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The effect of fermions on the Gaussian effective potential is studied in a variety of fermion-scalar
models in 2, 3, and 4 dimensions. Both gpiTQ and gp2$1( couplings are considered. Stability re-

quires the bare g to be infinitesimal; gq2 ——6 /Ip with Ip a divergent integral. This contrasts with

large-X studies in which gq remains finite. The presence of fermions encourages spontaneous sym-

metry breaking, aud in 3+ 1 dimensions the fermions destabilize the already "precarious" P
theory.

I. INTRODUCTION

The Gaussian-effective-potential (GEP) approach has
now been used to study a variety of scalar field
theories. ' It aims to give a general picture of the phys-
ics, particularly with regard to the properties and stability
of possible vacuum states. In essence, the GEP is a varia-
tional approximation to the effective potential using
Gaussian trial wave functionals. One writes the scalar
field as go+ P, where Po is a constant classical field, and P
is a free field of a variable mass Q, and computes (P ) in
the free field's vacuum state. Minimizing the result with
respect to Q gives VG(go), the GEP. The method is non-
perturbative, and has several important advantages over
the traditional loop-expansion approach. "

In the present paper we extend the method to theories
containing both scalars and fermions. We shall limit our
ambition to computing the effects of the fermions on the
effective potential of the bosons. Ideally, perhaps, one
would like to calculate an effective potential as a function
of both Po and "(gf)" (in some sense), but it is not clear
to us how to achieve this goal. (The suggestion in Ref. 2
to include a shift in the fermion field, f=fo+P, leaves
the spinor g with a nonzero vacuum expectation value,
which violates Lorentz invariance. )

Consequently, we proceed to write the fermion field
simply as a free field of a variable mass M (Ref. 7}:

e= f («)~ y [u~(k)b~(k»)e

+Usr(k)dl(k, l, )e'"' ],
where, in v+1 dimensions,

k
(dk)st —— , tok(M) =(k +M )'

(2n. }"2tok (M)

The spinors are normalized to 2M, and the b, b and d, d
operators obey the usual anticommutation relations. The
summation index A, is the helicity label. Our trial vacuum
state ~0) is the state annihilated by the bst and 1st

operators, as well as by the boson annihilation operator
a~. Although not explicitly indicated by the notation, the
wave functional ~0) depends on M, Q, and the boson
field shift Po.

The GEP is obtained from the Hamiltonian density A
as (0

~

4
~
0), minimized with respect to Q and M. Con-

sequently, we shall need the matrix elements of the fer-
mion kinetic and mass terms. A straightforward calcula-
tion gives

(0~ P( iy t7—)$~0)= —2 g (Ii M Io), —

(0
~

lTy ~
0) = —2 g 1~

. A

where (gi) is the number of helicity states, = —,'Tr(1),
=2 ' in v+1=2K or 2%+1 spacetime dimensions.
The corresponding bosonic results' are

(o
~

—,'[y'+(vy)']
~
o) =I, ——,'n'I, ,

« i
O'i o& =V.'+I. ,

(4)
(o

I
4"

I
o &

=4'o'+64o'Io+ 3Io'

(0
~

y'
~

O) =y,'+ lsd, 4+45','I, '+15I,' .

Matrix elements of ttp~ and ttp fg follow immediately,
since they factorize.

In the above formulas I„', I„are shorthand for I„(M),
I„(Q), respectively, where

I„(n)= f (dk)„[~,—(n)]" .

These divergent integrals can be manipulated using the
formulas in Tables I and II, which are reproduced from
paper II of Ref. 4. Another important property is

dI„
=(2n —1)QI„

Note that I ] is finite in 1 + 1 and 2+ 1 dimensions, but
logarithmically divergent in 3 + 1 dimensions.

It will be implicit throughout that any divergent I„ in-
tegrals are to be regulated with an ultraviolet cutoff which
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TABLE I. Useful formulas for the differences of I~ integrals in v+ 1 dimensions. (x =0'/m .)

v= 1 or 2

v=3 or 4

Il(Q) —I 1(m) = —,(fI —m ')Io(m) ——,(0' —m 2)zI i(m)+ m
"+ 'L3(x)/(32vr }

Io(O) —Io(m)= —
z (Q —m )I &(m)+m" 'L2(x)/(16m )

I,(n) —I,(m }=—m"-'L, (x)/(8+)

is taken to infmity at the end. However, in the Appendix
we shall have some remarks about the curious differences
that occur if dimensional regularization is used instead.

The plan of the paper is as follows. In Sec. II we exam-
ine the simplest Yukawa model, without boson self-
interactions, and explain the necessity for a rather uncon-
ventional renormalization of the Yukawa couphng con-
stant. Models including boson self-couplings are con-
sidered in Sec. III. In particular we demonstrate that ((}

coupled to fermions in 3+ 1 dimensions is unstable. We
return to lower dimensions in Sec. IV to consider theories
with a gP Pg interaction, which preserves a ((}~—P sym-
metry. Again we find that stability requires us to make

gi} infinitesimal. This leads to results very different from
I/N expansion analyses of similar models, ' and to
problems with trying to impose supersymmetry. We dis-
cuss these difficulties in Sec. V, before summarizing our
conclusions in Sec. VI.

Our formalism and notation follows the series of papers
in Ref. 4 (hereafter referred to as I, II, III), and some fam-
iliarity with these works will undoubtedly aid the reader.
In particular, we rely heavily on the results of III. How-
ever, we have tried to make the main points of the present
article self-contained.

