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%e consider the flat directions of the potential that play a crucial role in the four-dimensional su-

persymmetric models that are believed to emerge from the compactification of superstring theories
and study the possibility that they give rise to an inflationary scenario. None of the scalar fields

present in these models —in particular the dilaton field connected with supersymmetry breaking and

the SU(S}-singlet scalars in the matter sector—seem, however, to be good candidates for the inflaton,
the scalar field whose cosmological evolution leads to an inflationary expansion of the Universe.

I. INTRODUCTION

Among the theories where inflation' can be implement-
ed, the best candidates have proven to be supersymmetric
models. A major bonus gained by incorporating super-
symmetry into an inflationary scenario is the absence of
vacuum renormalization. If supersymmetry remained un-
broken, this would allow one to fine-tune the shape of the
potential in order to obtain the right amount of inflation.
Of course supersymmetry is broken (if for no better
reason, because inflation demands a nonzero vacuum en-

ergy) and fine-tuning there must be, although to a lesser
extent than in the standard nonsupersymmetric models.

The supersymmetric versions of inflation involve a
gauge-singlet scalar field (inflaton) placed in the hidden
sector of the theory: both requirements —gauge singlet
and hidden sector—are such that the inflaton field cou-
ples as weakly as possible (i.e., gravitationally) and hence
that the quantum corrections are kept to a minimum.

Although the number of problems to which inflation is
supposed to give a clue—or at least avoid —give rise to
numerous constraints' ' on the parameters of the
models, one is still left with several possible candidates,
reflecting the richness of theories coupled to N = 1 super-
gravity. On that ground, the possibility that four-
dimensional field theories with one supersymmetry unbro-
ken originate from the compactification'3 of ten-
dimensional superstring theories' ' is a very welcome
one. It is interesting to see, in that respect, how the new
constraints that are imposed on our four-dimensional field
theory models by superstrings compare with the con-
straints that were derived previously from inflationary
considerations. In other words, since superstring theories
are supposed to provide a framework for grand unified
theories coupled to X =1 supergravity, do they incorpo-
rate inflation along the same lines'

It seems reasonable to think that the cosmology of
superstring models will involve some period of inflation-
ary expansion. The reason is the presence in the massless
sector of a scalar field: the dilaton. The "flat direction"

of the potential associated with its masslessness is precise-
ly the necessary ingredient for a "new inflationary"
scenario. ' On the other hand, the scale of the dilaton field
determines the magnitude of the coupling constant.
Hence, as long as it remains massless, the model is not
fully determined. Some sort of dynamics has to fix the
scale. In other words, since a ground state with a zero
cosmological constant has to be singled out, the flat re-
gion of the effective potential that determines the ground
state has presumably a nonzero vacuum energy. This
could account for the occurrence of an inflationary era
during the cosmic evolution of such systems. (It has actu-
ally been shown that the nonvanishing dilaton tadpole
found at the one-loop level in the bosonic string' is com-
pensated by introducing a nontrivial background of the de
Sitter type. )

Let us note in particular the close connection of these
questions with the breakdown of supersymmetry. Flat
directions of the potential have been studied in that
respect because one can prove that there is no way to lift
the corresponding degeneracy, to any finite order in per-
turbation theory, as long as supersymmetry remains un-
broken. ' This therefore calls for a breakdown of super-
symmetry at the suitable scale and for nonperturbative ef-
fects, possibly one triggering the other. This was dis-
cussed at length by Affleck, Dine, and Seiberg in the
context of dynamical supersymmetry breaking. They
found in particular that whenever a nonzero potential is
generated, it slopes to zero at infinity. This in turn is a
serious problem for superstring models and, in what is of
more immediate concern to us, it will eventually have to
be dealt with, if an inAaton field is to be associated with
one of these flat directions. We will return to this ques-
tion below.

There is however one obstacle to the study of inflation
at the level of superstrings: string theories have until re-
cently been considered in backgrounds of zero energy. '

This is one of the reasons why we will confine ourselves to
the field-theory limit of these theories, allowing for possi-
ble interactions arising from higher orders in the string
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where, throughout this paper, Mp~ is the reduced Planck
scale (the Planck scale divided by v 8n" Mp~-2. .4&&10'
GeV), and m and n are in most cases positive integers. '

In models coupled to N =1 supergravity, a more stringent
constraint ' comes from the requirement that fluctuation
densities in the Universe are predicted with the right size,
on a range that goes from the galaxy scale to the scale of
the background radiation. The constraint on the density
fluctuations at the time tf when they reenter the horizon
reads, typically,

5p (tf )-0
P

m' —n' n'

—10 —10 (1.2)

where, once again, in most models m' and n' are positive
integers' (for example, n'=2, m'=3).

The constraints (1.1) and (1.2) are usually satisfied by
letting cr be of the order of the Planck scale Mp~ and po a
few orders of magnitude below it. An indication that this
is the right solution comes from another constraint: the
production of gravitons. If the inflation scale is too
close to Mp&, the energy density of gravitons produced
during inflation will not be neghgible and will give rise to
distortions in the radiation background. More quantita-
tively, limits on the large-scale anisotropy b, T/'ryield

po/Mp) & 10 (1.3)

The question of how this small hierarchy of scales arises

theory (increasingly complicated world-sheet topology) or
in the two-dimensional nonlinear o model. If some ener-

gy is stored in the vacuum of the superstring theory for
some time during the evolution of the Universe, this
should also show up at the field-theory level, in the poten-
tial energy of some scalar field. (A possible loophole in
this argument might lie in the fact that the one-loop
cosmological constant of string theory does not seem to be
equal to the sum of the one-loop contributions of the indi-
vidual particles. ")

This scalar field is the inflaton field common to all
grand unified models that purport to give rise to an infla-
tionary epoch. From the study of these models, we know
what kind of constraints such a field —its potential —must
satisfy. What we intend to do in the following is to deter-
mine which of the scalars present in superstring theories
satisfy this set of constraints, in other words which of
them are candidates for the inflaton field.

The constraints that models must satisfy in order to
yield a successful inflationary scenario have been reviewed
elsewhere. ' ' Two parameters of particular relevance
are Vo=—po, the energy stored in the vacuum during in-
flation, and cr, the ground-state value of the inflaton field,
reached at the end of inflation.

If inflation is to solve the two basic problems that it
was devised for' —flatness and horizon problems —the
number N, of e-foldings that the cosmic scale factor must
undergo during that period must be large enough. More
qualitatively, this reads in terms of po and a

is usually not addressed in supersymmetric models (since
the inflaton field is taken to be a gauge singlet, there is no
reason to choose po equal to the grand unification scale
MoU~). In the case of superstring models, such a hierar-
chy seems difficult to implement if the dilaton is the in-

flaton field: as we will discuss below, all relevant scales
seem to be of the same order.

To come back to the constraint (1.2) on density fluctua-
tions, let us note that in these models density fluctuations
might have an origin other than quantum fluctuations in
the de Sitter phase. It is we11 known that superstring
theories predict cosmic strings, which seem to be good
candidates to provide an origin for density fluctuations (in

particular because these fluctuations are originally uncou-

pled to matter ). Of course the amplitude of these fluc-
tuations has to come out right (their spectrum is scale in-

variant as previously) and the constraint (1.2) turns into a
constraint on the linear mass density of the cosmic
string. But this could account for the origin of density
fluctuations only in the case where quantum fluctuations
in the de Sitter phase yield a value of 5p/p lower than the
one required by the constraint (1.2).

