CZ.

Concerning condition (2.38b), it becomes

R A( )2—2 g k„" az ——nB„(p)m

and hence, using Eq. (2.41),

N —i (k~}2
B (p)= — g f"(p)

(2.40)

(2.41)

(2.42)

(2.43)

[An explicit example for SU(3) is presented in Sec. II C.]
Then, separability requires that

nz[M, [M,4"]]=—,=C„"(p)4".
Bg

(2.33)

d dF"
dp 'dp +ao —n„- On

5V
5@A

(2.34)

As we shall see, this puts constraints on the choice of F".
The equations of motion reduce to

2

A[ 1 —a—C„(p)
p

The number of 4-type scalars that one has to add depends
on the choice of the magnetic weights m, that is, on the
topological properties of the vortex. For an Q„(q)given

by Eq. (2.8) and an M expressed as in (2.10), with the last
diagonal element adjusted so that det0„=1and trM =0,
one can see that (N —1) 4-type fields and one 0-type
field are sufficient in order to have a topologically non-
trivial configuration satisfying constraints (2.38) and
hence leading to separable equations of motion. Then, the
explicit ansatz for a SU(N) vortex configuration with to-
pological charge n is, according to the above discussion,

4"(p)= P 0„'(q)(E„)Q„(q),
Concerning the gauge-field equation, after use of the an-

satz, one gets for A ~,

p — M= —e [1—a(p)] g [4",[4",M]]
tgp p 8p A=1

X —1

Q= g CqHJ, A~= —a(p)M,
~

1
8

Pl

Ao ———ap(p)M, Ap ——0 .
e

(2.44)

(2.35)

We then see that separability now imposes the condition

g [4",[4",M]]=MB„(p).
3=1

(2.36)

Concerning the Ao potential, the equation of motion it
obeys can be written as

%'orking in an orthogonal basis, the "last" Cartan genera-
tor can be chosen as

H~ i
—— diag(1, 1, . . . , 1,N —1) (2.45)

l

&2X (N —1)

and hence the magnetic weight has just one component:

m =&(2/X)(N —1)(0,0, . . . , 0, 1) .

Then, choosing the step generators in the form

1 d dao 2 ~ da
p +e B„(p)ao—— (p) .

pdp dp p 4p
(2.37) (2.47)

In summary, separability of the equations of motion into
radial and angular parts imposes the two conditions

the integers k„canbe explicitly seen to be independent of
A since

n [M, [M,4"]]=C„"(p}4",A =1,2, . . . ,R,

g [4",[4",M] ]=MB„(p)
3=1

(2.38a)

(2.38b)

k„"=&2(1—I /X)as

1/2

2(X —1)

(2.48)

(2.49)

thus constraining the possible choices of F"(p) defined by
(2.19). It is easy to see that the choice

F"(p) = (E „+E ),fA(p)
(2.39)

From this last result we get for C„and8„:
(2.50)
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1 d df"
pdp 'dp

2

f~+,2~ 2f~

C„=n
N —1

D —g g fA(p)2
X—1

„

The equations of motion take then the form

(2.51) E,+F. = A4,
1

E~ +E 1

F~ +E 1

Roots az are

(2.61)

= Uq (p)f", (2.52)
CE A2' 2

' ' 2' 2
d 1 di e d~o

p — +—2D[n —A(p)]=pp-
"p p ~p p dp

1 d d~o 2 u, di
p +e DAO ——

dp

(2.53)

(2.S4)

a3 ——(1,0) .

The integers k„arethen

k) ——k2 ——1

(2.62)

(2.63)

A (p) —=na (p), Ao(p)= nao(p—)

and defined U„(p}through the relation

(2.55)

where we have rescaled the gauge field radial functions in

the form

(2.64)

in accord with (2.50). The 4-type scalars take the form

V{j
2

V{j
f vA —Qz(f') Qz (0') ~ll g~g N

this being always possible due to the choice (2.31).