II. THE SIMPLEST YUKAWA MODEL

We begin by studying the simplest model of a Dirac
fermion field" coupled, through a Yukawa term, to a
non-self-interacting boson field in 1+ 1 or 2+ 1 dimen-
sions. The Hamiltonian density is

Note that we include a linear term for the P field. This
could, of course, be eliminated by use of the freedom to
redefine the field as ((}'=P+c,with a consequent redefini-
tion of }Mi}. However, in the absence of a P~ —P symme-

try, quantum effects induce a shift in the vacuum, so that
it is more convenient to use the above-mentioned freedom
to arrange that the quantum vacuum, rather than the clas-
sical vacuum, is at Po

——0; i.e., we shall impose the condi-
tion

&it =d&G/dgo i y, =—o=0,
and fix ait accordingly.

From the Hamiltonian density and Eqs. (3) and (4) one
obtains [N.B. (gi) = 1 in 1 + 1 or 2+ 1 dimensions]

TABLE II. The L;(x) functions, and their expansions in y—:(x —I ) or z—:1/x —1.

v= odd

L I {x }= lnx

L2(x) =x lnx —(x —1 }

L3(x)= —,[2x'Inx —2(x —I ) —3(x —I ) ] ( 1 + e ~ t }
I

v= even

L, 1{x)
Lz(x)= —,(t x —I)'(2V x + I)

L3(x)= —,0 ( V x —I )'(8x +9V x + 3)

=(1/x —1}=z
=z {1+3z)

3 5 2 2= 3z (1+ 4z+ 5z }
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(10)

and it is easily checked that, in this case, these conditions
do give the global minimum of Vg. When the M equa-
tion is used in Eq. (9), it reduces the fermionic and Yu-
kawa terms to just —2li(M). This feature persists in the
other models we shall study later.

Also general is the result that M and 0, evaluated at a
minimum of the GEP, correspond to the particle masses
in that vacuum. One shows this by computing the energy
of a one-fermion state bl ~0) or a one-boson state
ati ~0) over and above the vacuum energy, just as in
Refs. 1—4. In the present case this means that the bare
parameters pii and mii are in fact the physical masses in
the Pp

——0 vacuum, and hence must be finite. We may
therefore drop the 8 subscript.

Equation (9) can be simplified by imposing condition
(8), using the M and 0 equations, and employing the for-
mulas of Table I:

Vg(po) =D + , [m 2—ga Io—(p }M'o

+2p, '+'Lp(x')/(8~),

where D is the divergent vacuum-energy constant, and

x'—=M'/p'=(1+gePp/p)' (12)

The presence of the divergent integral Ip(p) indicates
that some renormalization is necessary. One cannot sim-

ply appeal to a boson-mass renormalization
mti m 2gtt Ip—(p) b—ecause, as we mentioned above, m
is itself the physical mass, as determined by a first-
principles calculation, and must be finite. We are forced
to conclude that gti must be infinitesimal, with

ge' ——G'/lo(p), (13)

where G is finite. This makes x' infinitesimally close to
unity, so that the L2(x') term vanishes like O(1/Ip),
leaving the GEP proportional to Pp .

A possible objection to this conclusion is that we are ig-
noring wave-function renormalization. Could we not
render the second term in Eq. (11) finite by a suitable re-
scaling of Po'? This does not work as we can easily show.
Suppose we define Pp=Z' 4o, with

Vg(po, Q,M) =Ii+ ,' (—me 0—)Io+aapp+ , m—tt $o

—2[I i
—M(M —pic)lo+gttMPplo] . (9}

The GEP itself, Vg(go), is obtained by minimizing this
expression with respect to M and Q. Differentiation of
(9) yields the optimum values of M and 0:

suming that ge is finite it would cause the GEP to be
unbounded below. Since the GEP is a variational approx-
imation, it should be an upper bound on the true effective
potential. Therefore, there seems to be no escape from the
conclusion that g~ cannot be finite, and must be renor-
malized as in Eq. (13}.

It is instructive to contrast this with the situation in the
loop expansion. As noted in I and II, the unrenormalized
one-loop effective potential (1LEP) can be read off from
the GEP result. For the present simple model, the two
are in fact identical. This can be seen by substituting (10)
into (9) to obtain

Vg(do}=«ako+ i m'(to'}

+fi[li (m) —2Ii(p+giiPp)],

~here A has been reinstated. Separating out the vacuum-
energy constant leads again to Eq. (11). However, in the
loop expansion one would now proceed to invoke a wave-
function renormalization

c'o

1+Pi i Ip(p, )+O(A' } (16)

This converts the second term in Eq. (11) into —,
'

m 4p,
while the L2(x') term, which already carries an explicit
factor of fi may be evaluated with just pp=4p+O(i}i), so
that

x'=(1+g&4p/p)'+O(A') .

This gives an x which differs fiiutely from unity, so that
the Lz(x') term gives a nonvanishing contribution.
Indeed, this term would be interpreted as the one-loop
correction to the classical potential, —,

'
m 4p .

The huge difference between this result and our previ
ous conclusion comes about because in the loop expansion
one allows oneself to treat the factor in (16) as an expan-
sion in A'. That is, one is implicitly regulating the diver-
gent integral Ip and taking the limit R—+0 before allowing
Ip to go to infinity. (Note that the same effect is achieved
by expanding in powers of g, so that the one-loop approxi-
mation is essentially a perturbative approximation. ) It is
this interchange of limits that completely alters the pic-
ture. In the true theory Ip has to be taken to infinity
first indeed iii and—g (the renormalized g) should remain
finite, and not be taken to zero at all.

Returning to the GEP approach, then, we are forced to
renormalize g as ge 6 /Ip(p}, which ——leaves the GEP

Z '=f 1—Zgg
, Io(p, ) (14)

Vg(go) D= —,
'

(m —2G )P—o

where f is some finite number, which will have to be neg-
ative if Z'~ is to be real. Since this makes Po-Io
one would still find that x' is infinitesimally close to uni-
ty, so that the L2(x') term again vanishes like O(1/Io).
This leaves VG proportional to 4o, but now with a nega-
tiue coefficient. This pinpoints the real difficulty with as-

Thus, the fermions tend to destabilize the go=0 vacuum,
and one requires 6 g —,'m for the theory to be stable.
Although the GEP is purely parabolic, we do not con-
clude that the theory is entirely norunteracting. The coef-
ficient of —,

'
Po, which can be viewed as the inverse propa-

gator at zero rnomenturn, does not rnatch with the physi-
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cal mass squared, implying that the propagator is non-
trivial.

