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Gauge systems are approached by deemphasizing the role of the gauge group and replacing it by a
subgroup of point transformations on the phase space .¥ = T*.# which is a cotangent bundle over a
“big” configuration manifold .#. These transformations are generated by a proper subalgebra 7~ of
the Poisson algebra of dynamical variables linear in the momenta. The orbits of 7 which lie on the
constraint surface %', on which all v from 2~ vanish, form the physical phase space 5. Observables
are identified with dynamical variables on . which are constant along the orbits in ¢, and physical
variables are identified with equivalence classes of observables. Special observables (including the
Hamiltonian of the system) are at most quadratic in the momenta. The kinetic part of the Hamil-
tonian endows .# with a metric which, together with the gauge algebra 7", leads to a unique split-
ting of all special observables into standard physical parts and gauge parts. The splitting also leads
to observables which represent conjugate canonical variables in the physical space. The Poisson
brackets of all special observables can be explicitly evaluated, and the gauge theory can be explicitly
reduced to a physical theory. The canonical formalism is manifestly covariant under point transfor-
mations in % and in 3, and under changes of the basis in 7”. It enables us to construct a covariant
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factor ordering leading to a consistent canonical quantization of gauge systems.

I. INTRODUCTION
A. Motivation

In physics, one often deals with systems whose action is
invariant under an infinitely dimensional group. It is
common, though unfortunate, to label all such systems as
gauge theories. Once their dynamical aspects are made
explicit through the canonical formalism, important dis-
tinctions start to emerge. The invariance leads to con-
straints which restrict the canonical variables and, on the
constraint surface, string them into orbits. Sometimes,
the points on an orbit can be considered as equivalent
descriptions of the same physical state, sometimes as dif-
ferent stages in the dynamical evolution of the system.
Only in the first case it is physically appropriate to talk
about gauge. The second case is associated with the arbi-
trariness in the choice of time, and its inclusion among
canonical variables. This process is often called parame-
trization.

In all theories of physical interest, the constraints asso-
ciated with gauge are linear homogeneous functions of the
canonical momenta, while those associated with parame-
trization are quadratic functions (though not necessarily
quadratic forms) of the momenta. This distinction is
preserved by point transformations, but not by arbitrary
canonical transformations. This underscores the impor-
tance of the cotangent bundle structure of the “big” phase
space for drawing the line between gauge and parametriz-
ation.

Examples of finite-dimensional gauge systems will be
discussed in the last section of this paper. The best
known example of a finite-dimensional parametrized sys-
tem is a single relativistic particle moving in a given
spacetime. The four-momentum of such a particle is re-

34

stricted, by a quadratic constraint, to lie on the mass shell.
Among fields systems, electrodynamics and Yang-Mills
theories are typical examples of gauge theories in the
proper sense of the word. The constraints in these
theories are linear and homogeneous in the canonical mo-
menta.? The prototypes of parametrized theories are
general relativity and the nonlinear 0 model. The con-
straints associated with the arbitrariness in the choice of
time (super-Hamiltonian constraints) in those theories are
quadratic in the canonical momenta. Besides these con-
straints, there are also linear homogeneous constraints (su-
permomenta constraints) associated with invariance under
the spatial diffeomorphisms which play the role of a
gauge group.>*

The last two theories illustrate an important feature of
the canonical decomposition, namely, a possible break-
down of the group structure. In proper gauge theories,
the Lie algebra of the underlying group is represented by
the Poisson algebra of the linear homogeneous constraints.
In general relativity, and for the nonlinear o model, this is
true only for supermomenta constraints (which are associ-
ated with gauge) but not for the super-Hamiltonians
(which are associated with parametrization). The Poisson
brackets between super-Hamiltonians lead to structure
functions rather than structure constants, and the total set
of Poisson brackets among all constraints does not
represent any Lie algebra.> To represent the original in-
variance of the action under spacetime diffeomorphisms
requires a further extension of the phase space by the
embedding variables.® Indeed, one can trace the origin of
the structure functions to the introduction of an anholo-
nomic basis in the space of embeddings.” Unfortunately,
to recover the physical theory, one must still impose in
the end the original constraints which do not represent a
Lie algebra.
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The breakdown of the Lie algebra and the appearance
of structure functions presents a serious obstacle to canon-
ical quantization of parametrized theories. It is difficult
to factor order the constraints in such a way that their
commutators remain consistent® and that the quantization
of the parametrized theory is equivalent to the quantiza-
tion of the corresponding physical theory. The classical
formalism introduced in this paper (referred to as I) and
the canonical quantization scheme proposed in its sequel®
(referred to as II) aim at a single goal: to resolve such
problems in a simpler context of gauge theories and ini-
tiate a program on how to face them in parametrized
theories.