C. An SU(3) example

(2.S6)
Concerning the f field, it can be written as

Q=BA,3+Cps

with 8 and C two independent constants.
The vortex equations read

(2.65)

In order to illustrate the discussion above in an explicit
and simple example we describe in this subsection the
construction of the SU(3) vortex [for the SU(2) case see
Ref. 13]. For 6 =SU(3), two topologically nontrivial
classes are possible. The associated Q„(p)are

1 d df"
p dp dp

'2
n —A(p) 2( ) fA

= vz(p)f"(p), A =1,2,

Q)(y) =
ei y/3

i g/3 0
—2i y/3e

(2.57)

p — ——[(f') +(f') ](n —&)=pp
~p p rIp 2 ~p

1 d ~~0 e1 doe[(f /)2(f p)z]/~A
p dp dp 2 p dp

(2.66)

One then has

1 0
1M= —0 1

0 0
0

—2.
(2.58)

In order to go further we have now to make explicit the
choice of the potential V. Let us consider the following
form for V:

V= —[(4,'4,' —A, 2} +(4,4, —A ) ]

An explicit realization of the Cartan algebra is

A3 Ag
H) ——,H2 ———2' 2

(2.59)

+c i4b. ~"i@if'+v2~.r ~'2C'zf'

++(@+@+}2+ (yaga g 2}2 (2.67)

where A, 3 and A, 8 are the usual diagonal Gell-Mann ma-
trices. One then gets for the two-component magnetic
weight

where we have written

I= 0,
2

3
(2.60)

Concerning the step generators E, they can be combined
in the form

and d,b, for the SU(3) completely symmetric tensors.
One can see that our choice of the same coupling constant
I, in the two first terms of the right-hand side of (2.67)
implies that
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fi(p) =f2(p) =f(p) (2.68)

4&i( ao ) = 0„'(p)A40„(y),
6

42( oo ) = 0„'(P)A,6Q„(92)
6

with

rl=f(m) .

Now, the condition that at infinity

5V 5V 5V
5e' 5+2

(2.69)

(2.70)

(2.71)

thus making (2.66b) and (2.66c) identical to the Abelian
case equations of motion. In the vacuum, the 4 fields
take then the form

'2

p — f=—(f —rl )f (3.1b)
p dp dp p 6

with rj given by (2.72). [Note that the two scalars 4' and
satisfy the same equation, (3.1b).]

These equations exactly coincide with those correspond-
ing to the Abelian vortex solution. ' ' Qualitatively one has
then the following behavior: the magnetic field~-( I/p)(dA /dp) decreases monotonically from its
value at the origin to zero at infinity with characteristic
length (erl) ' while the scalars 4' and 42 increase with
characteristic length (A,rl /3) '~ from zero at the origin
to its vacuum value q at infinity. As it is well known vor-
tices exist provided a Ginsburg-I. andau-type parameter I,
which in field theory is related to the scalar- and vector-
meson masses

determines 21„8,and C in terms of the potential parame-
ters

~ scalarx—
~ vector

(3.2)

2Vi}M2(~ i' —~2')+p i'~2' —{u2'~ i'

P& —P28=, C= A,
3X ~i' ~2—' v 3 ~i' —~2'
2 Pl —P2 2 P l+P2

and imposes the constraint

(2.72)

(2.73)
~ scalar

3
~ vector =&% (3.3)

and hence the type-II superconductivity conditions read

satisfies the condition X p 1 which corresponds to type-II
superconductivity. In the present case

1

3A, A, (Ai —A2 )

) 1
38

(3 4)

X [Pi(Pi —282)A2 —P2(P2 —2Pi)A, ]

2+ 2—
& 2) Pi +Pe P&P2-

(p 2 ~ 2)2
(2.74)

III. PROPERTIES OF THE VORTEX SOLUTIONS

Moreover, the condition that (2.65) and (2.69) correspond
to a minimum of V, that is, the condition that V,b de-
fined through

V,b —— 5V
(2.75)

5X5X' „.,„„.'

with 7=4', 4, or P, is a positive-definite matrix implies
certain inequalities to be satisfied by the potential parame-
ters. We show in an appendix that the condition of posi-
tive definiteness of ( V,s } is satisfied in a certain domain
of the space of parameters for the SU(3) case. No diffi-
culty should appear in extending this analysis to the
SU(N) model.