III. YUKA%A MODELS

A. 1 + 1 and 2 + 1 dimensions

The results of Sec. II may be generalized to models
which include boson self-interaction terms, such as (() and

Results for the scalar sector can be read off from II
and III, and the only effect of the fermions is to add a
term —G Po to the GEP. This tends to destabilize the

go=0 vacuum, but it does not affect the ultimate stability
of the theory, which is now governed by the boson self-
interactions.

Actually, in the absence of a (()~—P symmetry there
would be no reason to exclude ((t and P terms from the
potential, necessitating a generalization of the results in II
and III. We choose instead to focus on a subclass of
theories in which odd terms are forbidden by a discrete
chiral invariance

(18)

The most general such Hamiltonian density, consistent
with renormalizability in 2 + 1 dimensions, is

+ —,
'

m 2(()~+ A, (() +gp (19)

The symmetry forbids a bare fermion mass term, and this
requires a slight modification to our previous analysis.

The fermions give the same contribution to the GEP as
in Eq. (9), but now with pa ——0. The M equation becomes

M=ga((to

so that, as before, the fermionic contribution simplifies to
just —2Ii(M). From this we must subtract out the con-
tribution to the vacuum-energy constant, viz. , —2I)(0),
which is not infrared singular, and can be expressed as

—2Ii(0) = —2[Ii(p, ) ——,
'
p Io(p) —p"+'L2(0)/(8n )]

(21)

venient to use the a,P parameters, introduced in III,
which are finite, dimensionless measures of the (() and P
coupling strengths, respectively. They are defined as

a—: m~, P—= gmz"
3~r 45
2m' 8~2

where v= 1,2 is the spatial dimension, and

A,, =A.it+15(Io(mR ),
with mz being the physical mass of the boson. Although
the fermions add only the single term —G (()o' to the
GEP, this leads to surprisingly rich behavior. For clarity,
we first discuss the results taken at face value, and add
some caveats at the end.

Figures 1 and 2 show the a,P parameter space for the
(1 + 1)- and (2 + 1)-dimensional theories, respectively.
For reasons explained in III the parameter space is re-
stricted in certain ways, indicated by the boundary lines in
the figures. We may divide the remaining parameter
space into regions of "unbroken symmetry" and "broken
symmetry" according to whether the Po

——0 vacuum is or
is not the lowest minimum of the GEP. (Strictly speak-
ing, in 1+ 1 dimensions this terminology, and some of
that used below in discussing "phase transitions, " is not
correct, because of the possibility of intervacuum mixing.
We return to this point later. )

The fermionic term —G Po tends to destabilize the

(to ——0 vacuum, causing the unbroken-symmetry region to
shrink as 6 increases. Finally, when G exceeds —,mz
the second derivative of VG at (()o

——0 becomes negative, so
that the unbroken-symmetry region then disappears alto-
gether. At the critical G = —,

' mz, the symmetric phase

0,8—

for arbitrary p. Subtracting this constant leaves a fer-
mionic contribution

0,4—

—L2(0)
0.4 0.8

Q

l, 2 l.6

To avoid the theory being unstable, one must renormalize

g as

(23)

The I.2 terms then give a vanishing contribution, and one
is left with just —G (()o, as usual. [Note that p is arbi-
trary in the above, and does not appear in the final result.
Changing p only affects G by an infinitesimal amount:
0 (1/Io).]

Analysis of the scalar sector proceeds exactly as in III,
to which we refer the reader for full details. It is con-

FIG. 1. The a,P parameter space for the (1 + 1)-dimensional
version of the Yukawa model [Eq. (19)], showing the shrinkage
of the "unbroken symmetry" region as the Yukavra coupling is
increased. For 6 =0 the region extends out to the solid curve
(cf. Fig. 1 of III). As 6 increases, the region shrinks as illus-

trated by the dotted curves corresponding to 6' /my' ——6 and

3 At 6 /m z ——
~ the region is delimited by the dashed lines.

(See also Fig. 3.) For larger 6 's the symmetric vacuum is al-
ways unstable, because $0——0 becomes a local maximum of the
GEP. (The left-hand boundary on the overall parameter space
is explained in III.)
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FIG. 2. Same as Fig. 1, but for the (2+ 1)-dimensional ver-
sion of the Yukawa model (19). (cf. Fig. 2 of III.) (The overall
parameter space is bounded by a ~ —1 and 0&P &0.14S. See
III.)

0.6

is bounded in a by 0&a& —,(v=1) or 0&a& —,(v=2),
corresponding to the condition for the fourth derivative of
VG to be positive at $0——0.

In the (1+ 1)-dimensional case the situation can be
quite complex because there may be two distinct (pairs of)
nonzero minima, at $0——+cz and Pz ——+cz, which we call
the "far" and "near" vacua, respectively, according to
their proximity to the origin (i.e., cF & cz). For example,
at the critical 6 = —,'mz one finds the phase diagram
shown in Fig. 3. There are two "triple points" where
three phase coexist. Going around a triple point we can
pass from the symmetric phase (S) to the near-vacuum

phase (N) through a second-order transition, and then
from the N phase to the far-vacuum phase (F) by a first-
order transition, and then, through another first-order
transition, back to the S phase. However, as with the
liquid-vapor phases in a pressure-temperature diagram, it
is possible to pass from the N to the F phase without go-
ing through a phase transition at all. This is because as
one goes away from the triple point along the N Ftr-ansi-
tion line, the minima at cF and c~ approach each other
and coalesce, leaving only a single minimum. At this
point the X-F line stops.