Viewed superficially, gauge theories do not seem to
present any difficulties, because the Lie algebra of the
gauge group is canonically implemented. However, the
Hamiltonian of the theory (which replaces the super-
Hamiltonian of a parametrized theory) in general
preserves the constraints only via some structure func-
tions. The problem thus reappears at this level. More-
over, the group theoretical origin of the gauge is quite ir-
relevant in the classical canonical formalism. One can in-
troduce an anholonomic basis in the “big” configuration
space and thereby mix the constraints by a linear transfor-
mation with coefficients which depend on canonical coor-
dinates. The new constraints close with structure func-
tions instead of structure constants, and the new version
of the classical gauge theory is as difficult to quantize as
are parametrized theories.

Field systems have an additional factor ordering prob-
lem, namely, that associated with an infinite number of
degrees of freedom: not all, if any, choices of factor or-
dering lead to well-defined operators on some Hilbert
space. To decouple the problem of renormalization from
our original consistency problem of quantized constraints
and observables under the commutator algebra, we shall
confine the present discussion to finite-dimensional gauge
systems. In this paper we build a covariant Hamiltonian
formalism of such systems. In the following paper we
develop a covariant canonical quantization scheme resolv-
ing the factor ordering problem.

B. A preview of results

From our point of view, gauge systems always live on a
cotangent bundle to a big N-dimensional configuration
manifold .#. Coordinate transformations on .# induce
point transformations on T*.#. These can be considered
as canonical transformations generated by dynamical vari-
ables .#” which are linear and homogeneous in the canoni-
cal momenta. All such variables form a subalgebra of the
Poisson algebra of dynamical variables. We take the
standpoint that gauge is nothing but a proper subalgebra
7" of . Gauge transformations are those point
transformations which are generated by the elements
vE 7", The role which the “gauge group” plays in tradi-
tional formulations of gauge theories is deemphasized
and, in fact, may be profitably forgotten. One can choose
an arbitrary basis 7,=¢(Q)P,, a=1,...,C<N of ¥".
That basis does not need to represent the generators of a
Lie group: the Poisson brackets of m, close, but not
necessarily with structure constants.” The basis 7, can be

subject to an arbitrary regular linear transformation
whose coefficients are functions of configuration vari-
ables. Gauge transformations generate C-dimensional or-
bits only if they lie within an (2N — C)-dimensional con-
straint surface ¢ in T*.# on which all elements v of 7~
vanish. These orbits can be considered as points s of a
(2n=2N —2C)-dimensional physical phase space s.

A dynamical variable on . which is constant along the
orbits on ¥ is called an observable. Two observables F;
and F, which coincide on the constraint surface, F| ~F,,
define a physical variable f on 4. A physical variable is
thus an equivalence class (F) of observables. Poisson
brackets between observables respect such equivalence
classes and thus define Poisson brackets between physical
variables. The general features of this reduction process
are, of course, well known and are discussed both in the
physical'® and mathematical!! literature.

The cotangent bundle structure of . allows us to clas-
sify observables according to the powers of the momenta.
All physically important observables are at most quadra-
tic in the momenta. We shall call them special observ-
ables. In particular, the Hamiltonian H is of this form.
The purely quadratic part of the Hamiltonian endows the
configuration manifold .# with a contravariant (possibly
degenerate) metric G4,

The physical coordinates g° are any n =N —C in-
dependent functions g% Q) on .# which are constant
along the orbits. They may be subject to an arbitrary reg-
ular transformation. Their derivatives Q9 =3¢°/3Q* de-
fine projectors into the physical space. In particular, the
projection of the metric G“4% yields the physical metric
g°® which is assumed to be nondegenerate and thus has an
inverse g,,. The metrics G*% and g, allow us to turn the
n covectors Q% into n vectors Q. which complement the
C vector coefficients ¢/ of 7, into a vector basis in T.#.
The dual to the basis is a cobasis in T*.#. The projection
Pa=0Q7P, of the momentum defines the equivalence
class of linear observables (p,) which is the canonical
momentum conjugate to (g?).

The basis and cobasis elements enable us to split an ar-
bitrary special observable unambiguously into a standard
physical part and a gauge part. They also enable us to
evaluate explicitly the Poisson brackets between any two
special observables. We are then able to show in full de-
tail how the Hamiltonian dynamics in the big phase space
reduces to the physical dynamics in s.

While this procedure is just a particular application of
the general reduction scheme, the explicit control of the
structure of special dynamical variables (with their stan-
dard physical and gauge parts expressed in terms of the
standard representatives ¢ and p, of the physical canoni-
cal variables) allows an equally explicit control of factor
ordering, a task which cannot be easily accomplished
within the general reduction scheme. This gives us the
tool which we need in II for resolving the factor ordering
problem.

To summarize, the proposed treatment of gauge sys-
tems is built around two basic structures: the gauge alge-
bra 7~ and the Hamiltonian observable H which provides
us with the metric G*2. Alles anderes ist Menschenwerk.
The classical scheme is covariant under three classes of



transformations: (i) point transformations in the big
phase space ., (ii) point transformations in the physical
phase space s, (iii) change of the basis in 7#". The main
goal of II is to develop a quantum gauge theory with the
same features.