.v p„———,Tr( A.sF„„).

With this definition the magnetic field reads

8 = —,Tr(ksFe~ ) = 1 A'(p)
3 p

(3.5)

(3.6)

One can now compute the magnetic fiux 4 which gives

@=neo, n =1,2,
where 40 is the quantum of the vortex flux:

(3.7}

(3.8)

As explained in Ref. 18, an exact solution can be found in
the limiting case A, =3e . All the properties discussed
there are then shared by the Z3 vortex presented here.
Namely, static vortices do not interact with each other
and their energy simply adds. In order to obtain an ap-
propriate magnetic flux, we start by defining an "elec-
tromagnetic" tensor P„„from F„„.Being last in the M
(or ks) direction, it is natural to write

A. The neutral vortex solution

Let us first consider the Lagrangian (1.1) with no CS
term (p =0) in order to study neutral vortices. We just set
Ao ——0 for the SU(3) ansatz (thus corresponding to a pure-
ly magnetic vortex configuration); the equations of
motion, according to (2.66) and (2.67) read

p — +eF (n —A)=0,d 1'
(3.1a)

dp p dp

When Ao&0, one has, instead of (3.1),

n —A1 d df
pd

—~0' f= (f' n')f— —
6

(3.9a)

d~o
p — +eF (1—A)=pp

dp p dp dp
(3.9b)

B. The SU(3}charged vortices and the SU(N} extension
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pdAO

p Gap Gp
(3.9c) 2~iV

'

while the angular momentum now takes the form

(3.22)

From the definition {3.5) one has for the electric field

E =Ep P——o ,
' —T—r—(A,sF()p) = —~ Ao

Now, Eq. (3.9c) can be written in the form

BP&+a =PB,
where we have defined the charge density rr as

cr = ——,Tr(ksJO) =e F Ao .

(3.10)

(3.1 1)

(3.12)

Since lim& „E&——0 according to the boundary condi-
tions, one then gets from (3.11) a relation between the
charge Q,

Q= fd xa, (3.13)

and the flux

Q =@4
(this relation is characteristic of gauge theories with CS
term; it was first recognized in Ref. 11). Now, due to the
quantization conditions satisfied by p [Eq. (2.5)] and the
form of the magnetic flux 4, which is the same as in the
neutral case [Eqs. (3.7) and (3.8)]. Eq. (3.14) becomes

1J=—nm
2X

(3.23)

A (p) =n +Z+ Ki(m+p)[1+O(e +-)],
e

An angular momentum quantized in units of 1/2% has
been found for particles bearing Z~ symmetry in 1+ 1

space-time. In that case there are no space rotations and
the spin —,(1—I/X) is a "Lorentz spin" associated to hy-
perbolic rotations in two-dimensional space-time. '

It is also interesting to note the resemblences of these
results and those obtained in Ref. 19 for a related model.
Indeed, in their study of the vacuum-polarization effects
of fermions interacting with Abelian gauge in (2+1) di-
mensions, these authors show that a Chem-Simons term is
induced in the effective action when a vortex is taken as a
background and also charge and angular momentum are
induced for the vacuum, satisfying relations similar to
(3.21)—(3.23).

