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U(1) problem on a lattice. II. Strong-coupling expansion
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We calculate the mass difference between the m. and g mesons in 1attice QCD with Wilson fer-
mions using the strong-couphng expansion. %'e obtain the result that the mass difference first ap-
pears at the order of (1/g2%)6 in the ordinary phase where the parity and flavor symmetry are con-
served and that m (m meson mass) ~m„(q meson mass} and lim om„&0. Furthermore, we

point out that the dynamics which makes the g meson heavier than the m meson leads to the spon-

taneous parity and flavor-symmetry breaking ((Piyqr'P)&0) for Mo'~M, 2=4 [or K'&K, t= 4,
where the hopping parameter K = 1/(2Mo)].

I. INTRODUCTION

The U(1) problem is why the ri meson (flavor singlet) is
much heavier than the n. meson (flavor nonsinglet). Re-
cently we have calculated the mass difference between the
singlet and the nonsinglet mesons, using the mesonic ef-

fective potential derived by lattice @CD with the Wilson
fermion in the strong-coupling limit. The present article
is a companion of Ref. 1, hereafter called I. In I no mass
difference was obtained (rn =rrt„) in the ordinary phase
(where the parity and the flavor symmetry are conserved).
The U(1) problem cannot be solved in the strong-coupling
limit. We consider that there are two main reasons for
this result. First, the calculation of the meson mass from
the effective potential was made at the meson tree level in

I. Presumably the effect of the meson loops is important
for the mass difference. Second, the calculation in the
strong-coupling limit is not enough to produce the mass
difference. The high-order terms in strong-coupling ex-
pansion are needed to produce the mass difference.

Since it is very difficult to calculate the effect of the
meson loops on a lattice we do not consider the first point
in this paper. Instead we will calculate the mass differ-
ence at the tree level of the effective potential obtained by
the strong-coupling expansion. An effort is made to make
the present article as self-contained as possible, although
some reliance on I is unavoidable. For an introduction to
the subject containing more references, see I.

The formulation of both strong and 1/1V expansions are
needed to calculate the mass difference since it occurs at
higher order in I/N (Ref. 2). We formulate a method to
calculate the partition function with the source in the
double expansions in Sec. II and give a systematic di-
agrammatic procedure to calculate the effective potential
in Sec. III. In Sec. IV, as an exercise, we calculate the
1/g X correction to the large-N limit and show that the
pseudoscalar meson is the massless particle associated
with the parity violation for one flavor case. In Sec. V we
calculate the mass difference between the m and the q in
the ordinary phase and obtain the main result of this pa-
per. That is

lim mn&0
m —+0

II. FORMULATION OF THE STRONG-COUPLING
EXPANSION

In this section we formulate the strong-coupling expan-
sion for a mesonic effective potential. The 1/g 1V correc-
tion to the effective potential in the large-N limit was cal-
culated by Ichinose and the 1/1V expansion to the effec-
tive potential in the strong-coupling limit was calculated
by the present author. ' Combining two methods we gen-
eralize the strong-coupling expansion to an arbitrary order
of the 1/N expansion.

The partition function with the source J„~is given by

Z(J)= I DQDQD(U„&)exp SF+SG

+g tr(J„Q„Q„)

where

(2.1)

if the P /1V correction is considered. (P= 1/g 1V.) In ad-
dition to the above result it is shown that the "vector"
mesons have no mass difference between singlet and non-
singlet up to all orders in the strong-coupling expansion in
Sec. VI. In Sec. VII we discuss physical implications of
our results. We pointed out that the dynamics, which
makes the g meson heavier than the m meson, leads to the
spontaneous parity- and flavor-symmetry breaking
((stty5r Q)+0) for Mo(M, =4(or E2)K, = —,') where
the hopping parameter is related to the mass parameter
Mo such that E =1/(2Mo).
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SF g——(g„+„-U„,„P„P„+P.U, ,„P „4„~„-)+g itinMWn

(2.2)

Tr(U„„U - U„- U„&)+H.c.
g np~v

a=(a,f) is the spinor-flavor index,

M ~=(M/a +4r)5//5 p,

MI is a bare-quark inass of the flavor f, and

Here (f„)'- is the quark field, a is the color index,

I

In order to formulate a strong-coupling expansion Eq.
(2.1) is rewritten as

Z(J)= f DQDgexp gtr[(J„+M)iTr„g„]
n

Xexp, g Tr +H.c. jfz(c„„)1 5 5 5 5
cg n, i &v n, p, n+pg v n+vp n" n, p nrrr=c =0