The next constraint is one about initial conditions:
when inflation starts, that is, when the energy density of
the Universe becomes of the order of Vo, the inflaton
field —more precisely its space-averaged value (P )—
should be located in the plateau region of its potential

[ V((P) )- Vo]. The most common way to account for
this is to require that its temperature-dependent effective
potential has a global minimum there, for T~~po. This
is the so-called thermal constraint. Let us note however
that this does not mean that one takes seriously the shape
of the one-loop effective potential in its full details; this is

only a way to require the existence of a metastable state
with nonzero vacuum energy Vo (Ref. 12).

Since one of the effects of inflation is to dilute away
any baryon number present in the Universe, a successful
scenario must provide a source for baryon number posteri-
or to the de Sitter phase of exponential expansion. How-
ever, the general question of baryon-number-violating in-

teractions is very dependent on the model (in particular
the low-energy gauge symmetry ) and we will therefore
defer a further study of that question in the case of infla-
tion.

Finally, although inflation also dilutes away primordial
gravitinos, new sources of gravitinos appear during the
reheating phase that follows (decay of the inflaton
coherent oscillations). In order to address this question-
the so-called gravitino problem —we will first have to dis-
cuss the issue of supersymmetry breaking.

As mentioned earlier, we consider models where the
compactification process preserves one supersymmetry:
to be precise, a cornpactification on a six-dimensional
compact manifold K of SU(3) holonomy, where the spin
connection is embedded in the Yang-Mills gauge group'
(taken to be Es)&Es). In particular, the dilaton field P
originating from superstring theory —or rather its mass-
less mode in four-dimensional Minkowski space M4—is a
part of the scalar component of a chiral superfluid. It
turns out ' that it actually resolved into two chiral
superfields that also incorporate the "breathing mode" e,
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Hp~p Ijk e ep~p&yB h (1.4)

where from now on, unless specified, we will take
Mp~ ——1. The other one is obtained in the decomposition
of the two-form on the harmonic forms of type (1,1) (the
number of independent such forms is the topological
number b i i ):

8, (x,y}=.—.g P(k)(x)co,'."-.'(y), (1.5)

which corresponds to a fluctuation of the overall size of
the internal compact manifold IC. Since these two fields
are real, we need two pseudoscalars to complete the scalar
components. One of them is obtained from the gauge-
invariant field strength H„„p of the two-form Bp„,
through a duality transformation (in four-dimensional
space),

II. THE DILATON AVATARS: S AND T FIELDS

The complete expression of the 5 and T fields in terms
of the dilaton and the "breathing mode" involves also the
matter fields [compare with (1.6}]

S =y "4-e' +3(~Zh,
7'=y'"e (&—2P+g ly ~'.

(2. 1)

9'= —ln(S+S')+G+ln
~

W
~

G= —3ln T+T*—kg ~y; ~i (2.2)

In order to write the complete supersymmetric theory, one
only needs to know the Kahler potential 9' and the nor-
malization of the gauge fields kinetic terms f &. If one
trusts the results of a simple truncation model, they readz6

where x (y) refer to M4 (E) coordinates, i (j) are holo-
morphic (antiholomorphic) indices, and the co,'. "-.' are a
basis of harmonic forms of type (1,1). The P' '(x) are
therefore the massless modes originating from the two-
form. We can now write the two complex scalar fields
which involve the dilaton )t) (Ref. 26):

IV= IV(y;), f p 5,pS, ——

where IV(y; } is the superpotential, cubic in the y; fields,
and k is a normalization constant. This yields a theory of
the no-scale type. The corresponding potential is

V=e++V+&, e =e
~

8'~ /(S+S'),

S =P e +3i~2h, T =P e iv 2—P, (1.6)
V= ' "8' W'/(S+S") IV'= =(IV;)', (2.3)

3k

where P—=P")(x).
Similarly, the remaining pseudoscalars )8'"), k =2,

. . . ,b~ ~, will combine under supersymmetry with b] &

scalars a'"' that characterize the choice of Kahler struc-
ture (among these we have already singled out the
"breathing mode"; hence. only bi i

—1 remain):

7 (k) a(k)+&P(k) (1.7)

To be complete and introduce all the structure-related
fields, the choice of complex structure depends on b2 i

complex numbers, which gives rise to b2 i massless chiral
(gauge-singlet) supermultiplets C' ', a=1, . . . , b2 ), in
four dimensions.

Finally, matter multiplets —which include quarks, lep-
tons, Higgs fields, and their supersymmetric partners —are
in representations 27 and 27 of E6. to be precise, b2, 27
and b ~ ~27. %'e will denote them generically by y;. None
of them is a gauge singlet under the low-energy gauge
symmetry.

In what follows we review how each of these fields
stands as a candidate for the inflaton. Since our analysis
was prompted by the fact that some energy might be
stored in the dilaton field ({), we first consider in Sec. II
the two fields which are related to ((): S and T. We also
comment on the possibility of using the other structure-
related fields T' ' and O' '. In Sec. III we determine the
possible candidates among the matter superfields (y;
fields}. Let us note that this was the only case considered
in no-scale models. The situation is however somewhat
different here because none of these fields is a gauge sing-
let. Finally in Sec. IV we give our conclusions.

DD, D =3ke y';y5+S* g J

—3S/2b0
IV =c +he '+ IV(y;), (2.4)

where bo determines the one-loop P function of the gauge
group Q [for Q=E8, bo 90/(16m. )]. This——yields the
potential

V=U+ V+&,
(2.5}U=,

~
8'(y;)+c+h(1+a)e ~ e(S+S')

where the matrices T represent the generators of the
gauge group. The global minimum is for y;=0 and the
vacuum expectation values (VEV's) of both S and T
remain undetermined at the tree level.

There are two known ways to break supersymmetry in
these models: either give the field strength H „p (m, n,p
are indices of the compact manifold E) a nonzero VEV
(Ref. 31) or let the gauginos of the hidden sector (EI)) con-
dense. Both of them yield a nonzero cosmological con-
stant but it turns out that the two contributions cancel
when one combines them: the point is that the new
terms in the potential make up a perfect square whose
minimum value is therefore zero. If we look at the effec-
tive theory below the scale A, of gaugino condensation
(i.e., the scale where the hidden sector gauge group EI) or
one of its subgroups Q becomes strong), the effective su-

perpotential reads
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ReS
~

ImS

bo
'

Io
(2.6)

' 1/2
GUT 6

Ao Qo
P1 0

(not to be confused with a' ',P' ' introduced earlier).
The global minimum (ao, PO) is obtained for y;=0

(which ensures that V=& =0) and U =0:
PFl 3/2

MP]

2
'1/2

in —On iz4
A'O 8 Qo (2.11)

c+h(1+ao)e ' e ' =0, (2.7)

which determines the VEV of S.
It is worth pointing out that the VEV of H does not

have an a priori value that is canceled at a later stage by
gaugino condensation. This would break supersymmetry
at scales above gaugino condensation. As discussed by
Rohm and Witten, after gaugino condensation has oc-
curred, the VEV of H follows by tunneling to a nonzero
value that corresponds to the global minimum where the
cosmological constant is zero.

