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Higher-winding-number solutions of the nonlinear o. field are used to break the global as well as
local symmetry of SU(2) in a six-dimensional gravity theory coupled with the U(1) Maxwell and o.

field. The masses of three gauge bosons are split and their ratios of masses are obtained for various
winding numbers. The low-lying states of this model not of Planck scale are a scalar triplet, the
graviton, photon, and low-mass gauge bosons.

I. INTRODUCTION

Theories with higher-dimensional space-time, originat-
ed by Kaluza and IGein, have recently attracted much re-
vival interest from the viewpoint of unifying existing
gauge interactions with gravity. For such a scenario to be
valid in describing the real world one must be able to find
a ground state, with the extra space having some specific
form of geometry, which allows the extra space to com-
pactify into a size on the order of the Planck length. The
four-dimensional gauge symmetries are understood to ori-
ginate as isometrics of the compactified internal space.
But what we really need to obtain in four dimensions is
not only the gauge symmetry but also a mechanism by
which it can be broken. The Kaluza-Klein theories can
provide an interesting possibility for the breaking mecha-
nism which might be seen as an alternative to the usual

Higgs mechanism.
We have described in a previous paper' one possible

mechanism which breaks the gauge symmetry by intro-
ducing a new field (nonlinear o field) in the six-
dimensional Einstein-Maxwell theory. This scheme is
contrary to the conventional wisdom which hopes that the
states massless at the tree level would acquire their small
masses via the quantum effect. But our electroweak-
gravity model has been seen to be more concrete in its pre-
dictions as well as have smaller parameters than those of
the Higgs scalars. A similar approach has been studied by
Sobczyk who uses the conventional scalar fields with
tachyonic masses to obtain the symmetry-breaking pattern
of SU(2))&U(1)~U(1), the unbroken U(1) being a sub-
group of SU(2).

In this paper we will describe a mechanism which
breaks the symmetry not only of local SU(2) but also of
global SU(2). For this purpose the higher-winding-
number solutions of the o field are used to induce small
deformation on the internal manifold. Here the winding
number means the homotopic classification n2(S ) of the
mappings from the internal space to the target manifold
of the o field. The case treated in Ref. 1 is just that of
n =1 winding number.

The symmetry and its breaking are related to the invari-
ances of the background fields. ' The gravitational part
is invariant under isometric coordinate transformations on

S =SU(2)/U(1) induced by a left translation on SU(2) if
it is accompanied by a target space rotation. In order to
have the corresponding massless gauge vectors these
isometrics must be invariances of the full background
configuration, that is, not only the gravity but also the
scalars. The scalar field is invariant under the internal
symmetry transformations 5$"=riq V„"(tI)), where V„"(P)
with A a group index, are Killing vectors corresponding
to the isometrics of the scalar manifold metric h&„. But
riz is constant and cannot depend on x'. The scalar field
is invariant under global transformation only. Thus the
local symmetry is broken and all three gauge bosons ac-
quire equal masses from the remaining global symmetry.
Furthermore, the internal manifold deforms slightly for
the classical solutions of the o field with the winding
number higher than 1, and the isometry group of the
background configuration is reduced to O(2). The
remaining SU(2) global symmetry is broken down and the
masses of three gauge bosons split into two different
masses.

The other low-lying states in this model are the mass-
less graviton and photon and a low-mass scalar triplet.
The scalar triplet is originated from the isometry of the
scalar manifold metric h„, and is the characteristic of
this model irrespective of special winding number.

Our results are not immediately applicable in under-
standing electroweak phenomenology. We hope, however,
that our model will be of some value in constructing a
realistic electroweak-gravity model.

II. SPECIFICATION OF THE MODEL
AND BACKGROUND SOLUTION

The phenomenologically interesting Kaluza-Klein
models generally contain not only the gravitation but also
some additional fields like elementary gauge fields. In
this paper we will work with a six-dimensional Einstein-
Maxwell cr-field theory as in Ref. 1. The action with a
cosmological constant is

+ —g t) P"t) P"h„„. (1)
2t
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The notations are the same as in Ref. 1. Especially the
nonlinear tr fields g(x), @=1,2 are thought of as coordi-
nates of a two-sphere S with metric Ii„„(Ref.2).

