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Correlation and screening in finite-temperature SU(2) gauge theory
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%e study the temperature dependence of the correlation length in SU{2) gauge theory around the
deconfinement point, using high-statistics Monte Carlo simulation on large lattices.

Statistical QCD predicts a deconfinement transition, in
which hadronic matter is transformed into a quark-gluon
plasma. ' It has been suggested that the screening of the
color charge is the physical mechanism responsible for
this transition: the presence of many other color charges
in dense matter shields the long-range part of the poten-
tial felt by any given charge and thereby dissolves its
binding.

The aim of this paper is to study the temperature
dependence of the screening phenomenon in SU(2) gauge
theory. The general thermodynamics of this system has
been studied extensively for some years. The question of
screening, however, requires high-statistics simulations on
large lattices; except for some rather qualitative considera-
tions, it has therefore been addressed only quite recent-
ly. In particular we want to see how rapidly the range
of the potential of a static quark decreases beyond the
deconfinement point, and whether its behavior in the tran-
sition region is in accord with the form predicted by
universality considerations.

Our starting point is the connected correlation function
for two Polyakov loops separated by a spatial distance
)x/ =r,

I ( r, T) = (L (0)L (r) ) —(L )

where

L(x)= —,
' tr g U„„, .

I g dUe-""L. (x)L(y) dve-""

We work on a lattice of size N )&X„with isotropic
spacing a; hence T = I/(N, a). To obtain r(r, T), we cal-
culate

(L(x)L(y) &

and then average over all results for
~

x —y ~

=r; for sim-
plicity, we consider only separations parallel to the coordi-
nate axes. The average Polyakov loop (L ) is analogously
defined. To avoid cancellations due to finite lattice size
(spin fiips), however, we first calculate the average L over
a given lattice configuration, then average

~

L
~

over suc-
cessive configurations. Hence (L ) will here always mean
(

~

L
~
); we shall return to this point later on.

A Polyakov loop in a pure gauge theory corresponds to
a static quark (fundamental representation of the gauge
group) in an environment containing only gluons (adjoint
representation). We can therefore not have a direct
screening of the force between the two static quarks in
(L(x)L(y)). At low temperatures, the gluon-gluon in-
teraction contracts the force field between x and y into an
essentially one-dimensional confining fiux tube. With in-
creasing T, the color screening of the gluon-gluon interac-
tion, due to the increased gluon density, weakens this con-
traction; eventually, at T =T„ it leads to a nonconfining
three-dimensional force field. Above T„ it is thus the
Coulomb-type part of the static quark potential which ex-
periences the screening effect of the gauge field environ-
ment. We expect this screening —which corresponds to a
three-dimensional field of effectively massive gluons —to
be very similar to that between the gluons themselves or
to that between dynamical quarks.

The correlation function I (r, T) is expected to decrease
exponentially with (large) r both above and below the
transition point:

r(r T) e rig(T)—
where g(T) is the correlation length. I.et us see how it is
related to the interaction parameters of the static quark
system.

Below T„ in the confinement regime, (L) vanishes,
apart from finite lattice size effects; hence here

links 1inks r(., T) =(L(O)L(.) &-.-"""" (6)

with the VA'1son action

S(U)=
z g (1——,

' TrUUUU),
plaqoettes

where V(r, T) denotes the. potential between the two static
quarks. At T =0, the predicted form for large r is

C
V(r, o) = trr ——,

r '
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with o for the string tension. For the 1/r dependence,
string theory gives' c„„„~=m/12. At small r, the
Coulomb potential also gives a 1/r dependence, and for a
given intermediate r, it may be difficult to decide which
mechanism is more important. For T ~0, the form (7)
becomes modified; in particular, when rT &~1, the lead-

ing string terms are '

feel an effectively unscreened three-dimensional Coulomb
potential.

Thus we expect g(T) to diverge as T~T, from either
above or below. The universality conjecture, which re-
lates the critical behavior in finite-temperature SU(2)
gauge theory to that of the Ising model of the same spa-
tial dimensionality, predicts

V(r, T)= o(0)— T+—0(T ) r+Tln2rT,
g'(T)=A! T —T, ! "(1+8!T —T, ! ), (16)

so that we now have

where we have included a correction to the leading term,
since the range of validity of the latter is not known. The
three-dimensional Ising model yields'

e
—0'( T)r/T

I ( r, T) =N(T) v=0.63, 8=0.5, (17)

where we have defined o( T) as the teinperature-dependent
string tension. In Eq. (9), N(T) denotes the T-dependent
overall normalization. Below T„we thus get

g(T)=T/ (trT) .