At this stage, the VEV of T remains undetermined at
the tree level and hence so is the gravitino mass:

G
2

7Pl 3/2 (S+S') (2.8)

The situation is somewhat reminiscent of what happens in
no-scale models. There, the degeneracy is lifted by the
low-energy radiative corrections at the one-loop level
(therefore allowing for the possibility of a gravitino mass
of the order of the weak-gauge-boson mass Mip). It was
shown in Refs. 34 and 35 that this is not quite true in the
case of superstring models: the point is that radiative
corrections induced by the field S (not present in standard
no-scale model) already lift the degeneracy. We computed
in Ref. 35 the quadratically and logarithmically divergent
contributions to the effective potential for T, in the direc-
tion where S and the y; fields are kept at their ground-
state values [given by Eq. (2.7) and y;=0]. It reads in
terms of u =(T+T') =e

M
V,rr(u)=

2 A, STrM +—STrM ln
32%2 A,

9 h
ot u2~(a )

(4m) 4bp

+u
~

h
~ [ Ã i(aii)lnu

(2.10)

Once the minimum uo of the potential (2.9) is obtained,
all the scales of the effective theory are determined in
terms of the single variable ao [or equivalently aoUT, us-
ing (2.10)]:

+ &p(ao) ]I, (2.9)

where W, X i, and 4'z are calculable functions of ao (Ref.
35). The stability of this potential requires 4', (ao)&0
which, to a good approximation, simply reads uo ~ —,'.
This in turn places a restriction on the gauge coupling
constant at the unification scale [inferred from f~~ in Eq.
(2.2)]:

1/2
1/2 ao/6 1/4ao e uO

0

The condition that the unification scale MoUT remain
smaller than the Planck scale constrains ao, or equivalent-
ly aoUT. This, in turn, imposes restrictions on the scale of
supersymmetry breaking, m3n or A, . One finds the
bounds35

rid in /M pi ) 1 ~ 5 X 10, A z /M pi & 0.05 (2.12)

In view of these results, it has been recently argued' '

that, since the mass scales involved are of the order of the
physical cutoff A„one should actually include the com-
plete cutoff dependence in the effective potential; i.e.,

A
V,fr= A, STrM —STrM ln 1+

64 M

(2.13)

When doing so, one realizes that the stabilization of V,ff
is an artifact of our keeping only the divergent terms. Ac-
tually, the expression (2.13) is unbounded from below,
as one can check from its large-u behavior:

, -2a, /3
V,rr(u)- — ao e u lnu .

4m bo
(2.14)

The expression that led to the bound (2.12) represents
therefore at best a simplified modelization of what should

happen at the scale of supersymmetry breaking (A, ). But
a precise determination of the scales will require a precise
understanding of the loop corrections in the models con-
sidered. [For example, radiative corrections at the two-
loop level would make contributions to Ki and Ã2 in
(2.9) or equivalently to the last two terms in (2.13); but, at
this stage, no one would take these models seriously
enough to compute these corrections and/or trust their re-
sults. ]

One indication that the result (2.12) is going in the right
direction is the observation made by Dine and Seiberg
and Kaplunovsky that the different scales of superstring
models are all of the same order. As stressed by these au-
thors, this implies that the string theory is strongly cou-
pled, which casts considerable doubt on the semiclassical
analysis used to derive the four-dimensional field theory
that we are using. Although this remains a serious prob-
lern that endangers the whole analysis, the result of Eq.
(2.12) suggests that there might be more truth to the
four-dimensional version obtained than could have been
expected.

However, at least one scale—the scale of electroweak
symmetry breaking —has to come out of the model many
orders of magnitude below the Planck scale: this is the
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c —= —c/Ii =(1+ao)e

po 4n~, n——eZ. (2.15)

[There is a term poFI' in the Lagrangian. 2 For c~0,
po Zm+4nm ——and the ground state is always CP violating.
The choice c «0, on the other hand, allows us to choose a
CP-conserving minimum (po ——0).] And the potential
reads from (2.5) and (2.11)

V(a,p)=U=p 1+ (1+a) e

2——(1+a)e cos-—a p
C 2

(2.16)

with

standard hierarchy problem. A result obtained in Refs. 34
and 35 which goes precisely in that direction is the fact
that scalars remain massless at the one-loop level: their
squared-mass (which triggers gauge symmetry breaking

by becoming negative) is therefore several orders of mag-
nitude below the Planck scale. One has to distinguish be-

tween the scale of supersymmetry breaking in the hidden
sector which is given by m i~2 and the scale of supersym-
metry breaking in the observable sector (y; fields) which
could (must) be several orders of magnitude smaller. A
gravitino mass much larger than 1 TeU may thus not be a
problem since, as in standard no-scale models and con-
trary to most supersymmetric models, the scalar masses
are protected from the gravitino mass by some symmetry
(at least at the one-loop level). It has been shown recent-

ly
' that the leading gravitational contributions to the

gaugino masses are of order mi&2 /Mpi, in this case,
through coupled renormalization-group equations, the
scalar masses should be of the same order. An analysis
similar to the one in no-scale models (where, in contrast
to the analysis of Ref. 35 described above, the scale is
eventually determined by low-energy radiative corrections)
would typically give ' m3~2-10' GeV together with sca-
lar masses of order 1 TeV.

To finally come back to inflation, such a large mass for
the gravitino is welcome to avoid the standard gravitino
problems. Any primordial gravitino density is diluted
away during the inflationary era and gravitinos are too
heavy to be produced during or after reheating.

We are now in a position to study the inflationary prop-
erties of the potential. Since the determination of the T
field potential by radiative corrections is not well under-
stood, we will restrict our analysis to the field S whose
potential is determined at the tree level (below the gaugino
condensation scale A, ) and is given in (2.5). We will
therefore consider S alone and put the other fields at their
ground states. This means in particular that y;=0 and
that we will fix ( T) by taking a given value for m3/i [cf.
Eq. (2.8)]. We will suppose for simplicity that c is real
and negative, in which case the ground state is given by
(2.7)

„,(1+ o)' --,
Qo e

2bo ao
1 j2

P?l 3g2 I +cxo

Mp) ao
(2.17)

One could determine the value of p following the saine
hnes of reasoning that led to Eq. (2.12), that is, using the
"truncated" one-loop effective potential of Eq. (2.9). The
lowest possible value for p is then obtained when Es
remains unbroken, which yields the bound

p/Mpi) 0.04 . (2. 18)

The fact that the scale p is found close to the Planck sale
should come as no surprise in this case: in the (S,T) sec-
tor, there is basically no scale available apart from Mp~,

'

this was already the reason why we found earlier MoUr
-m&&2-A, -Mp~. But it seems difficult to reconcile
this bound (2.18) with the bound arising from the produc-
tion of gravitons, Eq. (1.3).

On the other hand, a gravitino mass mi&z smaller than

MpL by several orders of magnitude (as would be the ease
if it was determined by low-energy radiative corrections ')
would yield a scale p for inflation compatible with Eq.
(1.3). For instance, choosing aGUr ——0.28 and m i&2 ——10'
GeV, which yields [using (2.10) and (2.11)] the not un-

reasonable value MoUr ——4.9X 10' GeV for the grand
unified scale, one obtains, from (2,17),

=8.4g10-4 . (2.19)
Mp]

This gives the kind of hierarchy between the inflation
scale and the Planck scale that is needed in supersym-
metric models.

Before investigating this question further, we have to
discuss the issue of the initial conditions. From a tem-
perature of the order of the compactification scale
( T-Mp, -MoUr) down to a temperature T-A„ the po-
tential for S (and T, not to be confused with the tempera-
ture) is fiat, the field H~~ has a zero VEV, and super-

symmetry remains unbroken. %hen the temperature
reaches A„ the gauginos in the invisible sector (Es gaugi-
nos) start condensing, which breaks supersymmetry. The
ground state for the system formed by these gauginos and

H~~ (or, rather, the set of four-dimensional fields that it
represents) corresponds now to a VEV c&0 for H „~.
Since the presence of the Lorentz and Yang-Mills Chern-
Simons three-forms in H appears to allow for the possibil-
ity of tunneling between two different vacua, some bub-
bles of true (c&0) vacuum will start to develop. (Let us
note here that a different attitude is adopted in a recent
analysis by Ellis, Enqvist, Nanopoulos, and Quiros. In
Ref. 42, they assume that gaugino condensation occurs
while 0 has already acquired a nonzero VEV; whereas we
suppose here that gaugino condensation triggers a nonzero
VEV for H. ) It is doubtful that any substantial amount
of entropy will be released during that process because an
inflationary period taking place then would presumably
prevent these bubbles from coalescing, much in the same
way as in old inflationary scenarios. The tunneling pro-
cess should therefore be sufficiently rapid in order that at
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T & A, all our observed Umverse should be contained in a
single bubble of true vacuum [{H~„p)=c&0 given by
(2.7)]. Within this bubble we can compute the one-loop
temperature corrections to the potential for S.