The classical equations of motion from the action are

K
~M~ &g—i'm~ = —

2
(TMw ~gMtv ),

(Q gFMN) (2b)
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The topology of the classical solutions of Eqs. (2) is as-
sumed to be Mq &&Bz, M4 being Minkowski space and Bz
being a slightly deformed two-sphere. We take
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with the energy-momentum tensor
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equation of motion in (2b) up to 0 (e ).
As the physical coordinate and internal space of the o

field are both described by S, it is possible to describe the
classical solution of the cr field by homotopic classifica-
tion nz(S ) =Z (Ref. 7). The solution in Eq. (4c) has the
nontrivial Z =n winding number and satisfies the equa-
tion of motion in (2c) in the limit e—+0. Note that the
Levi-Civita connection I „s in Eq. (2c) must be obtained
from the o-field internal space metric h„„of (4d). This
solution corresponds to the monopole configuration of the
nonlinear O(3) model.

By substituting these vacuum expectation values into
(3), we could find the following expression of the energy-
momentum tensor:

gstttdz dz =rl „dx dx" +a [1+sf(8)]d8

+ a [1+kg(8)]sin 8dg (4a)
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Using these expressions one could obtain the following
algebraic equations from (2a) when M, X takes four-
dirnensional or internal coordinates, respectively:

P&=nP,
eg' — cot8 sf-ef'

2
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G(8)= f [f(8)+g(8)]sin8d8. 2
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Equation (4b) describes the monopole configuration of the
Maxwell field on a deformed two-sphere. Where the
neighborhoods of two patches overlap, say at 8=m/2, .
0&/ &2ir, the two representations of As must be related
by a single-valued gauge transformation requiring s to be

r
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The field strength corresponding to (4b) is

—s sin8 sf eg
e~=

2
'+ 2+ 2

(6)

The monopole charge calculated from Eq. (6) using the
Gauss law is

2% 6 2%
s 1+—[G (m ) —G (0) = X integer

e 4 e

as expected. This monopole configuration satisfies the

2p 2

(10a)

We now identify e as (an/2t)4/~ F—, w. hich is
roughly the ratio of the contribution to the energy-
momentum tensor from the Maxwell field versus from the
o field. As the cr field acts mainly as the trigger of the
spontaneous symmetry breaking while the Maxwell field
is responsible for the compactification, and the related
two scales are —10 GeV and —10' GeV, respectively,
the magnitude of v' —e is roughly 10 ' . By equating the
coefficients of each power of e in Eq. (9) we can obtain
the expression for the radius of internal space a and the
equations which f and g must satisfy:
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IH. FLUCTUATION ANALYSIS
AND MASS SPECTRUM

En order to obtain the spectrum one must expand the
field around the ground state as

In summary, we introduce two matter fields into six-
dimensional Einstein theory. The Maxwell field is re-
sponsible for the dimensional reduction through the com-
pactification and the 0 field is responsible for the small
deformation of e order on the compactified two-
dimensional internal space. The classical solutions of
Eqs. (4) represent the consistent correction in e to the non-
deformed solutions of Einstein-Maxwell theory without
the cr field.

gww =gww+&"mx ~

~~ =~~+ V~

g —
1|tP+ZP

(1 la)

(1 lb)

(1 lc)

where h11IN, Vst, and z" represent the fluctuations. We
next expand the action and retain terms up to those bilin-
ear in the fluctuations. The gravitational and Maxwell
parts of the Lagrangian are now standard. The contribu-
tion of the scalar after some tedious calculation is given
by

S~ai„————I d z —g 28,z 8'z++2V+z+V z +2V+z V z+ — (Bitt1 e)2z+z
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where we use +,—helicity eigenstates of Ref. 3 and especially

Q
Z+ =+7 exp(+i/~)(z +i sing z~) . (13)

The modified covariant derivatives on z+ are
r
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As can be seen from the above equations, the effective isohelicities of z+ are +n.
At this point we specify to the light-cone gauge. In the light-cone coordinates the scalar product takes the form

A B=A+B-+A-8++A;B;, i =1,2. (15)

We now put V- =h„- =0. It turns out that the + component of V and hzs are nonpropagating fields which may be
eliminated by use of their field equations. These procedures are well described in Ref. 8. The Lagrangian W separates
into sectors according to the transverse O(2) quantum number of the fields:
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Note that the light-cone coordinates +,:are completely
absent in the above expressions.

