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Continuum limit of an SU{2) gauge theory with a scalar doublet
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The only known fixed point of the SU{2) gauge-Higgs model is the Gaussian fixed point. Ap-
proaching this point in the Higgs phase defines a cutoff-independent field theory of massive vector
bosons and a scalar. This field theory turns out to be free, however. In the vicinity of the Gaussian
point effective interacting models can be defined with a large but finite cutoff. These effective
models can be investigated in detail, as it is possible to control both the ultraviolet and the infrared
behavior in perturbation theory.

I. INTRODUCTION, SUMMARY OF RESULTS

Motivated by the scalar sector of the Weinberg-Salam
model, several numerical studies dealt with SU(2) gauge-
Higgs systems. ' These Monte Carlo (MC) calculations in-
dicate a first-order phase transition between the sym-
metric and Higgs phase. In the parameter space investi-
gated until now there is no sign of a candidate, non-
Gaussian fixed point (FP), where a cutoff-independent
quantum field theory could be defined. In this situation
increasing attention has been devoted to the Gaussian FP
(the FP at zero gauge and scalar self-coupling). The ques-
tion was raised whether following a procedure similar to
that used in QCD, an interesting, cutoff-independent
theory can be defined on this FP. The physical idea
behind this suggestion is that although the bare coupling
is tuned towards zero, the physical coupling is nonzero
and can create an appropriate effective potential for the
scalar fields. Several numerical calculations turned to-
ward this problem recently. '

However, the behavior of the field theory in the vicinity
of the Gaussian FP is a perturbative problem. One should
be able to find out the basic properties of this continuum
limit with the help of perturbation theory and
renormalization-group considerations.

In this paper we summarize the results of an analysis of
this kind. It will be shown that the continuum theory de-
fined on the Gaussian FP is a free-field theory of massive
gauge bosons and a massive scalar with an arbitrary ratio
R =mH/m~ (if the Gaussian FP is approached in the
Higgs phase). Unlike in QCD, not only the ultraviolet but
the infrared behavior is calculable perturbatively for small
couplings. At any point (r, u, g ) of the parameter space
in the Higgs phase(here r and u are the parameters of the
scalar potential, g is the gauge coupling) one can deter-
mine the physical couplings uz and g~, the scalar field
expectation value M, and the gauge-boson and Higgs-
boson masses, m ~ and mH, respectively.

Although a cutoff-independent, interacting theory can-
not be defined this way, there are parts of the parameter
space (namely those which are close to the weak first-

II. DEFINITIONS AND NOTATIONS

The Lagrangian has the form (d =4, Euclidean space)

+-,'..g y.'+ „a=1 ' a=1

'2

pi+i/2
v2 6+i44

is the scalar doub1et, while the covariant derivative is de-
fined as

D =8 I —&goA' —.

%e shall work in the Landau gauge and use dimension-
al regularization. The renormalization mass is denoted by

order phase transition surface) where the physical cou-
plings are nonzero (the model is interacting) and the cut-
off is very large. In these effective theories R =mH/m~
is essentially free. There exists only a lower bound on R
(Ref. 4) (saturated on the singular surface) and, presum-
ably, an upper bound, which is, however, outside the
range of perturbation theory. The apparently constant
mass ratio R found in recent MC studies is presumably
due to the very limited parameter space explored in these
simulations.

The results mentioned above are, of course, independent
of the regularization used. Most of the formulas of this
paper refer to dimensional regularization. The specific
modifications due to lattice regularization will be dis-
cussed at the end.
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corresponding dimensionless parameters are r
[=r(A)], u, and g . The dimensions are carried by the
arbitrary scale A. In the following it will be convenient to
consider A as the largest scale of the system (- cutoff),
which, in a correctly defined theory, should go to infinity.
In this case r, u, and g can be considered as bare param-
eters, in a specific regularization scheme. This language
is close to that usually used on the lattice and makes the
comparison with this case easier.

We shall call the parameters on the scale of the W mass
I

"physical, " and denote them by rz[=r(mir)], ur, and

gr . On the tree level we have mir = —,'g M, where M is
the scalar field expectation value.