They have the form~'~~

b, V = (STrMo ——STrM, n +STrM1 T 2 2 2

24 m„' 2

where N is the number of matter chiral multiplets {the
y s} and NG the effective number of gauginos. The tem-
perature correction therefore reads

(2%+KG+20)U —4(U —e )
~P1

—T~ STrMg yi )

where

STrMJ2 ( —1—) (2J+1)TrMJ, J=0, —,, 1,

(2.20)

(2.23)

TrM& ——2(N +6)U —2( U —e ) + ' ' eGaie
bo

TrMiy2 = (10+KG)U —4(U —e )+ e a e2= 31~ I' G i
2bo

TriV, 2=O,
(2.22)

(2.21)
STrM3&2 ——4m 3/2

2 2

The relevant traces have been computed in Ref. 35 (there
is a misprint in Eq. (21) of Ref. 35: the last term in
TrMF2 should read (3

I
h

I
/2bo)eGa e [cf. TrMi&i in

(2.22)] and NG/4 should be replaced by NG ) in terms of
U and e defined in (2.3) and (2.5) ( V,& do not contri-
bute when we put the y; to zero):

It is usually sufficient in grand-unified supersymmetric
models to study the leading N behavior of the tem-
perature corrections, since the number of chiral fields is
large (at least 3X27=81 in our case). However, in such
an approximation, it is clear that the ground state is not
displaced at high temperatures since the corresponding
part in hVT is proportional to U and hence to the zero-
temperature potential [Eq. (2.5)]. We therefore have to in-
clude the nonleading part, but this shows already that the
displacement of the ground state due to temperature
corrections will be minute.

Using Eqs. (2.3), (2.4), and (2.16) to express U and e
one obtains for the full temperature correction:

1 T 4 o'o
b Vr(a, p)= p (2M+KG+20}+ e [(2%+KG+16)(1+a) +4+3a )

C

——e ~ [(2E+NG + 16)(1+a }+4]cos— (2.24)

V(ao, P)=4@ sin —. (2.25)

One has to normahze the fields properly since their kinet-
ic term is not in the canonical form

&'S*8„S(S+S'}

Since the coefficient of the cosp/2 term is always nega-
tive, it is obvious that at high temperature the ground
state remains at po 4nm (——n integer). Let us note more-
over that even if some sort of initial conditions yielded a
positive coefficient [the axion-type symmetry p~p+4nn.
remains presumably unbroken, which ensures that the po-
tential is of the form f(a)+g(a)cosp/2], this would not
be sufficient to provide the right amount of inflation.
Indeed the potential in the p direction reads [we take
a=ao in (2.16)]

V(P)=4@ sin P
2 2

(2.27)

If, because of some specific initial conditions other than
high temperatures, the field p started around the max-
imum of the potential p=mi/2/ao, the number of e-
foldings undergone by the cosmic scale factor during the
rollover would be

dp- — „dp,&, 3H (P)Mpi &, V(p)
~o V'(P) &o V'(P)

where po is the value of p for which one can start treating
classically the evolution of the field in the potential, and
p, its value at the end of the inflation era; H is the Hub-
ble constant [H (p)- V(p)/(3Mpi )]. It turns out that
the dominant contribution comes from the po end of the
integral. Taking

(8'aB„a+&'ping) .1
(2.26) ~v2 2 2—Po Ho/Mpi =(2/i 3)p /Mpi

0!o
Therefore the potential for the properly normalized field
P=P/aors 2 is we obtain
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4 . o'o pln sin
2 &g 65

ao &6 Mp]
(2.29)

U o'o 1 —a/2v, (a) = = 1 ——(1+a)e1 4

2

for any reasonable value of p, /Mp). Therefore even if ini-
tial conditions yielded the most favorable case (and tem-
perature corrections do not), the evolution of the field S in
its imaginary direction (P) does not lead to any substan-
tial amount of inflation.

From now on we will fix P at its ground-state value

Po ——0. The potential at T =0 then reads

2

4 O,'O

V(a) =)M 1 ——(1+a)e
A C

(2.30)

b, VT(a)= 2p, [( N2+% G+1 )6,v +v 2+&v],
1 T

24 ~p, &

(2.31)

q{a) ti

~4

&{a)
p,4 C=1

V{a) i

p.4

ao

Ca) ii

p,4 (e)
1&|:&I.2I

Its shape depends strongly on the value of c: it is given
schematically in Fig. 1 for different ranges of values of c
[or equivalently ao, using (2.15)]. The number of ground
states can easily be found by studying the number of solu-
tions of the equation f(a)—=(1+a)e / =e. The func-
tion f has a maximum for a=1: f(1}=2e '/2; also
f(0)=1. Therefore, the equation has no solution for
c~2e '/i-1. 21, two solutions for 1&c &2e '/i, and
only one (positive} solution for c & 1. Hence the curves in
Fig. 1. For e g 2e ', there is no minimum with a zero
cosmological constant.

The temperature corrections to this potential are given
by (2.24) with P=O,

4e &o 1
vi(a) = =4 1 ——e (2.32)

vs(cx) = ciao e a—0! 3

C

Up to a factor p', vl is the potentig at zero temperature
and is given by Fig. 1: it is minimal at ao and (possibly)
aI). On the other hand, v2 has a (local) maximum at
a=at). However, as stressed earlier, because the factor
2K+KG+16 is large (N ~81,XG & 8+3+1+1=13),
the contribution of v2, vi is negligible and the shape of the
potential is basically not changed at high temperature. It
is only when vi(a)=0, that is a-ao, aI), that the extra
terms play a role. Indeed when ao&2.51, ao is a local
maximum of v2 adjacent to the local maximum ao and
v2(aI)) ~ v2(ao); similarly v&(aI)) g v&(ao). Therefore the
ground state at high temperature is aI) (or very close to it).
In the limiting case at) ——2.51(c=1), vi(0)=v2(0)=vi(0)
=0, and ao ——0 is a global minimum with zero cosmologi-
cal constant even at high temperature.

None of this however helps very much with respect to
inflation: whether ao or aI) is the ground state, the
minimum at high temperature does not seem to be one
where (nonthermal) energy would be stored.

We will pause for a moment and consider the contribu-
tion EVz, arising from fluctuations of the S and T fields
alone, to the full effective potential b VT. We have noted
in the Introduction that S and T originate from the dila-
ton and structure-related fields. It seems of interest to
study their behavior independently of the matter sector of
the theory where we have to answer such questions as
which mechanism for compactification, which choice for
the gauge group, etc. The properties of the dilaton are, on
the other hand, known since this field is present at the
superstring level and we do not have to rely on the details
of the structure-related sector: only the properties of the
simplest such field, the breathing mode, are needed.