First, we analyze the mass spectrum in the limit @~0
or ~ a /t~0. The various fields are now expanded in
harmonics Di„of the internal space 5 =SU(2)/U(1),
1.e.,

7f+ z z
(2 cos P —cos 8—1)z+z

a sing

The zero modes of the spectrum are always related to the
symmetry of the classical solution. For the W ' part, it is
related to the rotational symmetry of the cr-field target
manifold. Thus the zero-mode fiuctuations of the scalars
can be identified as z+ acDI ~'(~I),P~) with m =+1,0.
We have explicitly checked that z+ ~ (1+cosP),
exp(i/~)sing, exp(2ig~)(1 —cosP ), and z =z+ are
really the zero modes of the W ' part, by substituting
these z+ into Eq. (16d) and integrating over internal space
8,$. It can be easily shown that DI ~'(P, P ~) can be ex-

panded in harmonics of isohelicities +n as
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It is difficult to obtain the full spectrum of the W ' part
even in the limit e~O, because states with different 1 s no
longer decouple. Rather we will concentrate on the zero
mass spectrum of Wo'.

The W ' part can be expressed using conventional
internal space Laplacian V in the limit e—+0 as follows:

in the notation of Wigner. The expansion method in coset
space is well discussed by Salam and Strathdee. The
fields are decomposed into irreducible representations of
the SO(2) rotations, labeled by the "isohelicity" A, . In par-
ticular, as noted previously, the isohelicities of the scalar
fields are +n, where n is the winding number of the
homotopy classification. The spectrum of the internal
Laplacian can be found by algebraic methods if the inter-
nal space is a coset space. Using these methods and in-
tegrating over the internal space 8,$ in Eqs. (16) we can
obtain the mass matrix for each Lagrangain in (16). After
diagonalizing these matrices we can get the following
mass spectrum:

for P, ~I)
~ of Eq. (4c). There are six zero modes corre-

sponding to three m =+1,0 states and two degrees of
freedom from the complex nature of z+ for each m.

We can now understand the mass spectrum of the
model in the e~O limit. Each massive graviton of mass
8 =l(1+ I)/a for I) 1 has five helicity states, helicity
+2 from W+-, helicity +1 from W+-', and the helicity-0
partner of this state is found in the system &0. The
gauge bosons of mass

a'=, [l(l+ I)+(21'+21)'"]
a

have similar structure: two transversal helicities +1 are
found in the W-' system and one longitudinal helicity-0
state is found in the W system. The massless photon of
1=0 in the W+-system has no corresponding helicity-0
state in the W system. The massless graviton has only
helicity +2 states in the W+-system. The massless gauge
bosons of SU(2) from the W+-' system for 1=1 will be
shown to get small masses of order E/a after the e
correction. The corresponding helicity-0 state can only be
found in the Wo' system. This fact has been explicitly
checked for the n =1 case. Then there remains three
massless scalars from the six zero modes, which also ac-
quire small masses of e order. This mass correction
should be of nontachyonic nature due to the nontrivial to-
pology of the background solutions. There always occurs
three scalars of very small masses due to the above mech-
anism for the Einstein-Maxwell theory weakly coupled to
the nonHnear o field for any winding number.

We mill now calculate the e correction to the mass spec-
trum. As e is very small the correction to the massive
spectrum is rather meaningless. The inassless states of
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1 =0, i.e., the graviton and the photon, receive no e
corrections as will be seen. The corrections on the mass-
less states from the W ' system are very difficult. For-
tunately, the correction on the massless gauge bosons
from the W —+' system which is most interesting is rather
simple.

We choose a covariant basis F. +wh-ich is suitable for
the manifold with the metric of Eq. (4a):

The spin connection which satisfies dE +=-—co-++ hE
up to O(e ) is given by

+ cos8 —1+ sin8 dg
Ef Eg e'g

2 2 2

F. += +-e+'~ 1+ d 8
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I
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which of course modifies the conventional covariant
derivatives. %'e can show that
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8
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1 8 2
.