(2.4)

where

z(c„„)=f dU„„exp(TrU„„D„„+TrD„„Ut„),

(Dn fr)ab =(Cn q)ab (f ) nPai, (—g ~n-)b:(Cnp —An,,p)ab» (2.5)

ing (2.4) and (2.6). But hereafter we treat only the vacu-
um expectation value of operators without U„„(a local
mesonic operator). We define

g4
expINSi[1/g', M(n)] j =exp, +H.c.g' 5c'

(Dn err)ab =(Cn p)ab —(Qn ~~)aP' ~(gn )b

n, p Any)ab r,

dU„„ is the Haar measure on U(N), N is the number of
the color, tr means the trace over the spinor-flavor index,
and Tr means the trace over the color index.

The integral (2.5) has been calculated in the 1/N expan-
sion in I and the result is

where

Xexp Ng W(A„„)
n, p

and evaluate it by expanding
r

5 5 5 5

n, p) v 5Cn + 5Cn+ v n v+, p n, v

(2.7)

z(cn q) =exp[NW(An q)],
where

8'(A„„)= g ( I/N)"wk(A„„),
k=0

(2.6) 1 5 1 5
exp +H.c. =1+ +H.c. + .

g 5C g 5C

(2.8)

which is the strong-coupling expansion. Finally we obtain

Z(J) =f DM exp[NS, ff(1/g, M(n), J„)],
Anq ——(1/N )DnpDnq

= ( l /N )(c„„+A„„)(c„„+A„„),
iao(A) =Tr((1+4A)'i —1 —in[ [I+( I+4A)'i ]/2I ),

k

I =0

k =TrA~.

We will use only the ~alue of Ci i' ———, »d Ci ii ———,,
hereafter.

We can calculate the vacuum expectation value of any
operators which include arbitrary number of U„» by us-

where

S ff( 1 /g, M (n ),J„)=g tr[ (J„+M )M ( n ) —lnM ( n ) ]

+Si (1/g, M (n) )

and M(n) ~=1/N(P„P) is the meson field.
Hereafter the calculation of Si(1/g, M(n)) is con-

sidered. In Sec. III we show that Si(1/g, M(n)) is made
of all connected diagrams with respect to M(n); therefore,
we will calculate connected diagrams only. Furthermore
in Sec. III we give a systematic diagrammatic procedure
to calculate Si(l /g', M(n))

Finally we mention the meaning of the strong and 1/N
expansions used in this section. Usually we expand Eq.
(2.1) directly by considering both g N =A, (fixed) and N
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as large numbers. But our expansion is different from the
usual one. We use the 1/N expansion to evaluate
W(A„„) [see Eq. (2.6)], use the strong-coupling expansion
to evaluate expS& and combine them. After combining
two expansions, however, we get the consistent 1/g N and
I/N expansions (they have positive integer power) and
can obtain the S,rr coincided with the result from the usu-
al expansion.

III. THE CALCULATION PROCEDURE
IN THE STRONG-COUPLING EXPANSION

In this section we give a diagrammatic procedure to
calculate the effective potential. First we show that
S~(1/g, M(n)) is made of all connected diagrams with
respect to M(n). We define

Z(1/g2, M) =exp[NSi(1/g, M)]

5=0 X), . . . , X

M(x, ) . M(x„)f„(x„.. . , x„,1/g )/n! . (3.1}

The g„+~, the connected part of f„+,, is defined by induction such that

f„+i( xo, . . . , x»1/g )=I&+i(xone ~ »,~I/g )
2

+ g g g +i(xo x, »; 1/g')f, (x; „,. . . ,x;,1/g') for n)0 (3.2)

and the generating function of all connected diagrams is given by

R(1/g, M)= g g M(x&) - M(x„)g„(xi, . . . ,x„,l/g )/n! .
8 =OX), . . . , X~

(3.3)

By using (3.1)—(3.3) for any n it is easy to show that

5" 5Z(1/g, M)
5M(x)

5" 5R(l/g, M) Z( 2 M)
5M(x)

then we obtain

(lnZ —R) =0 .