It turns out that, by setting y; =0 in (2.22), we have got-
ten rid of most of the fluctuations in the y s. The only
terms left in (2.22) which come from the y; are the terms
of order N (arising from differentiating twice with respect
to the same field y,y') and of order NG for gauginos. The
temperature corrections therefore read, when limited to
fluctuations in S and T [compare with (2.23)]

p,4

0& 9 g' O

V {a)i1

(t)
C = I.2 I

0 Qo

&VT(a)=, 20U 4(U—
24 Mp)

+ 9I~ I', G 3, .
2bo

(2.33)

Shape of the potential V(a)/)u =(ao/a)[ l
—(1«)()+a)e ] for different values of ao or equivalently—ao/2
c =(1+ao)e: (a) c ~0.937, ao& 2.8; (b) c =0.937,
ao ——2.8; (c) 0.937~c &1, 2.51 ~a0~2. 8; (d) c=1, ao ——2.5129;
(e) 1 ~ c ~ 1.21, ao g 2.51, and ao&1; (f) c = 1.21, ao ——1.

1 T
b V (a) = [16vi(a)+v2(a)+vs(a)], (2.34)

24 ~p)2

where vi, v2, v& are given in (2.32}. These corrections are
given in Figs. 2 and 3 by plotting V+ADVT ~ for the
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v+av, "t
p4

V+hV, "

1 & C & l.2l

V+QVT

p4

I

V+ AVT

p4

different cases [(a)—(f)] of Fig. 1. For cases (a), (d), (e),
and (f) of Fig. 2, the situation is not very different from
the one discussed above with the full temperature correc-
tions AVT. When ap) 2.8 (a), the function is monoto-
nously decreasing and the ground state is reached only for
a infinite. In the presence of two zero-temperature global
minima ap and tzp [(e) and the two limiting cases (d) and

(f)], the corrections EVE tend to favor a minimum close to
ap. The cases where there is a local minimum a& with
nonzero vacuum energy [(c) and the hmiting case (b)] are
more interesting. Figure 3 shows that, in these two cases,

FIG. 2. Potential ( V+5Vq }(a)/p at T =Mp] where
EPr(a) are the temperature corrections contributed by S and T
at the one-loop level and are given in Eq. {2.34). [Strictly speak-
ing, these corrections are valid only for T ~A„and the ap-
propriate rescaling of d VT by a factor ( T/Mp])~ should be per-
formed for realistic temperatures. ] The letters refer to the eases

of Fig l: (a). c &0.937, ap&2. 8; (d) c=1, ap ——2. 5129; (e)

1gc ~1.21, aog2. 51, and a~1; {f)e=1.21, ao ——1.

this local minimum is precisely the one preferred by the
truncated temperature corrections EVT. Therefore if, for
some reason [one could note here that S and T decouple
thermally from the rest of matter, down to temperatures
much smaller than the Planck sale. As noted by Holman,
Ramond, and Ross, the same remark applies actually to
any candidate for an inflaton field in supersymmetric
theories; it is not clear however that this is a good enough
reason to discard matter (y; and gauginos) when comput-
ing the one-loop effective potential. Even if S and T
fields form a decoupled phase which is at a temperature
T' different from the one of matter, fluctuations will
create matter fields at temperature T' and this is precisely
what contributes to the effective potential (at least this ar-
gument makes sense in a nonexpanding universe, al-
though, if there was no expansion, there would be no
decoupling)] ordinary matter does not contribute to the
temperature corrections for the potential of a, and if, for
some other reason, 2.51&ap(2.8 (this in turn corre-
sponds to 0.937 & c & 1 which, since the value of c is
quantized and a geometrical constant depending on the
shape of the underlying compact manifold, 2s should cor-
respond to a narrow set of manifolds) the minimum
favored at high temperature is a local minimum
tz~[ V(a~)&0] which is separated from the ground state by
a small barrier at zero temperature.

Apart from temperature corrections, it has been noted
recently ' that a role could be played in the initial con-
ditions by the Peccei-Quinn-type symmetry associated
with translations of ImS: h~h+const. For nonzero
values of the corresponding charge Q, the h kinetic energy
provides an energy barrier that prevents a from running
away to infinity. Therefore if Q balls were formed in
the early stages, this would provide a way to constrain the
field a in the region a & ap.

Let us now consider in more detail the potential V(a)
in the case where there is a local minimum a& with
nonzero vacuum energy: 0.937 &c &1 [(b) and (c) in Fig.
1]. We will determine whether the initial condition a =a&
would yield an inflationary evolution that satisfies the
constraints discussed in the Introduction.

Let us start with the limiting case c=cp ——0.937 [Fig.
1(b)] where a~(=2 —W3—:A), an inflection point, is not
separated from the ground state up by any barrier. The
classical equation of motion of a in the potential V during
the slow rollover phase reads

I

a,
3Ha= —2a V'(a)/Mp~ (2.35)

The unfamiliar form of the right-hand side is due to the
noncanonical form of the kinetic term for a [cf. Eq.
(2.26); one can check (2.35) by normalizing a: a=e " ].

This gives for the number of e-foldings that the cosmic
scale factor undergoes during inflation:

FIG. 3. Shape of the "truncated" temperature corrections [(b)
and (c) of Fig. 1] [contribution of S and T only, Eq. (2.34)]
hv=hVr/[ 2'4(T /Mpi~)ts4] at T=M, for (b) c=0.937,
a0=2.8; (c) O.937 &e &1, 2.51~ao &2.8

3H (a)
2a V'(a)Mpi

V(A) ~ da
A

)

V'"(A)
)

~ (a —A)
(2.36)
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?
(

4 ~ —1/zg 1/2)1/2 ()
MPI

(2.38)

which is not too stringent a bound (as stressed earlier, a
stronger bound comes from the scale of density fluctua-
tions).

%hat happens when we let c increase so that a barrier
separates ai from the ground state ap [Fig. 1(c)]'? Let us
recall first the corresponding analysis of Hawking and
Moss ' for a scalar field of mass m whose self-
interactions are described by a coupling?1, ; the value of the
Hubble constant at the false vacuum is H. (i) For
rn &I,'/ H, the field basically does not see the barrier
and evolves classically in the potential as soon as it
reaches the point at which nonlinear effects due to in-
teractions become important. The situation is identical to
the one just discussed (c =cp). (ii) for m & 2H, the field
has to tunnel nonperturbatively through the barrier. Bub-
bles of the true vacuum materialize and expand. This is
nothing else but the "old" inflationary scenario and it
suffers the same shortcomings, in particular, large inho-
mogeneities. Finally, (iii) in the intermediate region
A, '/H &m &2H, the radius of the bubbles at the time
they materialize is equal to the horizon H ' and tunnel-
ing occurs homogeneously over any causally connected re-
gion.

Applying this analysis to our case, we remark that, as
soon as c+cp, mz-P /MP1 . Since ?(,-P /Mpi and
H-p /Mpi, A, '/H «m -H which, barring some
fine-tuning of the parameters, corresponds to the trouble-
some region (ii). To see this more quantitatively, let us
make an expansion around cp. c =cp+ e,a 1

——3 —5a.
Since the relation between c and a& reads

C =(1+a1 )e (2.39)

we obtain

(2e A/2/v/3)1/zeal/2

The two relevant parameters are therefore

(2.40)

V"(a'1')I
Mp] 2

V"'(A ) 5a
Mp]'

4 31/4I g —S/2e A /4 [/2

V(W) &40 =
3Mp] 3Mp] 3fp) 24

(2.41}

and a scenario in the manner of Hawking and Moss is
possible [case (iii)] if I &.2H, that is,

where H = V/3M@1 and we have used the fact that the
dominant contribution to the integral comes from the
lower bound a-a;-A. Using (a; /—I)-H/Mpi, one ob-
tains [ V(A) =p"ap/8, V"'(/I) = —p (v 6/16)ap/1 / ]

M
Az

i
V"'(3)

i p

(2.37)
and the constraint N, & 65 [Eq. (1.1)] reads

e Ae" 3X10"
27

(2.42)

Therefore the only viable scenario we have found, based
on the properties of the potential V given by Eq. (2.30), is
for the range of parameters

c =0.9374+5c, 5c & 3 && 10 (2.43)

%'e have noted earlier that c is a calculable quantity,
once one knows the underlying Kaluza-Klein compact
manifold. As long as such a manifold with the value of c
given in (2.43) has not been exhibited (this manifold
should also yield the complete low-energy phenomenolo-

gy), we do not think it wise to pursue the analysis of the
corresponding scenario.