As T increases, color screening between the gluons will
decrease cr(T), and as T~T„o(T)~0; hence ((T)
diverges at T, . For small or intermediate r it may be
meaningful to add a Coulombic 1/r term to the string
form (9).

For T y T„ in the deconfinement region, there are no
more string effects, and we expect

I ( T) (L )2(e —v(r, T)/T 1)

with

c(T)
e

T
(12)

Here rD(T) denotes the effective color screening radius as
felt by the static quarks. The 1/r term now is due to the
Coulomb potential; hence in the perturbative high-
temperature regime, c ( T) =a,rf( T), the temperature-
dependent running coupling constant, ' and rn '( T) be-
comes the effective gluon mass. For large r we thus again
obtain the form

for the exponents in Eq. (16}. At T = T„we have, from
Eqs. (10) and (13),

I'(r, T, )=N(T, )/r . (18)

I. Q—

0.9—

0.8—

This form neglects the "anomalous dimension" exponent,
which gives r "+')) instead of r '. However, the three-
dimensional Ising model gives g=0.04, which is in any
case beyond the accuracy of our numerical work.

We have calculated I'( r, T) in a high-statistics
(20000—60000 updates per point) Monte Carlo evaluation
on lattices with X =18, X,=3, 4, and 5, with additional
results for N =16, N, =4, 5, and 6 in the region below
T„' for further details of this evaluation, see Ref. 7. We
have used periodic boundary conditions also in the spatial
directions; this means that (L (0)L (r) ) contains the effect
of the interaction at the separation (N~a r) as well as r,—
so that I (r, T) can be determined only up to
r ,„I=N~a /2.

In Fig. 1 we show the behavior of {L(0)L(r)) as a

—r/ro( T)

I (r, T)=N(T) (13) 07—
- & L & {T/A = 54.54 )

where the correlation length g(T)=rD(T) now measures
the color screening radius. At large T,

N(T) =(L ) a,rf(T)/T (14}

determines the overall normalization.
The. average Polyakov loop (L ) -exp( I' /T) mea-—

sures the free energy F of an isolated static quark, with
the relation

0.6—

O—0.5—

O
Q4

0.2—

&L& {T/AL= 45.58)—

&L & {T/A L= 42.80 )

lim (L (0)L (r) ) = (L )l'~ oo

which we have used in fixing the normalization of Eq.
(11). For T ~ T„{L) &0; for T & T„(L) vanishes.
Below T„ the confining string tension makes F diverge.
Above T„where rD(T) is finite, I' also remains finite and
hence {L)~0. To have Fdivergeat T„as T~T, from
above, rD(T) must diverge there: at T„ the static quarks

Q. I—

l l 1 1 ) 1 l I I

~ & L & {T/AL = 40.20 )

2 4 6 8
f/0

FIG. 1. (L (0)L (r) ) vs r for different temperatures, com-
pared to the corresponding (L ); some typical statistical errors
are indicated. The curves are the fits to the correlation function
I |r,T) as defined in Eq. (20).
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I ( r, T)= (L (0)L (r) ) —
& I (0)L (rmax ) )

=&L(0)L( )) —&!L! )'
which best approximates the thermodynamic limit on a
large but finite lattice.

It is clear from Fig. 1 that the interaction range drops
rapidly as we move out of the transition region. To study
this more quantitatively, we fit our results with the orm

—(N a —r)lg'(T)

1(r T)=N(T) +
(N )

(20)

function of r, calculated for several different temperatures
on the 18 X4 lattice. We include in this figure the corre-
s onding values of (L ), which, as mentioned, were cal-
culated from the configuration average (!L! ) of the a-
solute value of the lattice average L. As r increases,
(L(0)L(r)) is seen to converge to this point, above as
well as below T, T.he physically meaningful (L ) is real-

ly defined by Eq. (15), and in the configuration average o
L (0)L (r), overall flips of the entire system from one con-
figuration to another in fact have no effect. Hence our re-
sult is to be expected, and ii is the quantity

2,0—

(h

l

40
l

60

the second term takes into account the mentioned period-
icity of the lattice in the space directions.