Therefore

Z(M) =exp[R (M) —R (0)]

with Z (0}= 1, means

NSi(1/g, M) =R (1/g, M) R(1/g, 0) . —

(3.4)

(3.5)

(3.6)

(2) We use diagrams to represent terms obtained in the
above expansion. For example Fig. 1(a) represents
Trc„j(A„&,'A„&) and Fig. 1(b) represents Trc„gc„~,
where f and g are some functions of A„& and A„z ob-
tained in (1) and a closed loop means the trace over color
111dex.

(3) We combine four diagrams into one by the
(1/g )Tr5 /5c operation which appeared in (2.7). For
example, Fig. 2=(1/g )Tr(f,f2f3f4). This process is re-
peated t times.

(4) We generate all necessary diagrams by the above
procedure (3). In order to calculate XSi, we consider only
"connected" diagrams.

(5) When we expand exp[(l/g )Tr5 /5c ], terms such
as (1/n!)[(1/g )Tr5 /5c ]" appear. We can neglect the
factor 1/n! in the same way as ordinary Feynman rules
since the operation of the derivative (5 /5c )" generates
each term n! times.

This completes the proof. It is noticed that the "connect-
ed" in our expansion (2.7) means that two loops are con-
nected to each other if they have at least one "common"
link, which belongs to one C&"'. . . z A.z

. A.~ ( t )2).
Next we summarize the procedure to calculate

NS i (1/g, M).
(1) We expand W(A„„) with respect to c„„and c„„,

where

A„„=(c„„+A„„)(c„„+A„„)/X' .

If we want to calculate NSi up to the order of (1/g )' we
have to expand 8' up to the order of c„"&c„'z with
r+s =t.

FIG. 1. (a) The diagram which represents tr(c„J') and (h) the
diagram which represents tr(c„gc„~), where c„„

Jl, !M,
=n ——~——n+». and c =n ——~——0+»..
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f3
J

I

v

) I )i f2

f)

FIG. 2. A diagram made of four links by the strong-coupling
expansion.

(6) By using the formula such as

Tr[(A„~A„q)/N ]"= tr[M—(n)PqM(n +p, )P' q]

we rewrite terms obtained by the above procedures, in
terms of M(n) and tr (tr means the trace over the flavor-

spinor index). We must be careful for the sign factor of
the trace. From the procedure (1)—(6) we obtain the final
expression of NSi(1/g, M) in the form of the strong-
coupling expansion.

IV. THE j./g N CORRECTION
TO THE LARGE-X LIMIT

Although we are interested in the mass difference be-
tween singlet and nonsinglet mesons we calculate the
1/g N corrections to the large-N limit as an exercise, be-
fore calculating such quantities. Such a correction has
been already calculated in Ref. 3. We pointed out that the
pseudoscalar meson is the massless particle associated
with the parity violation for one flavor case in the strong-
coupling limit. ' In order to confirm that this property is
unchanged by higher-order terms in the strong-coupling
expansion we analyze the 1/g N correction to the large-X
limit.

Up to the first order of P= 1/g N in the large-N limit
we obtain

NS,ff(P, M) =X+ tr MM(n) —1nM(n)+ g(lnI [1+(I+4A„&)' ]/2j+1 —(1+4A„&)' }
n P

—Pg M(n)PQ(A„q)M(n+p)PQ(A„-, )M(n+p, +v)P' g(A„- }

pe+

XM(n+v)P' „f(A„„) +0(Pi), (4.1)

where

A„„=M(n)PpM(n+p)P' „, A„„=M(n+p)P' „M(n)P„',

f(x)=2/[1+( I+4x)'~2] .

i8y5
In order to investigate a vacuum structure we assume M(n) =oe and solve the gap equation for S,rr (Refs. 1 and

5). The solution is given by

sin 8= ~

(1—6P/Mo )/Mo for Mo )4(1+9P/16),
[3/(16—Mo )]'~ [1+p(5MO +16)(MO —16)/576] for Mo (4(1+9p/16),

0 for Mo &4(1+9P/16),
4[4—Mo +PMO ( —37MO +704MO —1792)/768]/(16 —MO2) for Mo &4(1+9f3/16), (4.3)

where Mo is the mass parameter. The value of Mo where the phase transition occurs satisfies sin&=0 in (4.3) and it
gives Mo 4(1+9P/16)——.