Another reason not to do so is the danger that the field
a might overshoot, in which case, instead of oscillating
around the ground state ao, it ~ould reach the region
beyond the maximum az at the right of ap and escape to
infinity. The reason is that, for c =cp,

V(ai)-0. 351M & V(az)-0. 24I4 (2.44)

and for any reasonable value of 1M, the "friction" due to
the Universe expansion might not be large enough to
prevent the field from reaching az.

Instead of taking a=ai as an initial condition which
led us to the unrealistic choice of parameter (2.43) and po-
tential trouble with overshooting, one could try to start
with a=az, the maximum which separates the ground
state 1zp from a~ ao. The problem here is that any initial
configuration n-az would lead to the superposition of
two wave packets: one drawing toward the ground state
and the other one to infinity. After some time, the only
relevant one, as far as the evolution of the Universe is
concerned, will be the second one. Let us point out here
that this would be a serious drawback to any chaotic
scenario of inflation. Chaotic scenarios evade the deter-
mination of initial conditions by letting the different
causally connected patches which form the Universe
choose them at random. The problem is that for those re-
gions that start with a & az, there will be no end to infia-
tion and they will soon dominate the Universe.

Therefore, although the fiat direction associated with
the dilation field in superstring theories seems to provide
the right ingredient for an inflationary scenario, the four-
dimensional theory that is believed to emerge from it does
not satisfy this expectation. Besides problems with deter-
mining the right initial conditions (which are shared by
almost any supergravity model), the potential V(S), where
5 is related to the dilaton through Eq. (1.6},does not seem
to give rise to an inflationary evolution, at least for any
reasonable range of parameters.

We finally comment on the possible role of the other
structure-related fields mentioned at the end of Sec. I:
T' ', k =2, . . . , b] ~ and C' 'o'=1, . . . , 62 ~.

The T'"' fields, defined in (1.7) have properties very
similar to the T field described above. In particular they
do not appear in the superpotential (because of a Peccei-
Quinn symmetry associated with P' ') and they remain
massless after supersymmetry breaking. A determination
of their potential would thus require a detailed knowledge
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of the one-loop corrections. As in the case of T we will
not pursue their analysis further.

On the other hand, some of the properties of C' ', the
fields related to the description of the complex structure
of the compact manifold K, make thein plausible candi-
dates for the inflaton field. First of all, they acquire a
mass at the scale of supersymmetry breaking. The
reason is that a given VEV for H [i.e., a value of c in
(2.4)] represents a given integral cohomology class for a
particular choice of complex structure. The complex
structure is therefore fixed once supersymmetry is broken
(through nonzero (H)), which amounts to the C' ' ac-
quiring a mass. This means in particular that the scale
that determines the nontrivial structure in the potential of
the C' ' is given in terms of mz&2. As in the case of S
discussed above, this should allow for the hierarchy of
scales needed for infiation [cf. (1.3)]. We might even have
more freedom than we had with 5 because the C ' fields
could be present in the superpotential: there is no Peccei-
Quinn-type symmetry that prevents it (actually, some of
the F terms depend on the choice of complex structure).
On the other hand, renormalizable terms in the superpo-
tential should not couple the C' ' to the matter fields. As
discussed in Ref. 51, such a coupling —necessarily of the
form C' '2727—would mean that the number of massless
fields depends on whether the C' ' have a nonzero VEV
or not. But this number is a topological invariant that
cannot depend on shifts in the complex structure of the
compact manifold. The absence of such couplings means
that the C' ' are in a hidden sector, i.e., a sector that in-
teracts with ordinary matter only through gravitational
interactions. As stressed earlier, this is a welcome feature
for an inflaton field.

On the basis of these remarks, we could build a model
where one of the C' ' fields would play the role of infla-
ton. We will refrain from doing so because the freedoin
that we have is only a reflection of our poor knowledge of
the detailed couplings of these fields; More insight is
necessary —in particular through the construction of an
explicit example where the general remarks that we have
made would receive an illustration —before one can make
an attempt at using the C' ' in an inflationary scenario.

K=0, F'= ——,, Y"=—( —, )'

Putting to zero all the fields which are not singlets under
SU(3)XSU(2)XU(1)r, we readily see that N and N' cor-
respond to flat directions of the F terms in the potential,
since there is no term in the superpotential (-4 ) involv-
ing only N and N' (such a term would have F'= —5).
On the other hand, the D terms do not cancel and the po-
tential is therefore minimized for N =N =0. Since the
gauge symmetry is always larger than SU(3) X SU(2)
XU(1)r by one or two units of rank, this implies that
the extra gauge group is only broken at energies compar-
able to the weak breaking scale M@ (since N, N' are the
only fields that could break it, and they cannot do it
alone). [This in turn implies a strong mixing between the
Z gauge boson and extra neutral gauge boson(s) which in
most cases, proves to be ruled out by experiment. ] For
similar reasons, neither N nor N' can be used for infia-
tion.

To evade these conclusions, one has simply to remark
that the presence of an N field (or N'), mirror image of
the N (or N') in the 4=27 would allow the possibility of
canceling the D term. We will suppose for the moment
that the only SU(3)XSU(2)XU(1)r singlet of 27 present
in the theory is a N field (the same conclusions would be
reached with N'):

N F=0 1"= — 1"'=(—)'

Clearly, N =N is a fiat direction of the potential (none of
the terms in the superpotential originating from 4 and

involve N and N only). Therefore, once again a flat
direction appears naturally in a sector of the theory,
which could account for the development of an inflation-
ary era. Of course, this direction cannot remain and some
sort of structure has to develop, since N =N has to break
the extra symmetry. The main question is at what scale
does this occurs

It has been recognized that nonrenormalizable terms
in the effective low-energy superpotential g will lift the
degeneracy:

III. MATTER FIELDS
~ng(4)=4'+4'+ g, , (@4)",

n=., ~p]'" ' (3.1)

We now turn to the fields in the matter multiplets
transforming as parts of 27 and 27 representations of E6.
Let us consider first one 27. Under SO(10},it decomposes

4—:27=16+10+1 .

%e will require the inflaton to be a gauge singlet of the
strong and electroweak interactions SU(3) X SU(2)
XU(1)r. This leaves us with only two candidates: the
SO(10) singlet N and the SU(5) singlet in the 16 of
SO(10),N'. Under the minimal subgroup of rank 6
SU(3)XSU(2)XU(1)rXU(1)r XU(1)r, these two fields
have the charges [we adopt here the normalizations of
Ref. 52 which ensures that all U(1) couplings gr are equal
at the grand unification scale, and to a good approxima-
tion, at all scales]

v(N, N)=m (IN
I

+ INI )

no ~n+,„,(INN! }
' (IN I'+ INI')

Pl

+D terms, (3.2)

where we have kept only the term of lowest dimension
and have added a mass term that is assumed to arise from
supersymmetry breaking (as discussed in the last section).

where no&2. [Note that as far as N, N are concerned,
(3.1} includes the most general nonrenormalizable terms
neutral under the U(1) charges. ] The corresponding low-
energy potential for N and N reads, from (2.5)
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[We rescale the fields so that their kinetic energy has a
canonical form in the low-energy hmit. Similarly, in or-
der that the I' terms in the low-energy potential be ex-
pressed in terms of the superpotential g in the standard

way (
~

g'
~

), g differs from IV in (2.4) by the rescaling

g =up (2bpap/3) ' W ].In the direction N =N (real),
the D terms cancel and

V(N=N)=2m N +
2 2

Zllo A,~ 4(} 5o-
4no —6

Pl

(3.3)

The ground-state value and the inflation scale are given by

l /(2nD —2)
-Mp) (M)p/Mpi )

~o —=Ho'

—= V(0)—V(cr)

(3.4)

4[(
~

m2
~

)I/2/M ]( "O i)/(nO —l)~ —1/(nO —i)
No

M (M /M )

AJ2 ~
2 2 Alf2 —3g= N() N() + N() N2N 2+O(Mp) ) .

