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A representation of the superstring Jacobian is given for a general choice of the gauge slice e,„(x},
P„(x), A(x). The expression involves an integral over the expected ghost fields c,(x) and )(.(x) and
traceless antighost fields b'"(x) and p(x), and the action is invariant under local supersymmetry and

super-%eyl transformations. Conserved currents of the ghost system are calculated directly from
this action.

I. INTRODUCTION

In the Polyakov approach' to the bosonic string one
must integrate over all world-sheet metrics g&„(x) with
the effects of diffeomorphisms and Weyl transformations
divided out. For this purpose, one chooses a reference
metric g&„(x} and calculates the Jacobian of traceless
(h&„) and trace (rg&„) fluctuations with respect to infini-
tesimal diffeomorphisms generated by vector fields (P)
and Weyl transformations (cr) using the equations

h„„=V„g„+V/„g„„V.g, —

2~„„=(2cr+Vg)g„„,
where V& is the covariant derivative in the reference
metric. This Jacobian can be represented as an integral
over formally real anticommuting ghost fields c&(x) and
(traceless symmetric) antighost fields b&"(x} as

r

Jit(g) = f (db"")(d c)pepxf d'x+ gb"'—V„c„. (2)

This action is manifestly invariant under reparametriza-
tions of the reference metric combined with standard ten-
sor transformation rules for the ghosts. In treatments
where global issues are ignored, one chooses a conformally
flat reference metric g&„(x}=e&~'5& and introduces
complex coordinates z and z. In this basis the indepen-
dent ghost components b~, c, and their conjugates are the
ghost fields of the Becchi-Rouet-Stora (BRS}formalisms
and are important in the covariant second quantization
procedure as presently conceived. The ghost stress ten-
sor, whose trace anomaly cancels that of the 26 matter

fields, can be derived by conformal methods ' although it
is perhaps more straightforward to obtain it by variation
of (2) with respect to g„„(see Sec. IV below). One may
also hope that the generally covariant action (2) will be
relevant in some future formulation of the second quan-
tized theory, where the world-sheet reparametrization in-
variance plays a more central role.

In this paper we obtain the analog of the Jacobian (2)
for the Neveu-Schwarz-Ramond (NSR) superstring.
Here, one must integrate over a11 component supergravity
multiplets of frame e„'(x), gravitino f„(x},and auxiliary
A(x) fields with the effects of diffeomorphisms, local
Lorentz, local supersymmetry, and super-Weyl transfor-
mations divided out. One then chooses a reference super-

gravity multiplet e„',g„,A. Here it is usually convenient
to choose a superconformal frame e„'=ep5„', f„=iy "X,
A =0, and the Jacobian can be expressed as an integral
over a real ghost multiplet which consists of an anticom-
muting vector c, and commuting spinor I, and a real an-
tighost multiplet containing an anticommuting traceless
symmetric tensor b' and a commuting y traceless vector
spinor p'. It is in this form that the ghosts have entered
in recent treatments of the BRS quantization, the fer-
mion emission vertex, and the second quantization of the
NSR superstring. In our work the reference supergravity
multiplet is allowed to be arbitrary, and we obtain an ex-
pression for the Jacobian:

JNsR(e „',g„,& ) = f (db'")(dP')(dc, )(dA)exp(iS) .

The action can be written in several forms which differ by
redefinition of the ghost fields. The simplest form is

S= f d x e t'b""V„c„t'p—"V„&+(f„—, p yy„) jP—V—~"——pt'V c—+V pc" Vjkc" b""yp— ——

in which only the y-traceless part of tb& enters. This ac-
tion is invariant under local supersymmetry and super-
Weyl transformation rules discussed below. The transfor-
mation rules involve the auxihary field A although the ac-

tion does not. Expressions for the ghost contribution to
the stress tensor and supercurrent can be derived straight-
forwardly from (4), although superconformal methods can
also be used. ' The more general form of the ghost ac-
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tion may be useful for further development of the second
quantized superstring formalism.

%'e work throughout with Lorentzian signature world-
sheet metrics and emphasize local considerations only.
For these reasons we do not discuss moduli and supermo-
duli which are necessary for a globally correct treatment
of the gauge-fixing and the full superstring integration
measure. The Jacobian (3) is one important ingredient of
this measure, and we expect that the present treatment
can be extended to incorporate moduli, perhaps in a more
general setting than in other recent work on the bosonic
string and superstring.