II. PHYSICAL SYSTEMS

Let us consider a dynamical system whose instantane-
ous state is uniquely described by a point ¢ in a configura-
tion space 7z, ¢ E72. We assume that, for a system with
n degrees of freedom, ,2 is an n-dimensional manifold,
and we introduce the local coordinates ¢“%gq),
a=1,2,...,n. Such coordinates may be subject to an ar-
bitrary regular transformation:

9°—q“=q"(¢g") . (2.1)

The Hamiltonian dynamics of the system takes place in
the phase space s =T *,.. A point s €Es can be character-
ized by a set of 2n canonical coordinates:

sT(s)=(q%s),pals)), r=12,...,2n . (2.2)

The coordinate transformation (2.1) induces a point
transformation of the canonical coordinates (2.2),

q°—q"'=q"(q") ,
Pa—Pa=0L(q )P , 2.3)
02.=39"/3¢% ,

which is linear in the canonical momenta. The emphasis
placed on the cotangent bundle structure of the phase
space, which enforces the requirement of covariance of
the resulting classical and quantum formalisms under
point transformations is inherent in our approach to
gauge systems.

Information about the state of the system may be ob-
tained by observing assorted dynamical variables. A
dynamical variable is a C* function on the phase space,
f(s)EC*®(s,R); in the canonical chart it becomes a
function f(g,p) of the canonical coordinates and momen-
ta. Dynamical variables form a Lie algebra (namely, the
Poisson algebra) under the Poisson-bracket product:

de of Qe 9f
dq® dp,  Ops 9q°

The Poisson bracket (2.4) can be considered as the action
of a vector field

8f 9 _9df 3

{e.f1= (2.4)

= (2.5)
4 apa aq" aq" apa
on the scalar field e in s:
Xre={ef} . (2.6)

The vector field X is called the Hamiltonian vector field
generated by f. Because of the Jacobi identity, the map-
ping (2.5) is an antihomomorphism from the Poisson alge-
bra to the Lie-brackets algebra of vector fields on s:

(X, X, 1=—Xef) - 2.7

Besides Poisson-bracket multiplication, the dynamical
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variables are also subject to ordinary multiplication ef. It
holds that

Xef=€Xf+er . (28)

The integral curves s (7) of X are obtained by solving the
differential equation

ds'(7)
dr
Because of the Jacobi identity, the Poisson bracket be-

tween any two canonical variables s” is preserved by Eq.
(2.9):

=X,"(s(7)) . 2.9)

n i

{s"1(r),s"2(m)} ={s"0),5"(0)} .

Hence, s"(0)—s"(7) is a canonical transformation.

The cotangent bundle structure of the phase space, with
the ensuing restriction of attention to the point transfor-
mations (2.3) in s, allows a covariant classification of
dynamical variables into polynomials in the momenta.
For systems of physical interest, the important dynamical
variables are at most quadratic in the momenta. The (in-
homogeneous) linear variables provide an invariant way of
dealing with the canonical variables while the Hamiltoni-
an of the system is a (in general inhomogeneous) quadratic
function of the momenta. We call such variables which
are at most quadratic in the momenta special dynamical
variables. Their building blocks are the following.

(i) Configuration variables y=y(q), z=z(q). Configura-
tion variables are scalar functions on »»z and, as such, are
possible candidates for the canonical coordinates. Indeed,
such coordinates ¢%(g) are nothing but a set of » indepen-
dent scalar functions on ».

(i)  Linear variabless u=u%q)p,, v=v%q)p,,
w=w%gq)p,. Linear variables are in a one-to-one
correspondence with vector fields on »2: u=u%q)d,, etc.
They are possible candidates for the canonical momenta:
any set v, of linearly independent and commuting vector
fields, [v,,v;]=0, defines the canonical momenta p,,
with {p,,ps} =0. More generally, any linear variable u
may be considered as the projection of the momentum
into the vector field u.

(iii) Quadratic variables g=g®(q) paps, k=k(q)p.ps.-
Quadratic variables are in a one-to-one correspondence
with symmetric tensor fields on »2: g=g(q)d,®39,, etc.

The Hamiltonian 4 of the system has the general form

h=5g+u+y=+8%q)ppy +uqps +y(q),  (2.10)

where 5g is the kinetic energy, u is the vector potential
term, and y is the scalar potential term. We assume that
the quadratic form g is positive definite. The kinetic en-
ergy thus endows the configuration space with a Rieman-
nian structure: g°(q) and its inverse, g,;(q), are inter-
preted as the contravariant and covariant forms of the
metric. We denote

(2.11)

We deliberately associate different ranges of the alpha-
bet with different kinds of dynamical variables: e,f with
general variables, y,z with configuration variables, u,v,w
with linear variables, and g,k with quadratic variables.

|g | =det(gy,)>0.
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The letter & is reserved for the Hamiltonian (2.10) of the
system and g for its kinetic energy piece which defines the
metric on sz.