Next we must calculate the m meson mass and show that it vanishes at the value Mo ——4(1+9P/16). To see this it is

enough to calculate the pseudoscalar meson mass in the case of 8=0. After a few calculations we obtain

2

I'.rr =g—(2) l & ~off
[M(m) —a][M (n) —cr]„2 5M(m)5M(n)
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d4
M(n) —o= I e "ll&(p)1", f =J

II "I is a basis of 4X4 matrix that is given by I' = —,', I =y5/2, I "'r'=iyzy5/2, I '~'=yt/2, and

I '&'=[yz, y~]/(2i X2' ). In order to obtain the pseudoscalar-meson mass the Dp q(p), the pseudoscalar and axial-
vector part of D„p(p), is only used and it is given as

Dpp(p)= 1/(2o )——,
' —P —', (o +o ) g cosp„a+ —,

'
cr g cosp„a cosp„a

p P„+Q

P T

Dpg (p) = —Dq p(p) =sinp a 1+p 3o + 3a +o g cosp„a
~C

D~ w„(p)=& z. I/(2o' ) ——,'cosp a+p ', rr —gcosp&a —cosp a 3o +6cr~+ 2o2 g cosp„a
p+cx

+ 4
0' g cosp~a cospya

~p+c
.+Per slnP~a slnPra( 1 —5~r)/2 . (4.5)

We calculate the pseudoscalar meson from the equation

detDp ~(po ——irn, pk ——0)=0
then we obtain

coshrn a =1+2D/[(1+3Po +6Pa')

X(1/er ——', —9Po /2)], (4.6)

vvhere

D =(T'+3Pcr /2+3Pcr )(2 1/cr +6Po—+3P&')
+[1/(2a )+6Po ][1/(2o ) ——', 9Pcr /2 6P—~ ]—
o =(1 6P/Mo4)/M—o

Since D =0 for Mo ——4(1+9p/16)+0(p ) we obtain
rn =() at Mo'=4(1+9P/16) (Ref. 6). Therefore we con-
clude that the pseudoscalar meson is the massless particle

associated with the parity violation for one flavor case in
the first order of 1/g N in the large-N limit.

V. THE MASS DIFFERENCE BETWEEN THE SINGLET
AND THE NONSINGLET PSEUDOSCALAR MESONS

In this section we calculate the mass difference between
m (nonsinglet) and ri (singlet) in the strong-coupling ex-
pansion. Hereafter, we consider the ordinary phase
(8=0). It is easy to see that the lowest-order terms which
contribute to the mass difference have the order P . Since
it is too difficult to calculate S&(1/g, M) up to the P, we
will calculate only the mass difference ( m„—rn ), not the
absolute value of the meson mass (mz or rn ).

In the lowest order the mass terms which contribute
only to the singlet sector are made of the product of two
loops and each loop has the order of P . There are two
different types: Fig. 3(a) and 3(b). Figure 3(a) is given by

tr[M (n)P&M (—n +p, )P~(n +iJ,+v)P&,M (n +i4+ v+~)PpM (n +i4+ v+ a+p)P

X M(n +iJ,+a+p)P pM(n +i4+a)P &M(n +a)P ~] (5.1)

and Fig. 3(b) is given by

—tr[M(n)P&M(n+i4)P~(n+p+v)P &M(n+v)P „M(n)P M(n+a)P„M(n+p+a)P

)&M(n+p)PpM(n+p+P)P „M(n+P)P p] . (5.2)

The product of two loops must have at least one "com-
mon" link since they must be connected in S, . In this
case a "common" link means a link joined in C

&
~' or CIt'&.

But after little calculation it is shown that (i) in the case
that one link is common there is no contribution to the
pseudoscalar sector, and (ii) in the case that two links are
common, contributions to the pseudoscalar sector cancel

each other.
Therefore two loops must have three common links for

the calculation of mass difference. After little calcula-
tions we find that contributions from Fig. 3(b) again can-
cel each other.

First ~e consider each loop in the product of two loops.
The condition that two loops must have three common
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(A-&)

FIG. 3. The lowest-order diagrams in the product of two
loops which contribute to the singlet sector.

{A-2)

(A-4)
(A-63
(A-6)

0
1+ o.d.