Concerning the behavior of the scalar and gauge fields
corresponding to the SU(3) vortex, one can easily analyze
their asymptotic behavior from Eqs. (3.9). One finds
two possible solutions for large p:

Q=mnQo, m=+1, +2, . . . , n=l, 2 (3.15)
Ao(p) =+nZ+ —K, (m+p)[l+O(e +-)], (3.24)

and hence, as it was shown in Ref. 13 for the SU(2) case
the charge Q is quantized, the smallest charge unit being f(p) =ri[I —F+Ko(m+p)+O(e +- )],

e
0 (3.16) where Z+, F+ are dimensionless constants, m is the scalar

field mass,
[The I/~3 factor is due to the fact the charged scalars
are taken in the adjoint representation of SU(3).] Charge
quantization can be connected with the angular momen-
tum Jof the vortex,

J= I'd' ~jx,T„, (3.17)

1/2

3

while m+ are two distinct vector-meson masses,

(3.25)

where T&„,the energy-momentum tensor is given by

E.Tq„—Tr Fq~F„———g DqC&"D,4" —g„„W
3=1

(3.18)

To —
z [e (n —A—)AOF+AOA'] —.

3elf
(3.19)

For the vortex solution, the only nontrivial contribution to
J comes from

2

m = " +e'g'
1/2

(3.26)

(The fact that in the presence of CS term, the symmetry-
breaking pattern implies two distinct masses for the two
different polarizations of the vector field was first
described in Ref. 20.) The type-II superconductivity con-
dition reads now

Inserting (3.19) in (3.17) and using the equations of
motion one finally finds

' 1/2
me k 3e
4 3

(3.27)

2Q 4m pm A (co) nm

v 3e 3 e' ii' 6
(3.20) for m„„...=m+ and

The generalization of these results to the SU(N) case is
straightforward. Instead of {3.15) and (3.16) one has for
the charge Q

1/2
me A, 3e0~
4m 3

—1 (3.28)

Q= mnQO, m =—+1,+2, . . . , n =1,2, . . . , N —1,
(3.21)

for the m solution. Concerning the energy of the vortex
solution, one easily obtains for the SU(X) case
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X —1 1 2 ldll symmetric states: each elementary state ( n =1) is the an-

tiparticle of the bound state of ( N —1) elementary states .
t

+Ho F + F -. (3.29)
P

From the asymptotic (3.24) it then follows that

X—1 2 eE&- m+ ln

and hence the m solution has lo~er energy. The quali-
tative behavior of the magnetic and the Higgs fields is
similar to that described in Sec. III A for the neutral case.
Concerning the electric field, it vanishes at zero and at in-

finity reaching its maximum at some finite p.
Note that for N~ ee one essentially recovers the U(1)

result due to the factor (Ii' —I)/X in T~. Indeed, one

finds any number of stable vortices and the energy of each
one [Eq. (3.29) with X =oo] coincides with the Abelian

expression. Also charge and angular momentum become
continuous in the N = 00 limit, in accord with the results
in Ref. 12.

In the Abelian case, one finds that only the first vortex
solution ( n = 1) is stable for X ~ 1 (see Eq. (3.2)j.
Higher-n configurations split into n vortices with one unit
of flux that repel each other. Only when X =1 stable mul-
tivortices exist." An analogous situation is to be expect-
ed for the SU(N) model except that n is in this case re-
stricted, 1&n &X—1 since an n =N vortex can decay
into the vacuum. This is a characteristic feature of Z~

I

2+ 2 22
A, [2X(8'+C')+A,ri'] — —~ ~ ~0,

3 4
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APPENDIX

In order to have a locally stable vacuum the matrix de-
fined in Eq. (2.75),

$2V

X,5Xb

must be positive at the minimum

(Al)

A.b, 4 =Bing+ CA s= '9

6

(A2)

with ri, 3, C given by Eqs. (2.72) and (2.73). Since
ri & 0, we get from (2.72) the constraint

Ai lst(2@i —pi)
i 2(2w —l 2)

(A3)

The positivity requirements on the characteristic poly-
nomial coefficients of matrix (Al) yields to

(A4)
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2 2

[(4~ ) )ti (iu3 +It'2 0'ii2) tbPi P2 l Y l [rl il 2+2~(PI +P2z z z 4 2 2 2

P& —P2

9( A i' —32')(4l, '—y') —12&(p i'+ pi') —&p i'p2'(&+ y)» .

Conditions (A5)—(A7) trivially hold when A, , A, ~~1, the other parameters being fixed.

(A6)

(A7)
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