The Poisson brackets among special dynamical vari-
ables determine everything which we need to know about
the system. Those among the configuration and the linear
variables describe the kinematical structure of the phase
space, whereas the Poisson brackets of these variables
with the Hamiltonian fix the dynamical evolution of the
system.

The kinematics of the system is thus characterized by
the relations

{y,z2}=0, (2.12)
{yul=0wy=u%,, (2.13)
{u,p)=—[u,v], . (2.14)

These relations are a simple generalization of the funda-
mental Poisson brackets {g°%q®} =0, {q%p,}=8}, and
{pa>pp ] =0 among the canonical coordinates and momen-
ta. To explain the notation first, u=a3, is the directional
derivative along the vector field u, and [u,v]=£,v
=uv—vu is the Lie bracket between the vector fields u
and v. The configuration variables form an Abelian alge-
bra, Eq. (2.12). The linear variables also form a subalge-
bra of the Poisson algebra. By Eq. (2.14), u—u is an
anti-isomorphism from the Lie algebra of vector fields
into the Poisson algebra of linear dynamical variables.
The Poisson brackets relations (2.12)—(2.14) taken togeth-
er reveal that linear inhomogeneous dynamical variables
f =u +y form another subalgebra of the Poisson algebra.
This algebra is the generalization of the Lie algebra of the
Weyl group which is generated by the canonical coordi-
nates and momenta, together with the unit dynamical
variable. A covariant Dirac quantization of the system
consists in finding a homomorphic mapping of the Pois-
son algebra of linear dynamical variables into the commu-
tator algebra of self-adjoint operators on a Hilbert space.

Unlike linear variables, quadratic variables do not form
a subalgebra of the Poisson algebra, because the Poisson
bracket between two such variables yields in general a cu-
bic variable. The Poisson brackets between a quadratic
variable and either a configuration variable or a linear
variable stay, however, within the class of special vari-
ables:

{gy}=—23"=—28% ;p, , (2.15)

{gu}=(£,8)"papsy - (2.16)

These brackets are needed when we study the dynamical
evolution of linear inhomogeneous variables.

Indeed, the Hamiltonian dynamics of the system may
either be considered as the problem of determining the
evolution of an arbitrary dynamical variable with time,

f=1{fh},

or as addressing the restricted question how linear inho-
mogeneous variables f=u +y are evolved. The latter
formulation is still sufficient to reconstruct dynamical
trajectories of the system. By writing “the Heisenberg
equation of motion” (2.17) for a set of specific linear inho-

(2.17)

mogeneous variables, namely, for the canonical coordi-
nates g® and the canonical momenta p,, we recover the
Hamilton equations

sT={s"h} orq®={q%h}, p.={ps,h}. (2.18)
IIl. GAUGE TRANSFORMATIONS
AND CONSTRAINTS

In gauge theories, one works in bigger-than-real-life
spaces. To distinguish the variables which live in such
spaces from the corresponding physical variables, we capi-
talize the symbols. Thus, the instantaneous state of a
gauge system is represented by a point Q in the big con-
figuration space .#, Q €E.#, which is considered to be an
N-dimensional manifold. The local coordinates of Q are
Q4Q), A=1,2,...,N. They are subject to arbitrary
regular transformations:

01—0*'=0%(0". (3.0

Any choice of local coordinates Q% in .# induces a
choice of canonical coordinates and momenta

SR=(@4,P,), R=1,2,...,2N, (3.2)

in the big phase space ¥’ =T*.#. The change (3.1) of the
local coordinates in .# induces a point transformation
(3.1) and (3.3),

P,—P,=05(0)P; where 02 =002/00"", (3.3)

in the big phase space. The dynamical variables in %,
F(S)EC>(#,R), represented by the functions
F(Q*,P,), again form a Poisson algebra, and linear inho-
mogeneous variables F=U+Y form its subalgebra
(characterizing the kinematical structure of the big phase
space).

To extract physical consequences of a gauge theory, one
must restrict big spaces to physical spaces and big dynam-
ical variables to physical variables. This aim is achieved
by splitting further the subalgebra of linear variables
U=UXQ)P,. Let ¢,(Q)=02(Q)3,, a=12,...,C
<N, be a set of C linearly independent vector fields on .#
which are surface forming:

[$arbpl=—C"0p(Q)d, . (34

The quantities C7,4(Q) entering into the closure relations
(3.4) are called the structure functions of the set @,.
Often, the vector fields ¢, come to us as generators of a
Lie group (the gauge group) acting on the big configura-
tion space .#. In such a case, C7,g are simply the struc-
ture constants of this group. However, in the group case
the generators ¢, are not necessarily linearly independent:
the simplest example is the three generators of the rota-
tion group SO(3) acting on a three-dimensional configura-
tion space (see Sec. X E). In such a case, we select from
among them a set of linearly independent generators and
write the structure relations (3.4) for those. In this pro-
cess, the quantities C?,5 may cease to be constant. The
selection of the vector fields (3.4) does not need to work
globally, as the previous example illustrates. All that is
needed, however, is a consistent choice of the fields ¢, in
overlapping patches covering the whole configuration
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space A .