(A-3)

v
l

'
+ O.d.

links is satisfied by fixing three links in each loop. Under
this condition we classify such one-loop diagrams, which
have nonzero contributions, as follows (see Fig. 4):

(A-1) (n,p), (n+p, v), and (n+p+v+a, P) are fixed,

(A-2) (n, p), (n +p+v, a), and (n +a+P, p) are fixed,

(A-3) (n,p), (n+p+v, a), and (n+v+a, f3) are fixed,

(A-4) (n, p), (n +v,p), and (n +v+a, P) are fixed,

(A-5) (n, p), (n+v, p), and (n+v, P) are fixed,

(A-6) (n,p), (n+v, p), and (n+v+P, a) are fixed,

(A-7) (n,p), (n +p, v), and (n+v, P) are fixed,

(A-8) (n, p), (n+p, v), and (n+v+P, a) are fixed,

(A-9) (n,p), (n+p, v), and (n+v+a, P) are fixed,

(A-10) (n,p), (n+p, +a,v), and (n+ +aP,p) are fixed,

(A-11) (n,p), (n+p+v, a), and (n +v, P) are fixed,

(A-12) (n,p), (n +p, v), and (n +p+a, P) are fixed .

(A-7)
(A-8)
(A—9)

(A-)0)

(A —»)

+ O.d.

+ O.d.

0

r
!
I

n

Second we insert M(n)=a+ f H(p)exp(ip n) into Eq.
(5.1), consider the linear terms of H(p), and sum up such
terms within the same class. They are denoted

+ O. 6.

D„' 'i't(p)exp(ip. n), i =1—12 .

For example,

(5.3) FIG. 4. A classification of the lowest-order loops with three
links fixed. o.d. means the same diagrams with the opposite
direction.

D (p) — eI'~ai fr11(p)[y (1+e &+e &+"+e & +++e &+" +e++e &+ +e+e &+ +e )
32 5

p a+ p+ +a p+ +a+@ @+a+5 @+a a)lP lP IP /p /p ip ip
5 p

( 1 e ~p e ~ll+ +e ~p+v+a+e ~y+v+a+ p+ e ~p+a+p+e ~p+a +e +a)

+y y ( l + p++ )M+&++ ~@+&+tx++ I p+'v+a+P + ~p+rx+P ~@+a

+) 5& ( —1+e "+e ~+"+e I*+"+a+e~~+"+a+~+e ~~+a+e+e ~"+a —e ~a)]5 p (5.&)
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Third, we produce the term of (5.3) with i fixed and sum up the different n, p, v, a, and P. Since there exists a double
counting for diagrams we multiply the factor —, for i =7—12. We denote the results as

D'p = D„'~~" p D&~~" q exp i p+q n XC'
p p qnpvap

D„'" p' P D„'„p' —P &C', (5.5)
p„v,a, P

where

C'=1 for i =1—6 or = —,
' for i =7—12 .

In order to obtain the singlet mass we put po im——„a and pk ——0 in (5.5). The results are

D'(p)=D (p)=D (p) = ', o'" —H&(p)H&( —p){37+27X)—H& (p)H& ( —p)(37 —27X)

+ [Ht (p)H& ( —p) —H& (p)Hz( —p)] )&27iY (5.6)

D (p)/2=D'(p)I2=D (p)/2=D'(p) =D'(p) =D (p) =D' (p) =D "(p)13 =D "(p)

= —,
' cr' Hz(p)Ht ( —p)(1 —X)—Hz, (p)H& ( —p)(1+X)—H&(p)H& ( —p) —H& (p)H&( —p) Xi Y, (5.7)

where

X =cosh(m za )

Y=sinh(mrna) .