The representation (3) and (4) of the Jacobian is ob-
tained as follows. In Sec. II we use the transformation
rules of the supergravity multiplet to obtain a formal rep-
resentation of the Jacobian as an integral involving nine
antighosts, one for each component of the multiplet, and
nine ghosts, one for each component of the supergravity
and super-Weyl algebra. The integration over 5+ 5 of
these fields is trivial and yields an integral over four
ghosts c„and A, and four constrained antighosts b"" and
P'. The fact that the analogous action (2) for the bosonic
string is reparametrization invariant and (formally) Weyl
invariant suggests that our expression for the superstring
determinant is locally supersym metric and (formally)
super-Weyl invariant. To obtain the ghost transformation
rules, we start afresh in Sec. III, and consider the coupling
to d =2 supergravity of the ghost-antighost system start-
ing on flat world sheet with suitable global supersym-
metry variations. The action thus obtained differs from
that of Sec. II by simple ghost field redefinitions. The
conserved currents of the ghost system, such as the stress
tensor and supercurrent are obtained in Sec. IV. The
algebra of the ghost field transformation rules is not
closed and this situation is discussed in Sec. V. A very
brief description is given there of a more general super-
Weyl-invariant Lagrangian of the superstring ghosts in-
volving quartic ghost couplings.

In the notation used here ri'b=(1, —1), e' = —e, and
e '=1, while y matrices are imaginary 2)&2 matrices
which satisfy Iy', y ) =2i1', and» ——y y' is real. The
covariant derivative D& contains Christoffel and spin con-
nections without torsion; D„ includes torsion. %'hen

evaluated in the reference configuration e„',1(„,A, these
same derivatives are denoted by V„and V„, respectively.
In Sec. IV we will briefiy use supercovariant derivatives
&„which are defined there.

II. SUPERSTRING JACOSIAN

The local supersymmetry transformation rules of the
X= 1, d =2 supergravity multiplet are

5Q(e)e'„= i ey'f„, —

5Qpp 2(D„e+ , i y„A e), ———

51 (A)ep —— Ae'—pep, 51 P„= ,
'

y5Agp—, 5L A =0 .

5G(k)ep =Dpi' 5GPp=kPDpfp+DpPPp

5GA =PBpA .
The transformation rules of the super-Weyl group are

5,(cr)e„'=crep, 5,$„= ,'ag„—, 5,A = —oA .

5,(i))e„'=0, 5,f„=iy„ri, 5gA = re P.—IJ

5„(u)e„'=0, 5„$„=0, 5„A =u .

(9)

(10)

(12)

Four of the first six of these are standard and are defined
so that the superstring matter action'2 is invariant. Then,
5,A and 5,A are obtained by requiring a uniform algebra.
The introduction of the shift transformation 5„ is also
necessary for a closed algebra. The matter action is in-
dependent of A(x) and thus trivially invariant under
5,A, 5,A, S„A. The algebra of combined supersymmetry
and super-Weyl transformation rules is closed with com-
plicated field-dependent parameters. This component rep-
resentation of the super-Weyl transformations appears to
be compatible with the superspace description. '

We now have nine fields 41(x}subject to a gauge alge-
bra with nine parameters e„(x). We choose an arbitrary
reference configuration kz(x) as the gauge slice, and we
need the Jacobian of gauge variations about the slice:
namely,

5@1
J(@1)=sdet

5eg

For the bosonic string, the analogous Jacobian was calcu-
lated' after defining local reparametrization-invariant
measures on the various function spaces involved. For the
superstring, there do not seem to be any local supersym-
metric measures which generalize those of the bosonic
string (even for the simpler situation of the matter multi-
plet). Therefore, we will proceed formally (compare Ref.
11) and simply represent J(41) as an integral over ghosts
c„(x)and antighosts b (x) of the appropriate statistics:

1

Dp =~p+ i ~u» ~

l 6
cop=cfip(e) — 4p'Vp6 i4 e

co&(e) = —e 'e&ep c)pe, i .