Pl Pl
(3.5)

(However, one should be aware of the fact that these
quasisymmetries hold only at the tree level and are
therefore not necessarily valid for the nonrenormalizable
terms we are considering. As a matter of fact, these terms
violate an 8 symmetry which is another of these

where we have used the fact that —m2 should be of the
order of the weak-interaction breaking scale M)p [since
the same supersymmetry-breaking mass term is expected
to be present for the Higgs doublets of SU(2) X U(1)].

Let us briefly discuss the value of np that we should ex-

pect. It was first considered that a quartic coupling
(CT()} is always present when one integrates out the su-

perheavy fields corresponding to the internal degrees of
freedom: if this is true, no 2and ——the intermediate scale
is {N)-+Mar/Mp) 10 GeV. However, it has been
recently argued by del Aguila er al. that in a specific
model, np 3 Thi——s m. odel was first discussed by Witten
and is based on the gauge group SU(3) XSU(2)L,

XSU(2)q XU(1)FXU(1)p. Its representation content is

four generations (complete 27) plus parts of 27+27 which
include the singlets of SO(10) (we will denote them by Np
and Np). The symmetry of the Calabi-Yau manifold
yields a discrete symmetry Z2 XZ&, where the Z5 sym-
metry is associated with a generation index. %e will

therefore denote the six N fields by N+ „N+2,N p,N p. As
before, if we do not include the nonrenormahzable terms,
Np =g,. 2N; is a fiat direction of the potential (it can-

cels the D terms). The new feature is that quasisym-
metries (see Ref. 53 for a discussion of these quasisym-
metries) impose that N+, are not present in the n =2
term of the superpotential

quasisymmetries. ) Therefore Np ——N, +N i is a flat
direction of the potential up to terms of order Mp) and
no&3. It is easy to check that actually no ——3 which

yields an intermediate scale {N)-(M)pMp) )' —10'
GeV. This provides an elegant way to solve the problem
of baryon-number violation in these theories. 5

The question of the origin of nonrenormalizable terms
in the superpotential has been recently discussed by %it-
ten. ' It is rather simple to realize that higher orders in
the o.-model perturbation theory do not renormalize the
superpotential. Indeed, the o-model couphng y is given
byis y 2=ReT; the superpotential being an analytic func-
tion, any dependence in that coupling would imply a
dependence in ImT. This is forbidden by the Peccei-
Quinn symmetry discussed earlier, which is respected to
all finite orders of cr-model perturbation theory. ~ Fur-
thermore, %itten argued that, at least in some cases, even
when integrating our massive Kaluza-Klein states, the su-

perpotential remains unchanged. In such instances, the
fiat directions are not lifted as long as one stays away
from the region close to the eompactification scale, or
Mp). {For example, when N or N reach scales of order
Mpl, their kinetic energy starts playing an important role
because of its noncanonical form: for the rescaled fields
that we are considering here, the kinetic term in the La-
grangian has a nontrivial factor [1—(

~

N
~

+
~

N
~

)/
(3Mp) )] ' which can be approximated to 1 only for
N, N «Mp). ) It has been noted recently56 however that
world-sheet nonperturbative effects (instantons) will, in
most cases, life the degeneracy. We will return to this
question below. For the moment, we will let np in (3.1)
have arbitrarily large values.

When studying the potential V [Eq. (3.3)], one has to
remember that the mass is a running mass that, through
quantum corrections, depends itself on the value of the
field N. The renormalization-group equations (RGE)
describing the evolution of the scalar masses form a sys-
tem of coupled differential equations (see, for example,
Ref. 52}. For simplicity, we will assume here that m sat-
isfies the oversimplified renormalization-group equation

2

p =k (m +mp),
dp

(3.6)

where k is a typical Yukawa coupling, taken to be con-
stant (once again a crude approximation) and )M is the run-
ning scale (not to be confused with the scale of the poten-
tial in Sec. II). We retain here only one feature of the
solutions of the coupled equations: when the scale p goes
to zero, the scalar masses approach a fixed point. ' In
particular, the fixed-point value for the mass squared of
N is negative (it would be difficult to induce gauge sym-
metry breaking otherwise}; we denote it by ( —mp ). The
solution of Eq. (3.6) therefore reads

m = —m() 1+$ (3.7)

where g is a constant, and we have used the fact that m
scales as mp throughout its evolution (to put it different-
ly, there is basically one mass parameter, the mass at the
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compactification scale—or rather A,—that determines in

particular the mass at the fixed point). In Eq. (3.7), N ap-
pears because, at least in the region N »rno (and there-
fore in particular for N -cr), it is the only relevant dimen-

sionful parameter in the problem. The complete
dependence of the potential V is obtained from Eqs. (3.3)
and (3.7). Using the condition (d V/dN)(o ) =0 to express

p in terms of o, we obtain

V=2nzo N —1+ 2 CT

2 —k2 +Zno A,„N Mp1
4np —2

MP1

X2 '4"o-4
(3.8)

Going back to our discussion of inflation, there is no problem here with determining the initial conditions: at high
temperature, the symmetry that is broken by N or N is restored and the ground state is N =N =0. As the Universe
cools down, the temperature reaches T; -po, where the energy stored in the vacuum Vo dominates the energy density of
the Universe, leading to an exponential expansion. We need therefore to know the precise shape of the potential V near
N =0, for which value unfortunately Eq. (3.8) breaks down. The reason is that the parametrization for m given in (3.7)
is not valid near N =0 because it generates spurious large logarithms In@, /N. One can think first of replacing the scale
N by mo, but the important point is that renormalizing the mass at any large scale p, will generate large logarithms.
However, in the region where N is very close to zero, one can safely assume that m has reached its fixed-point value
—mp, and

4'
O
—2

V(N-0)= 2mo—N +2no A„Mp, )

MP1
(3.9)

The temperature corrections are once again given by Eq. (2.20) and from the results of Ref. 35 one obtains, using the
same field normalization as for the zero-temperature potential,

b, VT(N-0) = T—I

8
2 2 1 2 4

g~N . . 2- + cxp+—
2 N'3M„

2m 3/2

2 N
1 ——

3 Mp1

8 N
'"'

i)i 3g2MpiA +
P1

4(~o —1}

+2&o'[(no —1)'+no']an, '
MP, 2

P1

(3.10)

2
4 ~ 4~o=Po =

30
(3.12)

where gr is the coupling constant associated with the U(1)
gauge symmetry broken by N. It is clear from (3.9) and
(3.10) that the behavior of the temperature-dependent po-
tential is different from the Coleman-Weinberg ' case (see,
for example, the discussion of Ref. 59). For temperatures
larger than T, -(—, )'~ (molgr), the only minimum is
N =0, but as soon as T gT„N =0 becomes a local max-
imum and a nonzero minimum starts developing which
will eventually reach the value o. There is therefore no
barrier as there was in the Coleman-Weinberg case (see
Fig. 4).