As an illustration, we show in Fig. 4 the shape of the
GEP for parameter values lying on either side of the N-F
line, as indicated by the two dots in Fig. 3. One can see
clearly that raising P, and hence crossing the X-F line,
causes the far vacuum to become deeper than the near
vacuum. Note also that at these parameter values the ori-
gin is unstable, even locally: the second derivative van-
ishes because 6 = —,'mz, and the fourth derivative is
negative because o,' g 4 .

The phase picture of Fig. 3 persists for values of 6
slightly less than —,

'
mq . The S region in then somewhat

larger, and the S-N transition weakly first order. Also,
the N-F lines become shorter as 6 is decreased, and soon
disappear: the left-hand line has gone by 6 0.48mit,
and the right-hand line shrinks away by 6 =0.42m+ .
For smaller 6 's one then has a simple two-phase picture,
as in the scalar theory. If instead we go to values of 6
greater than —,

' mq, the S region is absent —it has merged
with the N region —but the S-F line remains as an isolat-
ed feature, like a mouth, in the middle of the phase dia-
gram. The line shrinks as 6 increases, and vanishes alto-
gether for 6 )0.56m+, leaving only a single, broken-
symmetry, phase.

The foregoing description in terms of "phases" and
"phase transitions" is actually too naive, because we have
ignored the possibility of mixing between degenerate, or
almost-degenerate minima. One knows that in 0+ 1 di-

0,4—

0.2—

I

0

I

I

I I I

0.25 0.50
vG x l0+~

FIG. 3. A more detailed view of the situation at 6'/m~' ———,

in the (1+ 1)-dimensional Yukawa model. The three "phases"
are labeled S, N, F according to whether the symmetric, the
near, or the far vacuum has the lowest energy (see text). In the
absence of intervacuum mixing, the transitions S —I' and
X=-I' mould be first order, while the S=N transition (at
this critical 6 /pygmy

——
2 ) would be second order. The: lines

separating the F and X phases end when the far and near mini-
ma come together and coalesce. The dots near the right-hand
end of the X-F line indicate roughly the location of the parame-
ter values used in Fig. 4: the spacing of the dots has been exag-
gerated for greater visibility.

-8
0

I

0.4
I

0.8

FIG. 4. The GEP for the (1 + 1)-dimensional Yukawa
model, for the parameter values 6 /m~ ——~, o, =0.4, and

P=0.46S (solid line) or P=0.472 (dashed line). These vaIues
correspond to points on either side of the X-I' transition line, as
indicated by the two dots in Fig. 3. (The units are such that
m p

——1.)
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mensions (quantum mechanics} there is such mixing, so
that even when the GEP has a marked double-well shape,
the ((}~—P symmetry is never truly broken. However,
when the mixing is weak, the symmetry would appear to
be broken, if the system were observed only over a short
timescale. In 1+ 1 dimensions the situation is analogous,
in that there are finite-energy configuration. —solitons-
which interpolate between the naive vacua, enabling them
to mix. Because of this mixing, the "phase transitions"
we have been discussing above probably correspond to
smooth, but somewhat abrupt, changes.

This viewpoint was discussed previously in II in the
context of P theories (see also Ref. 12). It is a natural ex-
trapolation from the experience with (0+ 1)-dimensional
models in I, where the physics is well understood. %e
stress, however, that the GEP itself does not tell us
whether there can be mixing between its various minima.
To investigate this point, other methods must be brought
to bear. For instance, one could attempt to calculate the
intervacuum mixing effects by semiclassical methods. ' '
In 2+ 1 (and higher} dimensions one would expect inter-
vacuum mixing to be suppressed by factors involving the
spatial volume, so that it is presumably correct to speak of
distinct phases in that case.

Finally, we must not neglect to warn that the GEP is an
approximate method. Experience with quantum mechan-
ics suggests that, while it can be remarkably accurate in
both weak- and strong-coupling regimes, it is not at its
best in describing fhe transitional regions. Consequently,
quite apart from the question of intervacuum mixing, if
the GEP shows, say, two minima of nearly equal depth, it
is not easy to be certain which is truly the lower-energy
state. Relatively small changes in the shape of GEP can
of course have a considerable effect on where the phase
boundaries occur in parameter space. Thus, for instance,
the triple-point structures in Fig. 3 have to be viewed cau-
tiously. (Also, mixing effects are likely to be strongest in
this region, since the intervacuum barriers are low. ) The
picture in Fig. 3 should be regarded mainly as a general
indication of some rather rich behavior in this parameter
range.

B. 3 + 1 dimensions

%e now proceed to 3+ l dimensions. The most gen-
eral, renormalizable fermion-scalar model is

~=4( ir ~+~B}4+—gBNWP

+ 2 l4'+( I0}'+mB'0']+&BP+bBP'+~BI'.

(26)

%e recall that the scalar sector alone is a rather peculiar
theory. The renormalization requires a negative, infin-
itesimal A.B, ——1/(6I I), makmg the theory "precari-
ous." It is stable only when the ultraviolet cutoff is re-
moved, ' and then only if the potential is symmetric.
As we shall see, the addition of fermions also destabilizes
the theory.

Calculating (0~% ~0) one obtains [N.B. (g&)=2 in
3 + 1 dimensions]

Minimizing with respect to M and 0 leads to

M =VB+gB(to

Q =mB +6bBpo+12XB[pp +Io(Q)] .

(28)

(29)

[However, as in P, at large values of Pp (29) gives only a
local minimum of VG, with the global minimum being at
Q =0.] As before, consideration of the one-particle states'
energies shows that the fermion and scalar masses are
given by M

~ ~, p
——p, B (so that we may discard the 8 sub-

script hereafter) and Q
~ ~ o=mx, where

mB' ——mB' —12&BIp(mB ) .