The commutator of two variations gives a closed algebra
with field-dependent parameters: namely,

[5Q(ei ),5Q(ei})4=5G(()4

+51.(g (co —co(e))+2eiysepA)4

+5Q( ——'g P)4
with diffeomorphism parameter P=2iYiy"et W. e use
standard local Lorentz transformations and "Lorentz co-
variantized" diffeomorphisms

1. d'
5QA =e i Ay"g y5

—D fi„—
2 P

I

where D„ is the spinor covariant derivative with torsion

J(kp)= f (db )(dc„)e

S( chal, 4;}= i d x eb c„—
(14)
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with "matrix elements" 54&/5ez obtained directly from
the transformation rules (8)—(12). We refer to the an-
tighosts of the bosonic (fermionic) fields as bosonic (fer-
mionic), and to the ghosts of bosonic (fermionic) gauge
parameters as bosonic (fermionic). The Bose-Bose terms
in the action are real if we take real bosonic ghosts and
antighosts. Since Fermi-Bose matrix elements are real, a
real action requires that the fermionic antighost is real
and we denote it by —ip" (since y is imaginary) with

real p". Since Bose-Fermi matrix elements are imaginary,
a real action requires that the fermionic ghosts are imagi-
nary and we denote them by —,iA, for supersymmetry and
i ri for super-Weyl with real A, and ri. The notation then is
c', A, A, ,a, ri, u for the ghost of coordinate, Lorentz, super-
symmetry, %'eyl, super-&eyl, and u transformations and,
unconstrained antighosts b"„p", and s for the fields

e&,Q„,A. Given these preliminaries, the ghost action can
be written as

S= i —f d x e ~ b", (V&c' e'se—&A+e &sr —,
'

tP&—y'A, )

0 0 0

+pi' i (V„Q—„+Q„V„)c" y—5Q—„A f—„o—+ V„+ y„A —A+i j„,riP 2 P

+»Ac"—~~+ —' V tu5 '0 —r~—~+ i 0 Vn+u (15)

The integrals over many of the fields that appear in S are trivial, and we can proceed to integrate them out as follows.
The integral over u gives a 5 functional of s which can then be integrated immediately. The integral over il gives the

constraint p"y& ——0, and integrals over a and A give 5 functionals for the constraints e,&b'"= (i/2—)pI'p& and

e,bb's=(i /2)p"y5$„. After integrating over the trace and antisymmetric parts of b", to enforce these constraints, we
find the result

J(e„',P„,A)= f (db"'dP'dc„dA)exp(iS),
(16)

S= f d x e ib"'V„c—„ip "V„A—+g„V. „(p'c )+—gY~" b&~yp ———,
' p'Vi'c —+ —,

' ysp' V cz

+ 8 p 44 r~+ 8 p ".7's4, Pp7'i. 7

where the antighost fields are now constrained, and there are both explicit O(g ) terms and others contained in the tor-
sion.

The action S given above is rather unenlightening. A more useful form results after the field redefinitions

A, =A, —ic

b"'=b'"" .' i(P"0" P "W——g""P.4—»—
which gives (after suppressing primes)

(17)

S= f d x e ib"'V c„—ip"—V A, +g —gV~"——p"V.c+V pe" V~c" —'b""yp— —
P 2

P„r 4l 4(P"—~)+ &b""&.j (18)

A further field redefinition on (18), namely,

b""=b'"" ~i P yy"P"—

brings the action to the form (4). It is for the form (18) of
the ghost action that we will establish local supersym-
metry in the next section. The manipulations which lead
from (16) to (17) to (4) require fierce Fierz rearrangements

and extensive use of special identities such as

7'"P' =7'"P',
ei'"&~i —— e'(Pp5i„5i„5p),— —

Ppr„@x=@fpr 4 &pAr . 0—.
%'e suppress these painful details, but we note that the
O(g ) terms generated by the field redefinitions (17) and
(19) actually vanish. Note also that the field redefinitions
are "triangular" and have trivial Jacobians.
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III. LOCAL SUPERSYMMETRY
OF THE GHOST ACTION

S=—i 2X e '"D„C,+ "D„ (23}

For the bosonic string, the repararnetrixation invariance
of the ghost action is clear; one must simply take the stan-
dard transformation rules for the vector ghost c„and the
tensor antighost b"" (T. he minor complication of the
traceless constraint is easily handled. ) By analogy, one ex-
pects that the superstring ghost action (18) is invariant
under supersymmetry transformations (5) of the reference
multiplets combined with transformation rules for the
ghosts. To find the latter, we use an indirect procedure.
Namely, we start on a flat world sheet with a ghost multi-

plet c,(x) and A,(x) and constrained antighost multiplet
b' (x) and P'(x), and we "invent" transformation rules
which leave the action

S= i f—de(b sd cb+p 5 )() (21)

invariant. These transformation rules are (for constant
parameters e)

5c, =e.y, )t,, M, = (y9—c, )e,
2

5b'~= —,'@ay'P, 5P'=b'"y e .