III. EFFECTIVE POTENTIAL AND THE
RENORMALIZATION-GROUP EQUATIONS

Since we are interested in the phase structure of the
theory, let us calculate the scalar effective potential. A
simple one-loop calculation gives

Veff(x) = ,
' rx +——ux + i l (r + —,

' ux ) [ln(r + —,
' ux ) —a]+3(r + —,

' ux ) [ln(r + ,' ux —) a]—
87r

+ —,', g x4[ln( —,'g'x2) —a]) +const .

The constant is fixed by the convention V,tt(0)=0
while a depends on the scheme chosen. [The minimal-
subtraction scheme gives —', +ln47r+ I"(1), for example. )
In the following we shall choose the scheme where a = —,',
which leads to simple expressions.

The problem with V,tt(x) in Eq. (2) is the following.
Just in the interesting parameter regions, where the radia-
tive corrections are large enough to influence the behavior
of the system, the higher loop corrections become impor-
tant and the one-1oop result is not reliable.

Renormalization-group considerations help to control
the "dangerous logarithms" of Eq. (2) (Ref. 8). Under the
change of scale

%e shall take t =t', where

ln[ —,'g (t')M (t')]=0.
The scale A=e ' A is just the scale of the 8' mass

[according to Eq. (9) the dimensionless m ir
= —,'g M =1]; therefore the corresponding couplings are
the physical couplings and will be indexed by p in the fol-
lowing [g (t')=gr, . . .].

IV. SOLUTION OF THE
RENDRMALIZATION-GROUP EQUATIONS

Equations (5)—(8) are easy to integrate. One obtains

A e 'A, t~O

the effective potential transforms as

V,tt(x;r, u, g ) =e 'V,tt(X(t);r(t), u(t), g (t))

where9

dg 4 1 86

(3) 2=
gp =

1 pog2t'—

r =r exp 2t — —ln(1 —Pog t )
35 1

p 12 b

u =g —tan —ln(1 —pag t )+5a a 2 2
p p 3

(10)

du 1
(4 2 9—-2 27 —4)«166 cos[(a/b)ln(1 —Pog t')+5]——ln

2 cos5
, (12)

aV 2 1 9
(13)M (t')=Miexp 2t'+ ——ln(1 pog t')—4 b

dx 1 9
dt 167r 2

where

5=5(u,g )=arctan
2u/g + 3

(14)

and r(0)=r, . . . . We cannot expect to control V,tt(x) in
perturbation theory for arbitrary x values. It should be
determined reliably, however, at least in the region x &M,
where M is the second, nontrivial minimum (if it exists).
The idea is to calculate V,tt(x;r, u, g ) via the right-hand
side of Eq (4) by cho. osing an appropriate t value, where
the "dangerous logarithms" become sma11 in this region.
At this t value the radiative corrections in V,tt(x;r, u, g )
are small and even the tree-level part should give reason-
able results.

and the constants a and b are given by

(
27 l6 )i/2

b =87r po.
For given parameters ( r, u, g ) the five equations

(9)—(13) contain six unknowns: rr, u~, g~, M(t"), M,
and t '. The missing equation is provided by
V,tt(X;rr, ur, gr ).
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V. ANALYSIS OF V~(X, r~, u~, g~')

If there exists a nontrivial minimum at M, we have

Using Eqs. (2) and (9) we obtain

Qp
r = —— +O(u) .3g2

p

Now we can solve the system of algebraic equations
(9)—(13) and (16). Equations (11), (12), and (16) give

cos[(a/b)ln(1 P—og t') +5]
r exp 2t*— —ln(1 Po—g t') ——ln

12b 2 cos5

T

—tan —ln(1 —Pog r }+52 a a 2, 2

3 2 b 3

(17)

which determines t'=t'( r, u, g). Having t', we obtain
immediately g~, u~, r~, M, and M as the function of
r, u, g from Eqs (10)—(12), (9), and (13), respectively.
Before discussing these results, let us check under what
conditions the system will be in the Higgs phase. The
condition reads