Imposing our requirement (8) gives

(30)

dVG
=aB+3bBIp(ma ) 4gBpIo(p—) =0, (31)

1((}o 4o=p

placing the vacuum, if there is one, at Po
——0.

By virtue of the M equation, the fermionic terms again
reduce to —

4I i (M). Using the formula of Table I we can
express this fermionic contribution as

2gB 4o—(Io P I i }+2—gB 0o—PI i—
p Lp(x')

+ 2gB NOI —1
8m'

where I„'=I„(p) here, —and x'=M /p =(1+gB4tp/p) .
In the above expression we have discarded the constant
and linear terms, which merely contribute to the vacuum-
energy constant and to the cancellation noted in Eq. (31),
respectively.

The most singular term in (32) is the first, containing
the quadratically divergent integral Io(p). This already
suggests that we must renormalize g~ as

62
(33)

and we may demonstrate that this is the only possibility
by considering the second derivative of VG at the origin:

d V6
2

=Ply
1((o ~o=o

9bB I i(mB)
1+6K,BI i(mB )

4gB [Io(P} P I —l(P}l . — —(34)

The first term is finite, and a cancellation between the
second and third terms is impossible, because both have
the same sign. [Note that I i (1+6A,BI i ) & 0 is the con-
dition for 1 VG/1Q ~~ to be positive, which must be
true, otherwise VG(go)= —oo.] Thus each term in (34)
must be finite, dictating the renormalization specified by
Eq. (33).

VG(pp, Q, M) =Ii+ ,
'

(—mB —Q )Io+aBpo+ , m—B po

+ bB(go'+34oIo}

+KB(go +Qp Ip+3Io )

—4[Ij M—(M —pB }Io+gBMppIo] . (27)
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Consequently, all terms in Eq. (32) except the first will
vanish in the limit of infinite cutoff, leaving only
—26 Po as the fermion contribution. The analysis of
the scalar sector proceeds as in Ref. 5 (see also II). One
may quickly ehminate all possible renormalizations of b
and A. other than

Thus the fermionic contribution destabilizes the theory.
Only if 6 =0 and Ci ——0, can the GEP be bounded below.

Since (3+ 1)-dimensional models seem doomed to in-
stability, we return to lower dimensions and consider a
different kind of fermion-scalar interaction term.

—1 C)+ 2 7

i(mR ) [I i(mR )]

C2
bg ——I i(mR)

(35)

IV. THE gg2~ MODEL

In 2+ 1 dimensions the interaction term P Pg is renor-
malizable, according to power counting. This fact
motivates us to consider a model defined by the Hamil-
tonian density

where Ci, C2 are finite, and C, ~ 0. [In the notation of II,
Ci ———I/(12AR ) =z/(48m ).] From Eq. (34) one sees
that the Po ——0 vacuum is locally stable for 6 & —,'(m„
—3Ci /2C) ).

However, one also finds that at sufficiently large
~

((tp
~

the GEP is governed by the Q =0 end point, which gives

VG(gp, Q=0)=const+ , Czma—Pp 26 P—pi . (36)

M=/( iF —V+@. a)/+gag f/+ & (tI + 2 (VP)

+ —,
' ma'y'+ ra(t'+gy' (37)

which is the most general renormalizable form possessing
a (t)~ —(t) symmetry. We shall also consider the model in
1 + 1 dimensions, where the analysis is very similar.

Evaluating (0~@ ~0) one obtains

VG(ko'Q M) =Ii+ Y)(ma —Q )Io+ & ma Po +~ago +8'o +6~aIodo +3~aIp

+15((Ipgp +3Ip Pp +Io ) —2[I) M(M —pa)Io+—gaMIp(gp +Io)] . (38)

Minimizing VG with respect to 0 and M leads to equa-
tions for Q and M which are now coupled:

41dVG 2—:~R =~R —Tga [Io(PR) PR I i(P—R)]-4)

Q '=ma'+ 12za [Io(Q)+(to']

+30CI0o'+60'o'Io(Q)+3[Io(»]'I

4gaMIo(M —), (39)

where

, 1 —12K,,'I i(mR)—Ap 1+6A,,'I ) ( mR )

(42a)

(42b)

M =Wa+ga[ko'+Io(»] .

(Later on, we shall have to enquire whether these condi-
tions give us the true global nunimum of VG. ) Note that
the M equation reduces the fermionic contribution in Eq.
(38) to just —2I)(M). As before, consideration of the
one-particle states shows that Q

~ ~, p and M
~ ~, p are

the physical particle masses in the ((Io
——0 vacuum. Thus,

we define the renormalized mass parameters by

mR ——ma +12)(aIo(mR )+90$[Io(mR )]

4gaPRIo(PR )—~

(41)
I a=I a+gaIo(mR) .

To discover how the coupling constants renormalize we
may examine the derivatives of VG at the origin. The
second derivative is found to coincide with mR (as in the
scalar case, but unlike the situation in Yukawa models).
The fourth derivative is calculated to be

)ga'[Io(WR—) VR'I )(uR)—]

A,„=Aa + 15(Ip(mR ) .

(42c)

(42d)

From this chain of relations we can see that the finiteness
of A,R implies the finiteness of A, This is true irrespective
of the behavior of ga, since either ga Ip is finite, in which
case Eqs. (42a)—(42c) are entirely finite, or else ga Io is
infinite, in which case A,R in (42a) is infinite and (42b)
reduces to

1 1 1
2 ~R+ +04I i(mR )

so that the infinite terms cancel out in (42c).
Consideration of the large-(t)o behavior of the GEP

shows that, as in the scalar case, g remains finite. At this
stage, then, it remains only to ascertain the proper renor-
malization of gz. %'e proceed to rewrite VG in terms of
ga and the finite parameters mR, )MR, A.„g, using (41) and
(42d). The result is

VG(pp, Q„M) D= Vg (4o, Q)+2)u—R+ +2M(»p)[M pR ga(po +»p)]- —L2(X )
2

Sm

+ Io(PR )(M CR )[M CR 2ga—(ko'+»—o)]— (43)
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where

, Li(x)
(Mo) = —mti

4m

, Li(x')
(b.Io') = —pii

4m

Q2
X =

2

M
X

2
pg

The vacuum-energy constant D is

(44)

1+6I i[A,,+15/(Mp+$o ) ——,gs (Io M—I' i)])0,
(49)

where (42d) has been used to eliminate }i,s in favor of the
finite parameter A, Obviously, this condition cannot be
satisfied unless gs is renormalized as in Eq. (47).