They are simply the generalizations to Cartesian coordi-
nates and a general Dirac basis of the known transforma-
tion rules in the complex chiral basis, and the antighost
variations satisfy the required constraints.

The next step is to consider the coupling of this rigid
superconformal system to the supergravity multiplet
e„',f&,A with transformation rules (5) and arbitrary e(x).
We do this using the well-known Noether procedure of
supergravity. Thus, this section is logically independent
of the previous one; the moment of truth will come when
we compare the locally supersymmetric action obtained
here with (18) and find that they coincide. We suppress
the notational distinction between general and reference
values of e&,Q„,A and restore it at the end of the section.

To start the procedure, we write the covariant version
of (21), namely

—V~c"— b""y—P2
(24)

There are now additional 5e'-Fy'g& variations of (23)
and ghost variations of (24). 'these are canceled by adding
the quadratic term

S' '=(gqy. p)( —,
' p"A, + , b"'c„)— (25)

to the action and terms linear in g and A in M. and 5b'~.
Further variations of order O(g ) are then canceled by
O(P} modifications of 5A, and 5b', and it is then
checked that all O(g ) and O(g ) variations cancel
without further modifications. This procedure requires
extensive calculations using Fierz rearrangements and
two-dimensional identities such as (20) and

ey, V=I P j

QV
ysp"= — p. ,

e

bPVyP I PVyP gPVQPky gPVI PAy
(26)

1

PV 2 6PV 0
e

where a„„is any antisymmetric tensor. In the end, the lo-
cal supersymmetry of (18) is completely verified; no stone
has been left unturned.

The ghost transformation rules thus obtained are sim-
plest if ghosts are referred to local frames on the world
sheet. They take the form

and consider its variation using the covariant (i.e.,
d, ~D„) version of (22). There are nonvanishing terms
involving D&F and a term of the form Rap&c", where R
is the Ricci scalar of the world sheet. These terms may be
canceled by the 5$„-D„e variations of a Noether-like
term which we add to the action: namely,

S = d xeg —PV~"— P'V—'c+V'Pc"2
— 3 3

iV 2 2

e,"(D„c' y5e —D„cs)e —[(P„y"e)A+—(—P„y"yse)y, sA) y cAe+ 2 (P—yg. „)(c" , y"y c)e—, —
(27)

*

5b,~ ———e' D,ps+Dip, ri,sD.p+ ,'y, (g,—bf +flub—,
' g,sfgb' )+3i—y, pgA+ (f yp„)(e,—pp+et p, —ri,sp )

The antighost trace constraints are obeyed by 5b,~ and
5p, .

The total action is the sum of (23)—(25) and it is not
difficult to observe that it coincides with (18). Actually,
at this stage of the work we observed that the action ob-
tained from the supergravity couphng problem did not
coincide with the ghost determinant action (16), but that

agreement was obtained after the simple field redefinition
(17). Because of the field redeflnitions which relate (18) to
(16) and to (4), the latter two forms of the action are also
supersymmetric, but the transformation rules of A, and
b""will involve derivatives of e.

It is common in supergravity theories to introduce the
notion of supercovariant derivatives for fields which cou-
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pie to the supergravity roultiplet. Generically, the super-
covariant derivative of the field P is defined so as to
transform without derivatives of e. Thus, we have, for ex-

ample,

1 ~5S
5e,„

=i [b»»V "c»+b~»c»+ V»b» c»
1&»c, =D„c,——,()(»y, A, ,

&»P =D»P' 2—b'"ra4»
(28) + ,' (P—»V"+P "V»)A+ „' (V»—P "+V"P»)A.]

Further, the connection with torsion co» in (6) is also su-

percovariant in the same sense. VA'th supercovariant
derivatives and torsion, one can simplify the form of all
transformation rules, and (27) can be rewritten as

which is symmetric and conserved and traceless on shell.
The stress tensor for the action (18}can be obtained from
(34) by making the field redefinition inverse to (19).