8 2
. 8 +
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and similarly for others.
Using Eq (24 ) xt is ~y to sm that the graviton and photon remains massless up to 6' order. Applying the above for

mulas to the l = 1 multiplet of the W-' system we can get these bilinears into the form, where we suppress the isospin
labels,

()x+ h;" V )

u2.

vZ.
(25)

where

& = —f 18de& gD]].'(V'+—&+ )D,'. f 18dy& g~D,'. ~',—

C= —f 181/+ gDO'V Do f—181/V g~Do—
(26a)

(26b)

D = f d8dg+ gD ]V Do— — —
1/2

f 1814&—g IDo I'

and so on, with

g=gsag~ ——a (1+of+kg)sin 8 .

There seems a large possibility for the forms off and g
which satisfy Eq. (10b). But they are severely constrained
for our perturbation scheme to work. The covariant
derivatives acting on Dz hke Eqs. (24) should not intro-
duce any singularity in the region 0&8&m. The most
dangerous point is 8=0 and m. %e can choose the fol-

Syn2El 2 COS21l 28 8
8 2 2

2cos 0
sin —+ cos

~ 2. 6'

2 2

X sinOcos&d8,

lowing forms for f and g which are free from the above
singularities:
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g (8)=const= f(8=0)=f (8=m ) .

f(8) is a solution of the differential equation

(28b)

in cosz. -2 z. 26'
2 2

s
——cot8+f=

2 2

sin + cos
. 2„8 2„0

2 2

(29)

In fact f and g of Eqs. (28) correspond to a new metric:

gee =a [1+ef (8))

g&&
—a sin 8dg

(30)

f(8)= —,ln(1+ cos'8),2 1

1+cos 8 cos 8
(31a)

with a =a [1+—'ef(8=0)] and f(8=0)=f(8=m)
=f '(8=0)=f '(8=m)=0. It can be easily checked that
the covariant derivatives of this new metric do not intro-
duce any singularity when they are applied to every D~

We return now to our mass matrix of Eq. (25). Using
Eqs. (28) and (24) we can calculate various quantities in
Eqs. (26). For the case of n =2,f (8) and g (8) are

For the other cases we rely on numerical procedures and
have found that A, 8, and C are equal to each other and
D and E are equal for all n. Then the three roots of Eq.
(25) are simply c} =A and t) =A+(2/a)D. The gauge bo-
sons corresponding to t) =A (2—/a)D acquire small
masses of order e. The helicity +1 partner of the massive
graviton has the mass of 8 =A. Of course, this mass
must be equal to that of the helicity +2 partner, which is
just t) =C. Except for the n =1 case, the gauge bosons
acquire different e corrections according to the quantum
number m. This global breaking of SU(2) symmetry is
due to the e terms in Eq. (4a). We display in Table I the
masses of gauge bosons corresponding to ( t) )

'

=[A —(2/a)D]' in units of &—e for the m =+1 and
m =0 sectors and their relative ratio with various wind-
ing numbers n.

In a sense, the m =0 sector corresponds to the Z boson
and the m =+1 sector corresponds to the W+-boson of
the standard model. The analysis for the n =1 case can
be thoroughly carried out for all W+-, W-+', W, and

system and the results are in complete agreement
with those of Ref. 1 when we substitute a as a(1+@/2)
and 5 as 1+@'/2 in the results of Ref. 1.

g(8) =1—ln2,

and A, 8, C, D, and E are calculated to be

36
(4—~),

2Q

m=0,

D =E =—[1+@(, n —, )—],—1 3 3

A =8 =C = — (m —2),2 3E

a 4a

D =E =—[1——„e(n.—2)],1 3

The simplest case is that of n = 1:

1D=E=— 1 —— m =0+1s

(31b)

(32b)

(32c)

(32d)

(33)

IV. DISCUSSIONS AND CONCLUSIONS

As mentioned before the analysis of the spectrum of the
helicity-0 sector is very difficult because states with dif-
ferent values of I no longer decouple. But it is quite cer-
tain that the remaining three zero modes of the W sys-
tem acquire positive mass square of order e after the e
correction. This expectation is based on the nontrivial
topology of the background solutions of two matter
fields. ' In fact, we can explicitly check this claim for the
n = 1 case as in Ref. l.