In Figs. 2—4, we show the resulting behavior of the
correlation length as function of the temperature, or
T & T, . To obtain these quantities in units of the lattice
scale AL, we have made use of the SU(2) renormali-
zation-group re1ation

FIG. 3. As Fig. 2, for the 18 g 4 lattice, with

T, /AL ——41.89, from Ref. 7.

3m 4
QAL =exp

11 g

51 6lT 4 gl)
121 11 g2

The errors shown in the figures were obtained by requir-

lo $AL

I QI.

))+it~I~

1

50 60
T/AL

FIG. 2. Correlation length vs temperature, from the 118 3
lattice; the curve is the fit to the universality form (16}, with
T, /AL ——41.40, from Ref. 7.
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FIG. 4. As Fig. 2, for the 18' Q 5 lattice, with
T, /AL ——40.58, from Ref. 7.
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ing fits with a 95% confidence level, as measured by X
values normalized to the number of degrees of freedom.
For the range of couplings involved in our study
(2.1&4/g &2.6), we still expect some deviations from
scaling, and in fact we do note a shift by about one to two
units of AL between the results at different N, . To have
some assurance that the g values we get by fitting Pr, T)
with Eq. (20) indeed reflect its large r behavior, we have
repeated our fits using only r & 3a; this does not lead to a
significant change of the results.

The behavior for T &T, is shown in Fig. 5. Since
a(T) =T/g(T) is nonzero at T =0, the coefficient A in
Eq. (16) must contain a factor T; this follows also from
relations (6) and (7). Since we cover here a fairly large
range of T, we show our results for cr(T) rather than for
g(T). The corresponding universal form then becomes

[o(T)] '=A'
~

T —T,
~

"(1+8
~

T —T,
~

), (22)

N(T)(T/Ai, ) ln(T/AL )
a,g(T)l (nT/ A)l=

2
(2&)

in place of Eq. (16), with A'=A/T.
The universality predictions (16) and (22), with the ex-

ponents v and 8 fixed to their Ising model values, are in-
cluded in the figures; A (A') and 8 were adjusted for best
fits. We conclude that our results are fully compatible
with the universaHty prediction.

At sufficiently high temperature, we expect the normal-
ization of the correlation function to be determined by Eq.
(14), with a,rr( T)—1/( In T) for the temperature-
dependent running coupling constant. When that is the
case, the correlation length should be a reliable measure of
the gluonic color screening radius. In Fig. 6, we show our
results for

0
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0
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X

X
X
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0
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FIG. 6. Temperature dependence of the effective coupling
constant a,ff(T), from 18'x3(x), 18'x4(~), and 18 X5(O)
lattice calculations; some typical statistical errors are indicated.

After a rapid decrease in the transition region, a,rt(T)
seems indeed to converge to the form ( lnT)

We note in Fig. 6 that the results for different N, do
not coincide completely. On one hand this is due to devi-
ations from the scaling limit (21), as was already men-
tioned. On the other hand„(L) still contains an N,
dependent factor due to the self-energy of a point

08—

I

40

FIG. 5. String tension vs temperature, from the 16'&c4,5, 6
and the 18 &4,5 lattices; the curve is the fit to the universality
form (22), with T, l&L =4l.
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FIG. 7. Correlation length vs temperature, in physical units;
from the 18 &(4 lattice.
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charge. ' We find, however, in all three cases they con-
verge toward ( InT)

Finally, we would like to get a feeling for the high-
temperature behavior of the correlation length in physical
units. %e have therefore fixed the critical temperature to
T, =2DO MeV, as suggested by string tension calculations
as well as by phenomenological considerations. In Fig. 7
we show the corresponding g(T), together with the univer-
sality form (16). It is seen that g(T) decreases indeed
quite rapidly: at T/T, = 1.5, it is already less than 0.2 F.
That is in accord also with results for the SU(3) case.
Since at high T the correlation length approaches the
gluonic color screening radius, we believe that this infor-

mation is quite relevant for the screening of interactions
in the quark-gluon plasma. "
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