Similarly, the supercurrent is obtained from (4) as

5c, =ey, A, ,

M= ,' e». (S—'»c' yse'—&»cb)e ycA—e,
S"=— = —, P„V—»c" (V~—)c" b—»'—yP .1 5S 3 „„i

eg„2 (35)

5b.b = (~.p—b+&bp. il.se."~»p') 2&r.—p) ~
2

5Pa =bah Ybe .

It is not easy to incorporate supercovariant derivatives in
the action (18), but they do simplify the Euler-Lagrange
equations which are

=iet'S'»b' ,
' D(»—)t)„)P»—,

5cg

S =let &»p

It is conserved and satisfies y»S"=0 on shell. In a con-
formal frame e,»=e»i), », the stress tensor and super-
current obtained here coincide with those obtained earlier,
but the present method so:ms more straightforward than
either the method of varying conformal class discussed in
Ref. 5 or the operator product expansion method used in
Ref. 6.

In addition to T"" and S", there are two other con-
served currents, the ghost number current 6" and the
dual ghost number current 6". These are associated with
the following global symmetries of the ghost action:

5b"b
= i (e»&»—cb+eg&»c, g,se»&»—c'),

= —,
'

y "y»( i&P —D(„g»)c—») .
5p»

5c"=gc„, 5X=gk,
5b""= gb"", 5—P»= —gP»,

5c"=ge»c», M, = —gyP, ,

5b""= ,'g(e»»b»+—e"»b»»), 5P»= —gy, P»,

(36)

(37)

The action (18) is also invariant under super-Weyl
transformations (10)—(12) for the reference multiplet
combined with the following ghost variations:

where g and g are independent parameters. The Noether
currents obtained from (18) in an arbitrary (e», P») back-
ground are

5, '=ca ',c5,A, = —,
'

(rA, ,

5,b,s —— 2o b,b, 5,—P'= —, crP', —

5,c'=0, 5, A, = —y cil,

5,b,b ———,'(rly, pb), 5—,p, =0,
5„(c„b,b, l,p„)=0 . ,

(31)

(33)

G"= i (b""c„+—p»k)+ ,
'
p „(p»c" —p"c"), —

G "=e»[i(b»'c„+p» )+ ,
' (p»p")c„] . —

(38)

(39)

V. NONCLOSED ALGEBRA

Note that if g» iy»i), the——n 6"=e&G», but that this du-

ality relation fails in a general gravitino background.

IV. CONSERVED CURRENTS

One advantage of a reparametrization invariant and lo-
cally supersymmetric form of the ghost action is that it is
straightforward to calculate the stress tensor T""and su-
percurrent S" of the ghost system by variation of the ac-
tion with respect to the frame e,„and gravitino g».

For the stress tensor, we take the variation of the
simpler action (4) with respect to e,„keeping local frame
components b'", c„p', A, , and fa fixed (so that there is
no contribution to the variation froin the antighost con-
straints}. For simplicity, we present the result for a super-
conformal gravitino P, (x)=iy, rj(x) and for a ghost field
which satisfies the equations of motion. By this process
one obtains the stress tensor

The algebra of local supersymmetry transformations
(27) on the ghost fields does not close; the commutator of
two variations contains the terms expected from (7) plus
new transformations which vanish when the ghost equa-
tions of motion (30) are satisfied. The simplest way to see
this is to calculate the commutator of the flat world-sheet
variations (22) with constant spinors ei and e2. In addi-
tion. to the expected space-time translation with parameter

P=2i e iy'e2, one finds the transformations

6Ca =g ( Ba Cb + ()b Ca —gab () ' C ) p

b, A, =g"II)y"A, ,

gbab Pg bba+gbg bac +aha g bad

~P'=4'r( r d P
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under which the action on a flat world shmt (21) is invari-
ant.