With this rnatter settled, we can now simplify Vg.
Eliminating ps in favor of ps, we may write the M equa-
tion as

D =Ii(ms ) —3A,,[Io(ms )] + 15$[Io(mtt )] M i s—=gs(~o+4o') . (50)
(45)

Using this result, and noting that it makes x'=M /ps
infinitesimally close to unity, we may simplify (43) to

VP'(Oo, Q) =-,' m. 'Op'+~, ep4+rOo'-m. "+' '
Sm

Vg(gp) D= VJ—"(Po,Q) G(M—p+Po )

This can be rewritten as

(51)

+ —,
'
(ms —Q )(Mp)+3k, ,(ado)

+6k,,(Mo }go

+ I SN ~o)[ko'+ 30o'(~o)+ (~o)']

(46)

2= 62
Ip(Ptt )

(47)

where 6 is finite.
One may also understand this conclusion in terms of

the conditions that the Q and M equations correspond to
a minimum of Vg, not a maximum or a saddle point.
Evaluating the second derivatives of Vg from (38) one ob-
tains

(Vg}Ment=2(Io M'I' i), —

(Vg)stn=2gsQI i(Io M I'
i ), —

(Vg)nn=Q'I i I 1+6I i[~a+ ISNIo+4'o')]l,

(48)

(Vg) =d V /dM

etc. Clearly ( Vg)M~ is positive, so one will have a
minimum provided that

(Vg)MM(Vg)nn [(Vg)~n—]')o »

1.e.,

which is identical to the renormalized result in the scalar
case [cf. Eq. (2.17) of III].

The right-hand side of Eq. (43) is free of divergences,
except for the last term, involving Io(p, ti). To obtain the
GEP we need to minimize (43) with respect to Q and M.
[Note that in deriving (43) we did not make use of the Q
and M equations. ] However, if gs is assumed to be finite
it is easy to convince oneself that no minimum exists,
since the coefficient of Io(pit ) can be made negatiue, and
arbitrarily large, by suitable choices of Q and M. This
means that a theory with finite gs is totally unstable.
This conclusion can be extended to any gz which does not
vanish at least as fast as

Vg(gp} D= Vg '—(Po, Q;A,„~A,„}——', 6 4)o

where

(52)

A,,=—A,,——,6 (53)

This means that the GEP has exactly the same form as for
the scalar sector alone, except for an additional term
——,

' 6~go . All the other fermionic efftx:ts are absorbed
into the renormalized mass [Eq. (41)], and into a finite
shift of the quartic coupling constant [Eq. (53)].

Confirmation of this result may be obtained by using
Eqs. (41), (42d)„(50), and (53) to reexpress the Q equation
as

Q =ms +12k.,(AIo+Po )

+34[{(o'+60o'(~o)+ 3(~o)'] (54)

which coincides with the scalar-model result [III, Eq.
(2.18)] with A,,~A, We may therefore make use of the
results of III. It is convenient, then, to introduce dimen-
sionless parameters

3kr „3 45 2„4 62

a= ms, p= )ms, y= ms (55)
2m' 8g2 3m'

so that, in the style of III, Eq. (2.23}

P g
——P f (a-+a)—( ) — y~'

(8m )
(56)

where F=4mgp /ms"—
Afficionados of III will know that the analysis involves

various complications. We have carefully checked that all
aspects generalize to be consistent with the statement in
italics above. This is briefly discussed in the two para-
graphs below, which the general reader may omit.

The behavior at large Pp is unaffected by the extra
—yF term, so that the stability considerations of III,
Sec. III 8 are unchanged. Thus, in particular, the bound
p&p, =0.145, in the (2+ 1)-dimensional case, still ap-
plies. (However, in the special cases p=p, or p=0 the
criterion for stability will be affected by the yF term.)—
The other parameter-space restrictions obtained in Sec.
III C and III D of III are derived from the condition for
the Q equation to give a proper minimttm of Vg. In our
case this condition is Eq. (49), which reduces to the form
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y=0. 119 598, a=0.5698 (v= 1),
y=0. 124 442, a=0.6791 (v=2) .

(57)

in III with k, —+k„. Consequently, the whole analysis goes
through with c7 replacing n .The transformations men-
tioned in (3.10) and (3.23) should obviously be supple-

1nented by y'=(mg /mph')y=ye ' and y'=(mII/
mx )y =y/(1+zo), respectively, but we have not been able
to derive analogs of (3.17)—(3.19) and (3.26) in which bare
and renormalized parameters are explicitly separated.

In 2+ 1 dimensions there are certain instances where
the 0 equation is inoperative, and the Q=O end point
provides the global minimum of VG. The discussion of
this complication in III, Sec. IV B, also goes through with
a~a. The treatment of the mz Oa——nd mII ———1 spe-
cial cases also generalizes, with the latter requiring
c7= —P. In both these cases the symmetry is already
spontaneously broken, so that the additional ——', G Po
term does not produce any dramatic change.