Indeed, what is important is not the choice of one par-
ticular set of fields @,, but rather the space ?~ of all vec-
tor fields v=v*(Q)d,(Q) tangential to the family of sur-
faces spanned by the ¢,. The choice of the basis fields ¢,
is thus subject to a regular linear transformation

$(Q)=A5(Q)p Q) .

Under such a transformation, the structure functions un-
dergo an inhomogeneous transformation

CY oy =AY ALAECT g+ AY AL )

(3.5)

(3.6)

(Here, o=, 462 is the directional derivative along the field
¢, and the enclosure of two indices in square brackets
signifies their antisymmetrization: Fiog=F,p—Fp,.)
At least locally, one can always use Eq. (3.6) to transform
the structure constants to zero. This fact, however, plays
no role in our further considerations.

For every vector field v& #” one can construct the cor-
responding linear dynamical variable:

v—v=v4Q)m,=v?P, , (3.7
where
Ta=04P, and vi=v%2 . (3.8)

The mapping (3.7) is an antihomomorphism from the Lie
algebra 7~ of such vector fields v into the Poisson algebra
of linear dynamical variables:

[vvl=—0o={vv]=0. (3.9
In particular,
(Tl =CVog(Q)mr, . (3.10)

The linear dynamical variables of the form (3.7) and (3.8)
thus form a subalgebra 7~ of the Poisson algebra of all
linear variables. The elements v of 7~ are called (linear)
gauge variables. 1t is the subalgebra 7~ itself, rather than
the particular choice 7, of its basis, which is essential for
extracting the physical content from a given gauge theory.
The classical and quantum formalism which we are going
to develop will be manifestly covariant under any change
(3.5) of the basis.

Every dynamical variable generates a one-parameter
group of canonical transformations, as in Eq. (2.9). In
particular, the linear gauge variables generate gauge
transformations.

Let us study first what a gauge transformation does to
configuration variables. It acts on the configuration coor-
dinates Q“ by

A
ﬁdQ_sz(Q) .

dr (3.11)

Because the fields v are surface forming, the collection of
points in .# which can be reached from a given initial
point Q(0) by a sequence of gauge transformations (3.11)
forms an (n =N —C)-dimensional surface in the N-di-
mensional configuration space .#. We call that surface
the orbit of gauge transformations through Q(0).
Physically, one interprets different points Q within the
orbit as different but equivalent descriptions of the same
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state of the system. One can thus say that the orbits
themselves are points g € in the physical configuration
space szz. Any set of n independent functions g% Q) on
.# which are constant along the orbits,

dq®(Q)
dr

may serve as physical coordinates in 2. Of course, physi-
cal coordinates are determined only up to (regular) coordi-
nate transformations (2.1). Because of the arbitrariness of

v, Eq. (3.12) characterizing the physical coordinates may
be replaced by a set of equations

{g%Q),mg} =0, or q°(Q)=¢4q° 4(Q)=0.

Any function Y(Q) on .# which is constant along the or-
bits,

={q%Q),v}=0,4%q)=0 YveE?", (3.12)

(3.13)

(Y(Q),v]=0 YUEY or {Y(Q),m}=0, (3.14)

can depend on Q only through the physical coordinates:
Y(Q)=y(q(Q)). It can thus be interpreted as a physical
configuration variable.

When one tries to extend this procedure from the con-
figuration space to the phase space and to identify the
physical phase-space points as orbits of gauge transforma-
tions in .7,

ds®
dr

one meets an unexpected difficulty: the Hamiltonian vec-
tor fields X, are not surface forming. Indeed, by the gen-
eral properties (2.7) and (2.8) of such fields,

[Xw xv] = [U’ V]axﬂ'a + 7Tax

={SR v} =X,k ver, (3.15)

(3.16)

[IJ,V]H ;

the trouble is that the vector fields X[v e do not in gen-
eral lie in the vector space spanned by the basis X,

Among the orbits, however, there are such which are C-
dimensional surfaces: namely, those which lie in the con-
straint surface € defined by the equations

v=0 VYvE? or 7,=0. (3.17)

Therefrom stems the necessity of imposing the constraints
before reducing the gauge theory to a physical theory.
The space of orbits within the constraint surface can then
be identified with the physical phase space s of the gauge
system. It is a (2n=2N —2C)-dimensional space. The
physical coordinates g%S), SE€ CT*.#, can serve as
canonical coordinates in 5. We shall construct the conju-
gate physical momenta p,(S), SE ¥, in Sec. VII.