The commutator of the transformations (27) on a gen-
eral gauge slice is very complicated to compute. However,
the computation need not really be done; it is inescapable
that the result contains the transformations (40) with

5cq(x) = V"(x){Vqc„+V~„gq„Vc)—,

5b""(x)=V"(x)VPi + V"(x)V~b~" g""V~(x)V b—~,
(41)

for an arbitrary vector VI'(x). Since this example is relat-
ed to the general gauge slice version of (40), it will be em-
phasized in our discussion here. However, another exam-
ple occurs for any local action S[$',P] for a complex
scalar field P(x). Namely, we have invariance under
5$(x) =i e(x)5$/Q'(x) for an arbitrary real scalar gauge
parameter 8(x). The free massive Dirac spinor action is
invariant under 5$(x)=8(x)(B+im)g, and this can be ex-

P(x) =2iF&(x)y'eq{x)

and the equation of motion operators generalized to those
of the action (18) which are given in (30). Possible further
terms involving P{x) and ei(x)y5e2(x) with other com-
binations of the equations of motion cannot be ruled out
without a more complete calculation, but they will not
play a role in the present discussion. Whatever the form
taken by {40) for a general gauge slice, it must be a local
symmetry of the action (18), since it is obtained by com-
muting two local symmetries [and because (18) is
separately invariant under the field-dependent transforma-
tions which appear on the right side of (7)]. One should
also note that the fields of the background gauge slice are
inert under the off-shell transformations; only the ghost
and antighosts transform. Further, the action of (18) is
invariant if P(x) =2ieiy e2 is replaced in (40) by a general
vector gauge parameter V'(x) unrelated to the diffeomor-
phism parameter. The nonclosed algebra and off-shell
gauge symmetry persist for the heterotic string Jacobian. "
For the heterotic theory, the ghost representation can be
obtained from (18) and (27) by discarding the auxiliary
field A (x) and the appropriate chirality components of all
spinorial quantities. After this truncation, one readily
sees that transformations of the form (40) are still present.

In the rest of this section we will discuss first some
properties and the possible significance of these off-shell
gauge symmetries, then the question of obtaining a closed
algebra by adding auxiliary fields, and finally, but briefly,
a new set of ghost field theories with quartic couplings
suggested by these considerations.

It is easy to construct off-shell gauge symmetries for
many common field theories even when they are not con-
nected with the nonclosure of a gauge algebra. For exam-
ple, although the algebra of world-sheet diffeomorphisms
is closed, the action of the bosonic string Jacobian in (2)
has an additional gauge symmetry: namely,

55--= V-a, 5-- .++ + ++ (42)

These are simply separate reparametrizations of x+ in c+
and 5++ and of x in c and 5 . A finite transfor-
mation with generator V+(x+,x ) and exponential pa-
rameter 0; can be written as

c+(x+,x ) ~ c+(x +,x ),
a, V+

5++(x+,x-) 5++(X+,x-),
a, V+

where x + is defined implicitly by

F(X+)=F(a+F(x+)), F(x)= f V+(z x )

(43)

(44)

The fact that F(x+}and thus X + is a function of both
x+ and x is suppressed in the interest of a simpler nota-
tion. There is an analogous formula for finite transforma-
tions with generator V acting on c and b . Equa-
tion (44) is simply the standard form of reparametrization
transformation on scalar functions of the variable x+
while the x dependence is incidental. A discussion of
this standard form has appeared very recently in connec-
tion with new work on the conformal group. ' The
transformations (43) are globally well defined if
V+(x+,x ) has no zero, and periodic boundary condi-
tions can be imposed consistently. The light-cone action

S= i f dx+d—x (5++5 c +b 8 c ) (45)

is certainly invariant under (43).
We will now discuss the possible significance of the

off-shell gauge symmetry (41) for the representation (2) of
the bosonic string Jacobian. At any point in function
space of c&(x) and 5( )x, there is a local vector's worth
of directions {i.e., an infinite number} along which the ac-
tion in (2) is stationary. Thus, one may suspect that the
functional integral (2) is not well defined. This surely is
not the case for the common field theories of complex
scalar and spinor fields discussed above, but perhaps the
ghost integrals are special. One difference is that we have
a vector gauge parameter for the string Jacobian and a
scalar gauge parameter in the other examples.

One way to look for inconsistencies in the path integral
(2) is to introduce sources and investigate whether the new
gauge invariance can be extended to the source terra and
whether the appropriate Ward identities are satisfied.
Thus, we consider the generating functional

tended to include interactions. All these "new" sym-
metries have the feature that they vanish on shell.