%e can now describe our numerical results. As we did
for the Yukawa models earlier, we may summarize them
in terms of regions of "unbroken" and "broken" symme-
try (according to whether or not Po——0 is the lowest
minimum of the GEP) in the c7,P parameter space. This
terminology, although not strictly correct in the (1+ 1)-
dimensional case, saves us from cumbersome circumlocu-
tions. However, we ask the reader to bear in mind the dis-
cussion in Sec. IIIA of this paper of the possibility of in-
tervacuum mixing by solitons in 1+ 1 dimensions. In
Fig. 5 and 6 we show, for the (1+ 1)- and (2+ 1)-
dimensional cases, respectively, how the unbroken-
symmetry region shrinks as the fermion coupling y is in-
creased. Unlike the Yukawa case, the region here disap-
pears by shrinking down to a point, which lies on the a
axis. The coordinates of this critical point are P=O and

0, l6 I I I I I

0.12—

0.08—

0,04—

0 I

-0.4
I

0.4 0,8 l.2

FIG. 6. Same as Fig. 5, but for the (2+ 1)-dimensional ver-
sion of the gP ~ model (37). The unbroken-symmetry region
shrinks down to a point when y reaches 0.1244.

1+6k,,rr J (dp) =0,1

co& 2'~ —M2

where

(58)

There are no complications analogous to Figs. 3 and 4 be-
cause only a single pair of nonzero minima, Po ——+c, ever
develops.

Finally, following Refs. 1, 2, 4, and 6, we may calculate
the mass of a two-boson state in the Gaussian approxima-
tion. It turns out that the gIIpzl(tg term only produces a
contribution which, together with other terms from the
scalar potential, cancels by virtue of the 0 equation: it
serves, in fact, to produce the additional fermionic term
present in the new 0 equation, (39). Thus, the equation
for the bound-state mass Mz remains, as in III (sIM,' also
Ref. 6),

A,,rr(po) =A,II+15$[Ip(Q)+(tp ], (59)

0.4—

0
0.4 08

which reduces to A,, (not A,„, note) at Po ——0. Thus when
A., is negative, there can be bound states in the ((Io

——0 vac-
uum. However, one may show, by a straightforward gen-
eralization of the argument in III, that iL,rr is positive in
any (()o&0 vacuum. Hence, the boson-boson interaction is
repulsive, and bound states do not form in those vacua,
according to the GEP approach. Fermion-antifermion
and fermion-boson states can be investigated in the same
fashion, but these show no nontrivial effects. Presumably,
such interactions are only seen when one goes beyond the
Gaussian approximation. '

V. GOMPARISON %'1TH 1/N ANALYSES

FKJ. 5. The o, ,P parameter space for the (I + 1)-dimensional
version of the g$1$$ model [Eq. (37)]. For y =0 the "unbroken
symmetry" region extends out to the solid curve. As y in-
creases, the region shrinks, as illustrated by the dotted curves
corresponding to y =O.OS and y =0.1. At y =0.1196 the region
has shrunk to a single point, and thereafter it disappears entire-
ly.

Our results for the gg fP model are markedly different
from those of other recent studies of similar models.
A direct comparison is not easy since these works study
the 0(N)-symmetric version of the model in the limit of
large N. Nevertheless, it is evident that the crucial differ-
ence lies in the renormalization, since in these references
g11 reIIla111s flfllte.

In our analysis, an Io(pz) term —linearly divergent in
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2 + 1 dimensions —remains after mass and A, renormaliza-

tions [see Eq. (43)]. It can only be tamed by taking

ga ——0 (1/Io). The crucial difference in Ref. 10 is that at
the corresponding stage, the coefficient of the Ip(pa)
term is just the square of the M equation. Thus once VG

is minimized with respect to M, the divergence disap-

pears; everything is fine, and ga can remain finite.
Now, A, renormalization in Ref. 10 differs from ours by

including a ga Io term. Recall that we found earlier [Eq.
(42) and the following ones] that, in order for the fourth
derivative of Vo to be finite, we need A,„—:A,a
+15$Ip(ma ) to be finite. If instead we try to follow Ref.
10 we would want to suppose that

ga Io—(Pa)

is finite. Equation (43) would then become

(60)

+2M(bIp)[M —pa —ga(Po +AIp)]

+ Io(pa )[M Vtt ga—(0o'+—~Io)]'

+ Io(lj tt )ga'2~o(~Io+20o') . (61)

Were it not for the presence of the last term, we would
now be in the same situation as Ref. 10, and could take A,„
and ga as finite. However, the last term, after minimiza-
tion with respect to 0 (which gives AIp ———Pp, corre-
sponding to Q=ma+4ngp ), becomes —2ga Io(pa)fp .
Not only is this an uncanceled divergence, it also renders
the potential unbounded below. One can experiment with
variants of Eq. (60) without affecting the basic conclusion:
finite ga leads to a disastrous instability.

Although an analysis of the O(N)-symmetric generali-
zation of the P PP model is beyond the scope of this pa-
per, we have investigated this question. We find that in
the generalization of Eq. (61) the last term is suppressed by
one power of 1/N relatiue to the other terms. Thus, if we
take the formal N~ co limit, this term drops out and we
recover the results of Ref. 10. However, at any finite N
the instability remains —and can only be tamed by taking

ga ——0(1/Ip).
Thus it seems to us that the 1/N expansion is mislead-

ing here: it does not see the troublesome divergent term
because it improperly takes the N~ 00 limit before taking
the cutoff ~ao limit. An alternative viewpoint is that
the fault lies with our Gaussian approximation. However,
since the GEP, as a variational approximation, is an upper
bound on the true effective potential, we see no escape
from the conclusion that the instability problem is a real
effect.

The same problem leads to a puzzle concerrung super-
symmetry. If we convert from Dirac to Majorana fer-
mions and set

ma lJ a, 3Aa gaPa, —1—8$=ga——2

the theory becomes supersymmetric. [See, eg. , Ref. 8, Eq.
(2.6) with N =1.]