As is well known, it is possible to obtain chiral fer-
mions under the nontrivial background of the Maxwell
field in six-dimensional theory. ' Another interesting
property of a six-dimensional theory suitably extended to
supergravity coupled to matter fields is the theory is free
of both gravitational and Yang-Mills gauge anomalies. "
We hope that these observations more or less justify our
choice of six dimensions.

The initial motivation of Kaluza was to unify the gravi-
tational and electromagnetic forces. From this point of
view, the scheme explained here is rather anti —Kaluza-

TABLE I. Masses of the gauge bosons and their relative ratio for various winding numbers n.

Mass in unit of V —e/a

1

2
3
4
5

10
20
50

m =0 sector

1

0.8024
0.6801
0.5983
0.5394
0.3857
0.2736
0.1730

m =+1 sector

1

0.6543
0.5184
0.4427
0.3931
0.2750
0.1938
0.1224

(m =+1)ratio=
I'm =0)

1

0.8154
0.7622
0.7400
0.7289
0.7128
0.7085
0.7073



3108 H. J. SHIN 34

Klein. But it is well known that phenomenologically in-
teresting Kaluza-Klein models generally contain more
than the gravitational field. The Maxwell field is neces-
sary for the compactification of the internal space. The
nonlinear rr field can be interpreted to be not fundamental
but rather an effective field theory for composite scalars.
The six dimensions are required to obtain the SU(2) gauge
boson. In this sense, our scheme explains economically
the phenomenologically successful standard model.

In conclusion, one can break the global SU(2) symmetry
as well as the local symmetry, thus splitting the masses of
the three gauge bosons. For this purpose, higher-
winding-number solutions of the cr fields are utilized to
break the rotational symmetry of internal space, reducing
its isometry group SU(2) to SO(2). We hope that these re-
sults are of some value in constructing some specific
physically interesting models, especially for the elec-
troweak theory. Obviously, there remains much to study
to make our models realistic: that is, the ratio of masses

between the gauge bosons after the renormalization-group
effect, the exact content of physical gauge bosons, and
couplings to other matter fields such as ferinions, etc.
The most serious of all is the question that gauge sym-
metries are indeed obtained by a Kaluza-Klein mecha-
nism.

ACKNO%'LEDG MENTS

The author would like to thank J. Sobczyk for showing
him his results prior to publication and Professor J.
Strathdee and Dr. E. Sezgin for reading the manuscript.
He would also like to thank Professor Abdus Salam, the
International Atomic Energy Agency, and UNESCO for
hospitality at the International Centre for Theoretical
Physics, Trieste. This research ~as supported in part by
the Research Institute for Basic Sciences, Kyung Hee
University, Korea, and also by the Korea Science and En-
gineering Foundation.

'On leave of absence from Research Institute for Basic Sciences
and Physics Department, Kyung Hee University, Seoul,
Republic of Korea.

H. J. Shin, Phys. Rev. D 33, 3626 (1986).
C. Omero and R. Percacci, Nucl. Phys. 8165, 351 (1980); M.

Gell-Mann and B, Zwiebach, Phys. Lett. 1418, 333 (1984);
Nucl. Phys. B260, 569 (1985).

S. Randjbar-Daemi, Abdus Salam, and J. Strathdee, Nucl.
Phys. 8214, 491 (1983).

~C. S. Lim, Phys. Rev. D 31, 2507 (1985); J. Okada, Class.
Quantum Gravit. 3, 221 (1986).

5J. Sobczyk, ISAS report, 1985 (unpublished).

C. S. Aulakh and D. Sahdev, Nucl. Phys. B262, 107 (1985).
7See, for example, R. Rajaraman, Solitons and Instantons

(North-Holland, Amsterdam, 1982).
S. Randjbar-Daemi, Abdus Salam, and J. Strathdee, Nuovo

Cimento 848, 167 (1984).
Abdus Salam and J. Strathdee, Ann. Phys. (N.Y.) 141, 316

{1982).
'oS. Randjbar-Daemi, Bern University Report No. BUTP-

83/19, 1983 (unpublished).
' S. Randjbar-Daemi, Abdus Salam, E. Sezgin, and J. Strathdee,

Phys. Lett. 151B, 351 (1985); M. B. Green, J. H. Schwarz,
and P. C. %'est, Nucl. Phys. 8254, 327 (1985).