IV. OBSERVABLES AND GAUGE VARIABLES

Having constructed the physical phase space, one must
ask what dynamical variables F(S) in .% represent physi-
cal variables. Of course, any dynamical variable F(S) can
be restricted to the constraint surface 4. When this re-
striction happens to vanish, F(S)=0 for SE ¥, we say
that F weakly vanishes and write F~0. Such dynamical
variables in % are called gauge variables. In particular,
the elements v of 7~ are (linear) gauge variables. Any
gauge variable represents a trivial physical variable, name-
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ly, 0. Note that for C® variables, F =0 implies that there
exist dynamical variables F*(S) such that

F=F%r, . (4.1)

In general, a dynamical variable F(S) on % represents
a physical variable if its restriction to € remains constant
along the orbits of gauge transformations in .%:

{F,u}=0 YvE Y or {F,m,}=0. (4.2)
We call such a dynamical variable F an observable. Two
observables, F; and F,, represent the same physical vari-
able f(s) when they coincide on the constraint surface % :
F,=F,. The physical variables f(s) can be identified
with such an equivalence class of observables:

F()=(F(S)={E(S): E(S)=F(S)} . 4.3)

We denote the class of observables equivalent to F(S) by
the symbol (F(S)). The condition (4.2) which ensures
that F is an observable can be written in the strong form

(Fmo}=F8mg, (4.4)

where F 5 are some dynamical variables on .%.

By the Jacobi identity, when E and F are two observ-
ables, their Poisson bracket { E,F} is again an observable.
Further, by Eq. (4.4), if E|,E, are two representatives of
the same physical vanable e and F,F, are two represen-
tatives of the same physical variable f, then

{E|,F|}~{EyF,} . (4.5)

This allows us to define the physical Poisson bracket

{e.f} by
{e,f}={(E)

This endows the physical phase space with a symplectic
structure.

(F)}=({E,F}) . 4.6)

V. SPECIAL OBSERVABLES

As in the case of unconstrained systems, those observ-
ables which do not depend on the momenta, which are
linear in the momenta, or which are quadratic in the mo-
menta deserve special attention.

(i) Configuration observables Y(Q), Z(Q). Because the
Poisson bracket { Y,7,} depends only on Q but not on P,

(Y, 7} =0=>{Y,7,} =0=Y =y(q% . (5.1
(ii) Linear observables U= UAPA, V= VAPA. As in
Eq. (2.14),
{ U»Tra] = —[Uv¢a]APA . (5.2)
By comparing this with the condition
(U} = Ubmg (5.3)
for U to be an observable, we learn that
Ui=Ules=—[U,¢,1" . (5.4)
(iii) Quadratic observables G=G"8P,Pg,
K=K*8p ,Py. AsinEq. (2.16),
(G, ma} =(£4,G)**P,Pp . (5.5)
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By comparing this with the condition
{G,7q) =GEmp (5.6)

for G to be an observable, we learn that G’3 is a linear
dynamical variable (not necessarily an observable), i.e.,
GP=GPE (Q)PB,and that

(£4,G)*P=54%4GE . (5.7

Here, the enclosure of two indices in round brackets signi-
fies their symmetrization: F(,g =F,5+Fg,.

As in Eq. (2.10), the Hamiltonian H of the gauge sys-
tem is an observable of the generic form

=+G+U+Y=5G*8P,Py+UP,+Y. (598)
From Egs. (5.1), (5.3), and (5.6) we get
{H,ma} =(+GB 4+ UP)mg . (5.9

The quadratic observable G represents the kinetic energy
of the system. We assume that the projection g of G 42
into the physical space,

g=G*8Q408, Qi=q°4,

is nondegenerate,

(5.10)

g%)=£0, (5.11)

and, indeed, positive definite. One can identify g“b with
the physical metric tensor. On the other hand, the metric
G“8 in the big configuration space may be degenerate,
though in practice it is often regular. If G“% is regular,
one can find its inverse G,z and introduce the deter-
minant

‘G ’ Edet(GAB) .

|g | ~'=det(

(5.12)

The Hamiltonian dynamics of a gauge system may be
conceived as a problem of determining the evolution of an
arbitrary observable with time,

F={F,H) . (5.13)

From the Jacobi identity one sees that if F(z,) is an ob-
servable at t =1, F(t) is an observable at any ¢. Also, if
F(ty) and F,(ty) represent the same physical variable at
t =ty, F(t) and F,(t) represent the same physical vari-
able F(¢) at any t. To study the motion of the system in
the physical space, it is sufficient to restrict the observ-
ables F in the Heisenberg equation of motion (5.13) to
linear inhomogeneous observables F =V +Z.