In order to determine the number N, of e-foldings
undergone by the cosmic scale factor, we compute the
value of the entropy of the Universe S; at T, and Sf after
reheating:59

4m 3 4m.
~l nl Tc & ~f nf Tlh90

(3.11)

where n;, nf are the effective numbers of degrees of free-
dom at T, and T,h. The reheating temperature T,h is
given by

Hence, the factor of entropy increase is

Sf nf' 30
S; n;

1/4nf
Rr

n;

' 3/4
Pp

TC

3/4
250

271r'
Pp

P7l p

3

(3.13)

andusing(3. 4) with
~

m
~

=mo -M~,

~f 3Ne

S;

1/4nf Mp1

nI. Alp
L

' 3(2no —3}/4(no —1}

(3.14)

This yields an entropy release of a 10 (N, -6) for no ——2,
and 10 (N, —16) for no »1. Therefore, although a sub-
stantial amount of entropy is released during the period
T, & T &po when, due to thermal effects, the minimum is
located at the origin but the vacuum energy dominates the
energy density, this is definitely not enough to satisfy the
constraint (1.1). Once again, although the model provides
a natural flat direction in the potential of some scalar
fields, our analysis shows that this does not provide a
framework for an inflationary scenario.



34 CANDIDATES FOR THE INFLATON FIELD IN SUPERSTRING MODELS 3081

(Tc

(o)

FIG. 4. Comparison of the temperature dependence of the
potential V(X) of Eqs. (3.9) and (3.10) and of a Coleman-
%'einberg potential.

We mentioned earlier that nonperturbative effects on
the world sheet seem, in most cases, to lift the degenera-

cy associated with flat directions. More precisely, world-
sheet instantons generate corrections to the superpotential
of the four-dimensional theory. Of particular interest to
us is the term N N /Mpi which appears with a coupling
of order e '~r -e "', typical of world-sheet instanton
contribution (y, the cr-model couphng constant, has been
defined earlier). In the notation of (3.1), np =2 alid A,2 is
of order e '". We obtain, from (3.4),

e"""(M /M )'"
po/Mpi-e"' ~ (M~/Mpi) ~

(3.15)

For e ' small, the intermediate scale o. is thus larger
than previously expected. 2 A small value for e "' is
also desirable to generate hierarchies between Yukawa
couplings. Moreover, it gives a larger inflation scale po
which in turn yields a longer inflationary epoch
(T, &T &pa). As one can check from (3.13) and (3.14),
the number of e-foldings N, receives an additional contri-
bution (Re T)/4 ~ 0. But this is presumably not enough to
obtain the amount of entropy release S//S; that is needed
(N, -6+ReT/4 is still much smaller than 65).

IV. CONCLUSIONS

Because the scale of compactification is presumably
close to the Planck scale, there are good reasons to believe
that the compactified versions of superstring theories are
subject to the same cosmological problems as all other
four-dimensional models: production of primordial gravi-
tons, monopoles, gravitinos that makes these species too
abundant at the prment time. This suggests that, if the
Universe went through an inflationary era, it must have
occurred after compactification.

This has prompted us to study in this paper whether
the cosmological scenario that has been devised for infla-
tion in locally supersymmetric theories can be imple-
mented in superstring models. The fiat directions of the
scalar potential, that play an important role in these
models, seem to provide the right starting point for
developing such a scenario. %'e have studied in detail two
of these flat directions.

The first one is associated with the dilaton field of
superstring theories (to be precise, its four-dimensional

version S). The corresponding degeneracy is lifted by su-

persymmetry breaking and the nontrivial scalar potential
that is generated scales as po, where po is of order
Qmi&2Mpi. Besides the flatness of its potential, some
other properties of S make it a good candidate for the in-
flaton field. It is in a hidden sector (its interactions with
ordinary matter are only gravitational); its ground state is
supersymmetry breaking (choosing the inflaton field in
the supersymmetry-conserving sector often leads to the
"entropy crisis" problem); p, o has the right scale
(po/Mpi 10 ) for values of m3/2 that might be realistic
and that take care of the gravitino probleins ( rn i~2 —10'
GeV). The first difficulty that we encountered is the
determination of the initial conditions. The full tempera-
ture corrections to the potential stabilize the field at high
temperature near its ground state, where no vacuum ener-

gy is stored. It is only by restricting the temperature
corrections to the fiuctuations of the S and T fields that
one obtains a nontrivial behavior: a potential energy of
order po at the minimum of the temperature-dependent
potential.

However, whatever the initial conditions are, the evolu-
tion of the S field in the potential gives rise to an infla-
tionary scenario only for an intolerably narrow range of
parameters [Eq. (2.43)]:

c=0.9374+5c, 5c ~3X10 (4.1)

where c is given in terms of the gauge coupling constant
aoUT at the compactification scale by [see Eqs. (2.10) and
(2.15)]

3 3/(8mbo~oUTc= I+ e
4nboaGUT

(4.2)

The second fiat direction of potential that we have
studied occurs. in the nonsinglet sector of the theory and is
associated with the possible presence of an intermediate
scale of gauge-symmetry breaking between Mii and Mp~.
The properties of the corresponding field N (or N') are
somewhat less attractive: it is not a gauge singlet (al-
though it is a singlet under the low-energy gauge symme-
try) and it is not weakly coupled to ordinary matter (a
coupling to matter is necessary in order to drive its mass-
squared negative through renormalization-group equa-
tions, and induce a nonzero VEV). We found that, for
some time during the evolution of the Universe, the tem-
perature is large enough to keep the field N at the origin
(gauge symmetry restored) but small enough so that the
nonzero potential energy at the origin dominates over the
thermal energy. This leads to an inflationary evolution
but the amount of entropy released is not large enough to
solve the flatness and horizon problems.

In view of the negative conclusions that we have
reached, one might wonder what modifications of the
models considered should be made that would lead to a
successful inflationary scenario.

First of all, since there is not at present a compelling
correspondence between superstring theories and the
models that are believed to arise from their compactifica-
tion, there is some uncertainty in the eouplings. This is
crucial here because the occurrence of inflation depends
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on the precise shape of the scalar potential. Let us note
however that, in the case of the S field, the couplings are
fairly independent of the precise compactiflcation scheme
used, at least for those schemes that lead to a positive-
definitive scalar potential [no-scale models, where the
couplings of 5 are fixed by a SU(1,1)/U(1) symmetry].
The same would not hold, for example, for the T field
whose couplings strongly depend on the compactiflcation
scheme. However it is the breaking of supersymmetry
that induces a nontrivial structure in the potential of S
and any supersymmetry-breaking mechanism other than
gaugino condensation in the hidden sector would yield a
different shape for this potential.

Another possibility is that the cosmological evolution is
more complicated than the one we assumed. For example,
it is possible (although improbable, as we stressed in Sec.
II) that inflation occurs while the field H is tunneling
from a zero value to the value c&0 that corresponds to a
minimum of the total energy (once gauginos have con-
densed).

We have also noted at the end of Sec. II that the general
properties of the fields C' ' related to the complex struc-
ture of the complex manifold make them plausible candi-
dates for the inflaton. But a more detailed knowledge of

their couplings is needtxl in order to study further this
possibility.

Finally, inflation could occur before compactification
or, more probably, in connection with compactification.
But, in this case, one would be taking somewhat of a step
backward and one would have to explain why there are no
graviton, gravitino, monopole, domain wall (in particular
those associated with compactification itself), etc. , prob-
lems in the four-dimensional theory. Of course, the fact
that one would rather have an inflationary epoch follow-
ing compactification does not preclude the possibility of
other departures from the standard big-bang theory asso-
ciated with superstrings and/or Kaluza-Klein compactifi-
cation.
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