
PHYSICAL REVIE%' D VOLUME 34, NUMBER 10

Debye scalar potentials for the electromagnetic fields
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The electromagnetic fields away from sources are known to be expressible as linear combinations
of LBO and M operators on two Debye scalar potentials. It is shown that these L,M operators (or
more precisely, a suitably rescaled version thereof) satisfy the OL,'3, l) dynamic symmetry. For the
static case, an explicit example of a singular Debye potential is given to accommodate the magnetic
monopoles.

It is well known that the electromagnetic fields may be
expressed in terms of a pair of electric and magnetic
Hertz vector potentials. ' In the source-free region, the
E,B fields may be expressed as a linear combination of
vector operators LBo and M (defined below) operating on
a pair of scalar Debye potentials. ' (The Debye poten-
tials ' ' are the purely radial Hertz potentials. )

The purpose of this paper is to make the following two
observations.

(a) The L,M operators ' (L= —rXV, M=VXL) [or
more precisely, a suitably rescaled M operator (see below)]
satisfy the usual O(3, 1) algebra. Loosely speaking, the M
operator resembles the role of the Runge-Lenz vector in
the familiar Kepler problem in classical mechanics and
the hydrogen atom problem in quantum mechanics.
[There, it is the O(4) algebra. ] This O(3, 1) result may be
interpreted as the most transparent and effortless manifes-
tation of Lorentz covariance of electrodynamics formulat-
ed purely from the three-vector notations.

(b) Inasmuch as the E,B fields formulated in the usual
Debye potential language are source-free and the mul-
tipole expansion is usually without the monopole term,
can singular and/or non-single-valued potentials produce
monopole sources'? The answer is affirmative. We give
here an explicit example of a singular magnetic Debye po-
tential which corresponds to the familiar vector potential
A for a Dirac monopole.

(1) For the sake of readability, we briefiy summarize
the formalism of the Debye scalar potentials. Let

provided that fx, f~ satisfy the wave equations

(3o —V ), =0.

—(1+r V) 0 4E
A rBo —L (6a)

with the usual relations to the fields

E —V —Bp

8 0 VX A (6b)

The duality is manifest here in the following sense:
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8 —8

is equivalent to

4E WM

4z

and

A

We note in passing that the usual scalar potential P and
the vector potential A can be expressed in terms of
yx y~ as

L= —r&V,

M=VOL.
Then the E,B fields expressed as the LBo,M vector opera-
tors on P', PM (c = 1, BO=B/Bt) given by

M LBo

L'o —M Ax
(3)

with

8 —V —Bp

VX A

—(1+r V') 0
rBp —L

(7a)

(7b)

satisfy the Maxwell equations away from the source

VX Bp E
—Bp VX 8 =0,

r

V. 0 E
0 V 8

(4a)

(4b)
[L L, ]='(,k'k,
[L™i]=@,jkMk, .

(8a)

(2) The O(3, 1) algebra. The vector operators L,M, as
defined in Eqs. (1) and (2), satisfy the following commuta-
tion relations:
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M =LV+2V (9)

we can formally rescale the M operator. Define

[M;,MJ ]= —e,jkLk V (Sc)

Since V commutes with both I. and M (Ref. 6) and in

fact

It is interesting to note that the Dirac string feature as-
sociated with the vector potential (15) is herewith
transferred to a singular Debye scalar potential. The po-
tential PM of (17) when substituted into (13) yields direct-
ly the monopole field B=gr/r by noting that

M= —rV'+V(r. V)+V .

L=iL=r)& p,

M= —M,
N

where

co=( —V )'

(10b)

While the V(r V)+V combination would annihilate the
I/r potential, the polar angle part of the Laplacian yields
the desired I /r field and the angular dependence miracu-
lously disappears.

We note in passing that the duality discussed in Eq. (7)
above suggests that an electric Debye scalar potential of
the form

Then we have

[~l i ~j ]= i~lJk k (12a)

2e 8
lli cos

T 2

[L;,MJ ]=i ejkMk, (12b) would yield the electrostatic Coulomb field from Eq. (3):

[M;,MJ ]= is;pL—k . (12c)

Equivalently, the vector potential A is given by Eq. (6a)
as

(14)

Equations (12) are seen to be a basis of the familiar O(3, 1)
Lie algebra. '

(3) The static monopole solution. From Eq. (3), we
have, for the static case,

(13)

E=Mgs ———r .
2

On the other hand, the conventional scalar potential P of
Eq. (6a) seems ill defined for this case. Despite the singu-
larity in the Debye potentials (17) or (19), the E,B fields
themselves are well defined except at the charge.

%e conclude that singular Debye potentials can provide
an interesting escape clause from the usual predicament of
the lack of accommodation for the monopole sources.

Ap ——g (1—cos8)
r sin8

Since

(15)

(16)

we see that (14) admits a solution of the form

ill cos2g 0
2

For the Dirac monopole, the vector potential has a purely
azimuthal component

Note added

(a) The alternative to dealing with Dirac stringlike
singularities is to introduce the coordinate-patch language
of the fiber bundles. " There one can find two copies of
the potentials (one in each sector) which are related by a
gauge transformation in the overlap region.

(b) One of the advantages of invoking the Debye scalar
potentials is that the electromagnetic fields involve only
two degrees of freedom (ltd, it~) (Ref. 6). The duality dis-
cussed above refiects this simplicity. The vector potential
A and its dual A are related to the same set of Debye po-
tentials.
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