V,rr(M) ( V,rf(0), (18)

g1vlng

which, with the help of Eqs. (10) and (ll) implies

—tan 5(u,g ) ——lnz ——= — gzz,a 2 a 2 27

256&

where

2g i' (25)

28—mH
(21)

mw 3gp

where we kept the radiative corrections proportional to g
(which is important when u~ is small, say, u~-g~ ), but
we suppressed the O(u~) corrections, which are always
smaller than the first term. Equation (19) imphes then a
lower bound for R:

9
(22)

The ratio 8 takes its minimum value on the singular sur-
face. The bound Eq. (22) is well known. (8;„ is small-
er by a factor of 2 than the Coleman-Weinberg value, 6

which is just one of the possible values of R in our con-
text. ) Using a modified condition ln( 4g rn )=c (c—1)
in Eq. (9), or a different a value in Eq. (2) (different
scheme) the physical conclusions [like Eq. (22)] remain
unchanged.

up & —
gp

27 4 (19)
256

Since up and gp' can b express~ in te~s of the original
(bare) parameters (r,u, g ), Eq. (19) gives the equation of
the two-dimensional singular surface r'=r'(u, g ) separat-
ing the two phases. We shall see that M(t')=4/gr im-

plies finite M2 [via Eq. (13)] even on the singular surface.
Therefore the phase transition is of first order.

As we already discussed, the 8'mass is given by

mw =8' A, (20)

while the Higgs-boson mass is obtained from the second
derivative of the effective potential at M. For the ratio
we get

The solution of Eq. (24) can be written as

z =zo+O(g ),
where

(26)

T

zo(u, g )=exp —5(u,g ) —arctan2 & 2

Q 3Q

since 5 is bounded by m/2, zo is finite„O(1). Therefore

lim (g~ /g )= lim z
g2~Q g2~Q

b ~ 4=zp & exp ———arctan
2 3Q

I

27.6,

(28)

which implies that g~ ~0 as g is tuned towards the
Gaussian point along the singular surface. Inside the
Higgs phase, away from the singular surface, the left-
hand side of Eq. (24} is larger than the right-hand side
[see Eq. (19)];therefore, the solution z becomes smaller. It
follows that in the g ~0 limit the physical gauge cou-
plings gp become zero, no gauge interaction remains.
Without gauge interaction the scalar field cannot sustain
nonzero self-interaction uz either. These expected results
follow from the equations. Really, finite uz would re-
quire up/gp ~+ 00. The case of —Oo is excluded by Eq.
(19), while + oo is excluded by Eq. (11), if we remember
that t' is positive.

Equations (25) and (26) give
VI. BEHAVIOR OF THE SINGULAR SURFACE

On the singular surface Eq. (19) gives
1 —1/zp

t +O(1),
of

(29)

Qp

2
gp

"g'
2 gP (23)

and we get, from Eqs. (20), (12), and (13),
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1 —1/zo
m~-Aexp 2

1 —1/zo
p =pent A2g2exp 2

og
(30)

TABLE I. In effective models with different cutoff values

(first column} the physical self-coupling uP and 8 =mH/m~
are given for different bare coupling M values. The physical

gauge coupling is fixed to be gP =0.4 everywhere. ( u /4f enters
the action. )

VII. SU(2) GAUGE-HIGGS MODEL
AS AN EFFECTIVE THEORY

Although the cutoff-independent theory in the g2~0
limit is a massive free-field theory, one can define in-
teracting models with a finite cutoff. Depending on the
value of the physical coupling this cutoff can be very
large, thus defining an excellent effective theory

Consider, for example, the effective theories defined on
the singular surface. If we fix the physical gauge cou-
pling g~ to some finite value, Eqs. (25) and (26) imply

g
2

g
21

ZQ
(31)

from Eq. (29) we get

giving

(Z0 —1)/P(gA/1'ti ir e P (32)

Since zo ~,„=27.6, the cutoff can be extremely large.
On the singular surface R =8;„.Moving away from
the singular surface 8 is increasing and, at the same
time, the cutoff is decreasing. For illustration, a few re-
sults are collected in Table I by solving the algebraic equa-
tions Eqs. (9)—(13) and (16) numerically. For fixed phys-
ical gauge couplinys gr

——0.4 and for three different cut-
off values (A=e' mir, t'=1.0, 10.0, and 50) uz and 8
are given for different u values. As can be seem from this
table, by increasing the cutoff it becomes more difficult to
get large R values. Actually, for any fixed cutoff and g~
one obtains an upper bound R,„, which is saturated at
u = oc. This is, however, clearly outside the range of per-
turbation theory.