Summing up D'(p) (po im&——a, pk =0) for i and multiply the factor P X (CI'i') X (C'i ') IX we obtain the final result

D""s'"(p)= [p'X (CI", )'X (Ci")'/X']3o' Hq(p)Ht ( —p)(59+ 37X)—H&, (p)H„,( —p)(59 —37X)

+ IIp(p)Hq, ( —p) —Hz, (p)Ht ( —p) X 37i Y

Combining (5.8) with the result in the strong-coupling limit we obtain

~o

(5.8)

2DP'"z"s'"(po im a, pk
——=0)=

0
Ap —iY 1/o —X

(5.9)

2DP" z,'(po™„a,pq
——0)=

P 1/cr —3 —X+t (59+37X)

—i Y(1 37t)—
i Y(1 37t)—

1/o —X —t ( 59—37X)

where

t=2n [fP X(CII') X(C'i ) /E ]3o

=nf &(P x6o' /8N

and o= 1/Mo+O(P).
From detDJ' ~",s "(p)=0 and detDp ~, (p) =0 we obtain

(M02 4+ 96t )(Mo 1 ——22t)—
cosh(mrna) = 1+

( 1 —37t)(2MO —3 )

(Mo —4)(MO —1)
cosh(m a) = 1+

(2MO —3)

(5.10)

(Notice that we neglect the common corrections to m„a and m a in the strong-coupling expansion. ) From (5.10) we ob-
tain

gama =cosh{m„a)—cosh(m a)

= t (37MO —111MO + 140—2112t)/[(2MO —3)(1—37t)]

=6nf13 (37MO 111MO +1—40)/[8N Mo' (2MO —3)]+0(p ) )0 . (5.11)
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Furthermore

lim hma = lim Ama
m —+0 ~ 2~4,

=nf p'X 3'/(N'X 2"X 5)~0 .

From (5.11) and (5.12) we conclude that

and

(5.12)

lim m&&0.
m ~0

Qualitatively this result is a desired solution to the U(1)
problem on a lattice. But quantitatively the mass differ-
ence is much smaller than the experimental data. %hen
we put Mo ——4(m =0), a '=900 MeV, N =3, nf 2——,
and P=4.0 (not strong coupling) into (5.11) we obtain

lim m„&0.
m ~0

VI. NO MASS DIFFERENCE BET%'EEN
THE "VECTOR" MESONS

Here we will show that there exists no mass difference
between singlet and nonsinglet "vector" ( V-T) mesons in

all orders in the strong-coupling expansion. Vcff terms
which contribute to the mass difference have general
forms such as (remember Sec. V)

const X trm(n)(P, +Pz) Xtrm. (n)(P, +P, , ) .

where
k

P, =Pq, P„, Pq„, g p, ; =0,

(6.1)

~ ~ I P-&k-I |M I t

and m(n)=M(n) cr In—oth. er words, c is the oriented
closed loop starting from n and c is the loop c with oppo-
site orientation. The vector-tensor component in (6.1)
must have y„or y„y,(p&v) in P, . For example, we con-
sider

This is a desired property for solving the U(1) problem.
The dynamical mechanism which realizes the above prop-
erty is discussed in Sec. VII.

m&-380 MeV .

Inversely when we put Mo ——4(m =0), a '=900 MeV,
N =3, and M„=550 MeV we obtain

p=4. 6 .

This result shows that the higher order in the strong-
coupling expansion is necessary for the large singlet
meson mass. But the calculation of higher and higher or-
ders in the strong-coupling expansion becomes more and
more difficult. Therefore we will not go to this direction.

Since Monte Carlo (MC) simulation is a powerful
method to calculate the hadron mass, it is desired that the
mass difference is calculated by the MC method. But un-
til now it seems very difficult to measure it by the
quenched approximation. Including the dynamical quark
is necessary to calculate the mass difference. Further pro-
gress for this field is desired.

In paper I we pointed out that the pseudoscalar meson
is the massless particle associated with the parity-violating
phase transition on a lattice. But this is not correct if we
consider the many flavors case. To explain this we define

II'(n) =i PysPP(n)

II (n)=igy5$(n) .

or

trm(n)y„ If we assume that the flavor symmetry is conserved, it is
easy to see

trir(n)y&y„.

But in P-, such a term considered appears as

trm(n}( —yq}

or

trn. (n)( —y, )( —y„) .

Therefore the vector-tensor component in trn(n)(P, +P~)
is always zero by the above cancellation. Since the term
(6.1) is the general form in the 1/g N expansion we con-
clude that the vector tensor sector has no mass-difference
between the singlet and the nonsinglet channel in the ef-
fective potential. This result may explain the fact that
"there is no U(1) problem for the vector mesons in na-
ture. "

VII. DISCUSSION

In Sec. V we obtained the main result of this paper. Up
to the order of P

(II'(0)H (n)) =0 for a~b,
(II'(0)I'I'(n)) =(II (0)H"(n)) for any a and b,
( II') =0 for any a .