VI. CONCLUSIONS

We have found that the addition of fermions to a scalar
theory tends to destabilize it. To avoid the theory becom-
ing completely unstable, the bare coupling constant must
be infinitesimal of the form

ga'= 6'/Io, (63)

with 6 finite. This conclusion applies to both gaPitg
and gaP PP interaction terms.

We should stress the strangeness of this result: it does
not resemble any renormalization we have encountered be-
fore. For instance, there is no sense in which

ga ——6[1+0(G)]. Indeed, ga and 6 have different mass
dimensions, in general, and this upsets expectations based
upon power counting.

Although we are somewhat uncomfortable with Eq.
(63), we have been at pains to show that, in the context of
the GEP approach, there is no possible alternative: any-
thing "bigger" (vanishing less quickly as the cutoff tends
to infinity) would make the theory unstable, while any-
thing "smaller" effectively decouples the fermions alto-
gether. Furthermore, if the GEP—a variational

approximation —indicates that a theory is unstable, it
seems inescapable that the instability is present in the ex-
act theory. Thus gz must be at least as small" as in Eq.
(63). (These conclusions apply in the context of an ultra-
violet cutoff, or a lattice regularization. The situation in
dimensional regularization is somewhat different, and is
discussed briefly in the Appendix. ) This point is at the
heart of our differences with the 1/N-expansion re-
sults, ' ' and causes difficulties with supersymmetry, as
we discussed in the last section. The implications are dis-
turbing, but we can see no escape from our conclusions.

Once the renormalization (63) is accepted, the net effect

In the 1/N expansion ' everything works as one
would expect: both ( and ga remain finite; the renormal-
ized masses come out equal; and the vacuum-energy con-
stant vanishes. For us, none of these desirable things hap-
pen. Imposing the relations (62) appears to be incornpati-
ble with the mass renorrnalizations, for instance: one can-
not make ma, pa both finite, let alone equal, unless

ga ——0 (1/Io ), which is even smaller than usual.
Curiously, though, if we impose a modified version of

(62) with 30g=ga, we find equal renormalized masses
and a vanishing vacuum-energy constant. However, as
usual, there is a negative ga Ip(pa)go term which ruins
everything. Even if we now renormalize ga as

ga 6 /I——o, the (quasi)supersymmetric relations will
make g and A,„both vanish, leaving Vo
= —,

'
mR Pp ——,6 Pp, which is unbounded below.

We do not know what to make of these results. It is
not out of the question that the supersymmetry is
anomalous (i.e., illusory) in these models, but that seems a
very drastic conclusion to draw. It is slightly surprising
that the Gaussian ansatz, although it seems to treat the
bosons and fermions evenhandedly, does not preserve su-
persymmetry. Perhaps it is possible to formulate the
Gaussian ansatz at the superfield level, thereby respecting
the supersymmetry at all stages.
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of the fermions on the GEP is easily summarized: for a
Yukawa interaction the fermions produce an extra
—(g&)G 4)o term, while for a P gg interaction they pro-
duce an extra ——', 6 Po term, as well as inducing a finite
change in the renormalized quartic coupling constant.
There does not seem to be any explicit dependence upon
the fermion mass, pit. We also observe that the results ul-

timately involve only the square of gti, so that the sign of
the interaction term in the Lagrangian is immaterial (just
as with fermion mass terms).

Although the fermions essentially add only a single
term to the GEP, this term has interesting effects upon
the physics. Most strikingly, in the (3+ 1)-dimensional

Yukawa model it destabilizes the theory entirely. In
the lower-dimensional models it, roughly speaking, en-
courages spontaneous symmetry breakdown. This effect
is illustrated in the figures. We have warned that in the
delicate transitional regions one cannot expect the GEP to
give more than a qualitative description, and also that in
1+ 1 dimensions the interpretation must take into ac-
count the possibility of intervacuum mixing by solitons.
That is, our results should not be viewed as a definitive
description of the behavior of these models, but rather as
a general overview which can serve as a guide to further
exploration. Furthermore, the problems raised in Sec. V
deserve further study.

Note added. Since this paper was written it has been
discovered [P. M. Stevenson and R. Tarrach, Phys. Lett.
1768, 436 (1986)] that (A,P )3+ i can be renormalized in a
completely different way from that of Refs. 3—5. The re-
sulting form of the theory is not "precarious" (it has posi-
tive Ati ) and it seems likely that it can be consistently cou-
pled to fermions. This question is currently under investi-
gation.
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APPENDIX: DIMENSIONAL REGULARIZATION

In the text we have treated the divergent integrals as
though they were implicitly regulated by an ultraviolet
cutoff. One would normally expect to obtain the same re-
sults when dimensional regularization is used instead, but
such is not the case here. The point is that the nature of
the results depends critically upon the sign of the diver-
gent integrals.

In all the models studied, the condition for the M equa-
tion to give a minimum, not a maximum of VG is

d VG =2 g [Io(M) M I—)(M)] )0 . (Al)

This is obviously satisfied with an ultraviolet cutoff, but
in dimensional regularization it becomes problematic. In
v-e spatial dimensions one has

Io(M) =1/(2sre)+O(1), v= 1

= —M/(4m)+O(e), v=2
= —M /(8m@)+O(1), v=3,

while I i (M) is convergent for v= 1,2, and is
1/(4n e)+O(l) for v=3.

The results can depend upon whether we approach the
physical dimension from above or below. For example, in
1 + 1 dimensions we would recover our previous results in
the limit @~0+,but we could get nothing sensible out of
a~0 —.In 3+ 1 dimensions the situation is the other
way around. Dimensional regularization endows Io with
a firute and negative value in 2 + 1 dimensions, and there
is no way to recover, our previous results. Note that if
(A 1) is not satisfied, then the energy is minimized by
M~ao, so that the fermion degrees of freedom "freeze-
out" and effectively decouple from the theory altogether.
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