An alternative way of looking at the evolution of the
gauge system is through the Hamilton equations for the
dynamical trajectory in the big phase space ./ :

SR={(SRH} . (5.14)
Equation (5.9) implies that the constraints are preserved
in time, 7,~0, and hence a point S(¢y)E ¢ on the con-
straint surface keeps moving along the constraint surface,
S(t)E€ Vi It also implies that if S,(zy) and S,(zy) lie
in the same orbit of the gauge transformations, S,(¢) and
S,(¢) will remain in the same orbit for all z. In other
words, the dynamics in . induces the dynamics in s.
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VI. PROJECTORS

The gauge properties of a system are most directly
described by the Poisson algebra 7~ of linear gauge vari-
ables v. Any choice (3.8) of a basis 7, of 7 is arbitrary
up to a regular transformation (3.5) which amounts to a
mixing of constraints (3.17):

Te=AB(Q)mg . (6.1)

By solving a set of differential equations (3.12) or (3.13),
we obtain n=(N —C) independent functions g% Q),
which play the role of physical coordinates. These are not
affected by the change (6.1) of the basis, but they are
themselves arbitrary up to a regular transformation (2.1).
Finally, the coordinates Q“ in the big configuration space
# are subject to the transformation (3.1). The transfor-
mations (6.1), (2.1), and (3.1) can be performed indepen-
dently of each other, and none of them should affect
physical conclusions which are drawn from the formal-
ism.
The gradients

Qi=q" 4 6.2)

of the physical coordinates enable us to isolate the physi-
cal components u“ of the big configuration space vectors
U4

u®=Q4U". (6.3)

This rule can be extended to contravariant tensors. In
particular, from the metric tensor G “® one can obtain the
physical metric g by Eq. (5.10). Our basic assumption
is that g“” is a regular positive-definite metric; as such, it
has an inverse g,, which can be used to lower small latin
indices. Capital latin indices are raised by the (possibly
degenerate) metric G2, However, unless G“? is regular,
there is no natural way of lowering capital latin indices.

There are only C <N basis vector fields ¢2 and only
n=N —C <N cobasis vector fields Q9. We want to
complement these fields into a full basis and a full cobasis
in the big space. This is achieved by using the metric ten-
sor GB as an auxiliary element. First, by lowering and
raising the indices in Q%, we form

01=g,,05G%" . (6.4)
One can easily check that

Ql0b =8 . (6.5
From the definition of the physical coordinates,

$405=0. (6.6)

By assumption, ¢ are linearly independent. From Egs.
(6.5) and (6.6) it follows that the N =n + C vectors Q¢
are likewise linearly independent. They form a basis in
the big space.

The cobasis to this basis is obtained by complementing
the n covectors QF by C covectors ¢% satisfying the
equations

b56% =85, (6.7)
Q;'¢%=0. (6.8)

These covectors are unique and Q9,49 are linearly in-

dependent. Equations (6.5)—(6.8) are the orthogonality re-
lations between the basis Q;%,4: and the cobasis Q4%,4%.

On the other hand, by summing over the lower case la-
tin and greek indices one can form the mixed tensors

Z3=008, (6.9)
M =910% (6.10)

with the properties

PEP =23, 62P%5=0, (6.11)
and
Mang =114, Q4ni=o. (6.12)

Equation (6.11) tells us that 22§ is a projector which,
when acting on covectors U,, makes them perpendicular
to the orbits of gauge transformations. Similarly, Eq.
(6.12) tells us that ITj is a projector which, when acting
on a vector U2, makes it perpendicular to the physical
surfaces g®=const.!> As a counterpart of the orthogonal-
ity relations (6.5)—(6.8), we have the completeness relation

PaA+Na=8 . (6.13)

This allows us to decompose an arbitrary vector U4 into a
physical piece u ! and a gauge piece v

Ud=ut+0v1, (6.14)
ul=2jUP=(UPQ8) 0 =u"Q, (6.15)
vA=TIAUB=(UP$%)p2 =002 . (6.16)

Again, this rule can be extended to higher-order tensors.
In particular, one can apply it to the metric G which was
used to define the projectors in the first place. One ob-
tains

GAP=g4B 1B (6.17)
gB=2L25GP, y*=MiN5G", (6.18)
g*=g"Q; 07, g**=G""Q403 , (6.19)
v B=yPoiep, v P=G"P6%4% . (6.20)

If the metric G2 is D-times degenerate, D < C, so is the
metric ¥?P. A regular G “® yields a regular y*# and one
can define the inverse matrices G 45 and ¥, In this case,

6% =v"P93Gp, 6.21)

which is a counterpart of Eq. (6.4).

The formalism is covariant with respect to all three
classes of transformations: (1) Coordinate transforma-
tions (3.1) in the big configuration space (which affect the
capital latin indices), (2) coordinate transformations (2.1)
in the physical configuration space (which affect the
lower case latin indices), and (3) the mixing of the con-
straints (6.1) or (3.5) (which affects the greek indices).
The vector or covector character of all quantities intro-
duced in this section is clearly indicated by the position
and alphabetical type of the indices which they carry.