VIII. MODIFICATIONS DUE
TO LATTICE REGULARIZATION

1 —1/zo
M -A exp —2

g Pog'

where we restored the dimensions. The way the dimen-
sionless masses go to zero in the g ~0 limit resembles
the corresponding behavior in a pure gauge theory. The
big difference is the occurrence of a finite zo in Eq. (30),
due to which the dimensionless masses drop to zero less
fast, and g~ ~0 according to Eq. (28). This is the reason
also that perturbation theory is applicable to these in-
frared problems. The 0(1) contribution in Eq. (29) and
the proportionality factors of Eq. (30) can be fixed on the
two-loop level.

1.0

e 10.0

e 50.0

1.0
5.0

10.0
15.0
20.0
25.0
30.0

1.0
5.0

10.0
15.0
20.0
25.0
30.0

1.0
5.0

10.0
15.0
20.0
25.0
30.0

0.99
4.53
8.14

11.08
13.52
15.58
17.34
0.91
2.51
3.19
3.50
3.68
3.80
3.88
0.62
0.94
1.00
1.02
1.036
1.042
1.047

1.82
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3.42
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3.60
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1.78
1.83
1.85
1.86
1.868
1.87

where

1 =0.1549 .

sin

According to Eq. (29), t" is large on the singular surface
and, as a consequence, the dimensionless r'(u, g ) is very
close to zero in case of dimensional regularization [Eq.
(30)]. On the lattice Eq. (33) gives

ri~u(u g )= — (2u + 2 g ) .
2

(34)

In lattice MC calculations the hopping parameter ~ and a
somewhat differently defined A, are used:

u=6-
s

K

(35)

the main conclusion remains unchanged. The
renormalization-group equation for the mass parameter r
[Eq. (7)] is modified. In Eq. (7) the right-hand side is pro-
portional to r, which is a specific property of dimensional
regularization, where certain quadratic divergences are de-
fined to be zero. The modified equations on the lattice
have the form

a = 2 — u+ —g r+y(2u+ —,g ), (33)
dr 2 1 9 2 9 2

da 16 16~

Using a hypercubic lattice instead of dimensional regu-
larization, makes rather little difference and, of course, In terms of these variables the equation of the singular
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tz = 1+1nir + 0.0158,(8n ) (37)

and there is an extra radiative correction of the form

(8n }
W[(r+ —uxz)+3(r+ —'ux )+—'g x ], (38)2

where

W=2n + (y ——,', ) .(8n )

2

The results, including the lower bound Eq. (22) on R,
remain unchanged. Since the steps are identical to those
followed before, we do not repeat this analysis here.

IX. REMARKS ON THE MODEL
IN THE LIMIT g~-+0, e IS NOT SMALL

This case is outside perturbation theory applied in this

paper. One can observe, however, that the question of the

(39)

surface Eq. (34) has the form

tt, (A, ,g )= —,
' +0.68K, +0.0055g

which is valid for small A, and g values.
The form of the effective potential in Eq. (2) is modi-

fied also. The value of the constant tz is given by

existence of a non-Gaussian fixed point in this limit can
be answered within the scalar sector (without gauge in-
teractions. ) There are many indications, that no such
fixed points exist. ' " On the other hand, as we dis-
cussed, the Gaussian FP defines a free field theory.
Therefore, one cannot expect an interacting, cutoff-
independent field theory in the g ~0 limit, independently
of the value of the self-coupling u.¹teadded in proof: It has been shown by Mack' that
the A, —+ ao, g -+0, tt —+a, limit defines a massive free field
theory. This result is consistent with the remarks of Sec.
IX. We are indebted to Professor Mack for discussion.
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