The nature of the transformation (41) is best seen in
light-cone coordinates x+-=(x +x')iv 2 on a flat world
shmt. Then (41) can be rewritten as (an irrelevant factor
of 2 is dropped here)

5c+ ——V-B+c+,

W(Egg, J")=f db" dc„exp f dx+dx 5+{8+c+++K++b+++c+I++similar terms for b,c ) (46)
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-(Tb++(x+),c (0))-
X X —l 6'

-(Tb--(x-),c (0))-
X X —l6

(48)

which agrees with the ghost two- oint function of the
conformal field theory approach. Thus the off-shell

gauge invariance does not seem to cause a problem.
One may also consider the functional integral (2),

without sources on the torus with c+ and b++, etc., ex-

panded in plane-wave modes:

~
—t (18X +NX )

(49)
b++ ~ g

—t(NLx +5Ã )
mn

There are an infinite number of zero modes of 8+, and the
det prescription for the string Jacobian requires that cp„
and bp„are excluded from the integral over mode coeffi-
cients. Once this is done, the integral appears to require
only the expected ultraviolet regularization. Since the
function space is now the set of Fourier coefficients c „
and b „with m&0, it seems that allowed gauge parame-
ters V+(x+,x ) should be restricted so that the space of
nonzero Fourier coefficients c „and b „ is mapped into
itself. If V~ denotes a Fourier coefficient of V+, defined
as in (49), then from (42) we deduce

5Cmn g Vm p, n qp—cpq-
p, g

with a similar equation for 5b „Since 5cp„.must vanish
for all choices of c~, we see that only Vp ~ can be nonvan-
ishing. This implies that V+(x+) is an analytic vector
field. Thus, the full gauge invariance of (42) is restricted,
but not eliminated after a more careful definition of the
functional integral. The product measure over mode coef-
ficients is invariant.

Although we do not claim to understand fully the rela-
tion between the off-shell gauge symmetry (42) and the
path integral (2), we have not found any indication that
the latter is ill defined. Perhaps the restriction on the

This is invariant under (42) provided sources transform as

5J'-=a. ( V+-J'-),
5K++ ——B+( V~K++ ),

and there is a standard Ward identity which W(K', J)
should satisfy. If one performs the integral by the stan-
dard method of "completing the square, " one finds that
this identity is satisfiml if one uses the "Feynman propa-
gator"

gauge parameters found in the previous paragraph is sig-
nificant. Even for analytic vector fields the transforma-
tion (41) is different fmm a conformal transformation, yet
it has the same parametric freedom. Since conformal in-
variance does not lead to an ill-defined functional integral,
the restricted off-shell transformations should not either.

We return now to the question of the non-closed alge-
bra (40). Nonclosure occurs in supersymmetry when auxi-
liary fields are missing, and this is surely the case here for
the ghost and antighost multiplets. With this in mind one
can go back to the representation (15) of the ghost action
which does contain additional fields. We do not have de-
finitive results on supersymmetry transformation rules for
(15), but an exhausting study convinced us that the new
ghost fields in (15) are not sufficient to give a closed alge-
bra. Undoubtedly, however, a closed algebra can be ob-
tained from the superspace formalism, provided one does
not fix the gauge to break up local superfields as seeins to
have been done in treatments such as Ref. 13 for % =1
and Ref. 11 for N = —,

' . A superspace study is now under-

way using an independent set of superfield potentials
given in Ref. 15. However, it may well be the case that
even with a closed algebra the action obtained will still
have additional gauge symmetries analogous to (42) for
the bosonic string.

To conclude, we discuss briefly a new class of confor-
mal theories motivated by the nonclosed supersymmetry
algebra (40). In four-dimensional supergravity, the non-
closed algebra gives rise to quartic ghost couplings in the
properly gauge fixed action. Although it is doubtful that
such couplings will be required, one can consider, as an
independent question, the addition of four-ghost couplings
to the actions of (2) and (18). A natural choice for (2) is
to take the conserved ghost current 6"= ib""c„fo—r (2)
and to form the Lagrangian W=b"'V„c„+qG&6„. The
parameter q is a dimensionless coupling, and W is Weyl
invariant. Remarkably, one can formulate a similar quar-
tic ghost extension of (18) which involves the ghost num-

ber currents 6" and 6"of (38) and (39) with local super-
symmetry and super-%'eyl invariance maintained. The
construction and properties of these theories will be dis-
cussed elsewhere. '
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