Furthermore if the parity is conserved

If we regard (H ) as the order parameter of the phase
transition, then there exists a phase where (H )&0. On
such a phase transition some particles may become mass-
less. Ordinarily we think the particle corresponding to the
order parameter become massless, then II (n) (the flavor-
singlet meson) should become massless. But the result in
Sec. V shows that H'(n) (the flavor-nonsingiet mesons)
rather than II (n) become massless. Physically this is
desired.

In the above argument the assumption that the flavor
symmetry is conserved is not true. To see this we investi-
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gate Eq. (5.10) first. From Eq. (5.10) the m meson be-
comes massless at Mo ——4 while the q meson does at
Mo 4——9—6t If we change Mo from a larger value, the
~ meson becomes massless first. For Mo ~4 since the
existence of the tachyon is forbidden by the positivity of
the action "the flavor symmetry" must be broken; for a,

(11')~0,

contrary to our naive assumption. This is our new
scenario. To show that this is true we investigate the ef-
fective potential

P

S,rr(P, M) =Q Tr MM(n) —InM(n)+g(lnj [1+(1+4A„„)' ]/2]+ I —(1+4A„„)'~ ) +b g[TrysM(n)]2/4
N p n

(7.1)

with nf =2 and b ~ 0. This effective potential is (P~O and X~ oo) + (the bilinear term for the singlet sector). At first
we take the flavor-dependent quark mass term such that

ma +4r 0 M] 0
M= 0 m~a +4r 0 M2

Therefore we assume

cr ~exp(i 8~ )

M(n)=
ozexp(i 82)

(7.2)

in the vacuum. The gap equations become

M] 0 ) =cosl9),

M2o.2
——cos82,

(7.3)

so]2
2—1+ —2bo. ]1+(1—4~, 'sin'8 )'" —260 )02

Scr2—1+ —2bg2
1+(1—4crz sin 8z)'

sin8&

sin
=0. (7 4)

In the case of M, =Mz ——M the gap equation (7.4) has two solutions;

(I) o, =~,, sin8, = —sine, forM'(4,
(II) o~ ——cT2, sln8~ ——sin8z for M &4 4b;—

then we must calculate the difference of the effective potential between two solutions:

V,rr(sin8, = —sin82) —V,rr(sin8( ——sin82) =4b (O,sin8, ) )0 .

Therefore the solution (I) is realized. This solution means
that

( lgl 7'g7 1P ) =2cT )slI18)

[3(4—M')]'"—4
16—M

The parity and flavor symmetry is broken. For M )4,
where the parity and fiavor symmetry is conserved, the
masses of m and g are given as

cosh(m„a) =1+ (M' —4+4b)(M' —1)
2M —3+4b

cosh(m a)=1+ (M —4)(M —1)
2M —3

then

cosh(mrna) —cosh(m a)=
z

4b (M'+ 1) &0.
(2M' —3)(2M' —3+4b)

Therefore the U(l) problem is also solved for M & 4.
The above scenario is the hidden dynamical mechanism

for the solution to the U(1) problem on a lattice. The
analysis of the effective potential derived from a real lat-
tice QCD in the strong-coupling expansion, including the
flavor dependence of the quark mass, will be published
elsewhere.

In the strong-coupling limit both solutions (I) and (II)
have the same energy. This degeneracy is accidental, not
the result from some symmetries. If we consider the ef-
fect of the meson loops, the solution (I) becomes a true
vacuum. In the ordinary phase the g meson becomes
heavier than the m meson by the effect of the meson loops
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even in the strong-coupling limit as pointed out by Wil-
son. ' Quantitatively such an effect of the meson loops to
the mass difference may be bigger than the effect of the
strong-coupling expansion. Therefore it is necessary to
calculate the loop effect. Since it is very difficult to cal-
culate it using the complicated meson propagator on a lat-
tice, the random walk technique" is suitable. In the fu-
ture we will investigate this problem.

Before ending this section we mention other uses of the
strong-coupling expansion obtained in Sec. II. In princi-
ple using (2.4) and (2.8) we can calculate the vacuum ex-

pectation of any operators in lattice QCD. Furthermore
the %ess-Zumino term or the chiral anomaly may be also
calculated in this formulation.
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