Subject to the enumerated transformations, the quanti-
ties Q2 02, 049,6% and 24,113 are uniquely determined.
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However, the metric G“Z enters as an auxiliary element
into the construction of the system. The metric comes to
us from the kinetic piece G of the Hamiltonian. Physical-
ly, it does not matter if we represent the kinetic energy by
the observable G or by another observable G from the
same equivalence class, G~G. But the observable G
yields a different metric G 2 which then induces a dif-
ferent set of the quantities Q. and ¢%. Indeed, if Q;,¢2
is the basis induced by the old metric G“8, the new metric
G 8 has in general the form

G‘AB=GAB+ AaaQ(:¢5)+)\'aB¢g¢g ,
where A%¢ and A% are some functions of Q. The physical

metric induced by (6.22) is the same as before, g =g
On the other hand, the basis vectors Q! are changed,

(6.22)

04=0,+rida , (6.23)
and so are the cobasis vectors ¢%,
% =0%—130% . (6.24)

This change, however, does not affect the physical content
of the formalism. We can select one representative of the
kinetic energy arbitrarily and stick to it for the rest of the

paper.

VII. CANONICAL COORDINATES
IN THE PHYSICAL PHASE SPACE

In Sec. III we defined the physical phase space s as the
space of orbits (3.15) of gauge transformations in %
which lie on the constraint surface € and identified its
canonical coordinates ¢g°. Now, we must find the observ-
ables p, representing the canonical momenta in 4. We
shall see that these are simply the components p, of the
momentum P, in the cobasis Q,¢%:

Py=Q4p.+%47a (7.1)

PazQaAPA’ 7Ta=¢¢/11PA . (7.2)
As in Eq. (2.14),

{Paapb} = "[QaaQb ]APA . (7.3)
Because

[Q.,Q:17Q5 =0, (7.4)
we have

{Paso} =C 7o (1.5)

where we have introduced a new set of structure functions

Cou=—[Qu, Qs 1"¢% = —0.'Q5 % ) - (7.6)
Similarly,

{(mppa} =—[$5Qa1"P4 7.7
and

[65Q.1%Q5 =0 (7.8)
implies that

{mpPa} =C%aTrq (7.9)
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where
C% = —[95Q.170% =0/ d5b %, 5; -

We complement Eq. (7.9) by a similar equation involving
the physical coordinates g°,

(7.10)

{7g,q°} =0, (7.11)

and write down the trivial counterpart of Eq. (7.5), name-
ly,

{g%q%}=0. (7.12)
Finally,
{g%pp} =55 . (7.13)

This enables us to draw the desired conclusion. Equa-
tions (7.9) and (7.11) tell us that the dynamical variables
q°p, are observables. The equivalence classes (g%),(p,)
of these observables are physical variables. The Poisson
brackets of these physical variables are defined by Eq.
(4.6); Egs. (7.12), (7.5), and (7.13) are thereby translated
into the statement

{(g"),(g"}=0,
{(pa),(pp)} =0, (7.14)
{(g%),(py)} =85 .

This shows that the physical variables (¢°) and (p,) are
the canonical coordinates and the canonical momenta in
the physical phase space s.

Note that the change of the observable which represents
the kinetic energy induces by Eq. (6.23) a change

Pa=Pa+AgT, (7.15)

of the observable which represents the physical momen-
tum, but that p, stays in the same equivalence class with
DPa: (ﬁa )=(pa ).

VIII. JACOBI IDENTITIES FOR STRUCTURE
FUNCTIONS

In addition to the structure functions C%g, characteriz-
ing the system of constraints, Eq. (3.10), we have just in-
troduced additional structure functions C%g, and C%,
characterizing the remaining Poisson brackets (7.9) and
(7.5) of the projected momenta. From their definitions
(7.6), (7.10), and

C%, = —[956,16% = —d5byd3.c)

one can read off their transformation properties. First, all
structure functions are scalars under coordinate transfor-
mations (3.1) in .# and appropriate tensors under coordi-
nate transformations (2.1) in 2. Further, C%, is also a
vector under the mixing of constraints (3.5). On the other
hand, C%,, like C%, in Eq. (3.6), undergoes an inhomo-
geneous transformation

C%ga=ATARCH —AGALL,

8.1

(8.2)

The structure functions satisfy certain identities which
follow from the Jacobi identities for the Poisson brackets
among the projected momenta. Thus
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{ i"ra"’rﬂ}>ﬂy} + { [”7’77'11}’77'3} + { {Wﬁ’ﬁr}»ﬁa} =0 (8.3)
implies
CPapy+C%%y,a+ CPa,p+ ChagClyy

+ CFgyCOa+CF Cop=0, (8.4)
while

{{maps}s7a} + {{Tamp}sps} + {{Pyy7a}, e} =0
(8.5)
implies
C7 85— C"1ab g+ C%pC" 86 — C¥ap CT5p=0 . (8.6)

Two more identities of this kind may be obtained from
the Jacobi identities involving (1) two p’s and one 7, (2)
three p’s. We shall not need them in the following, and so
we shall not write them down.

Let us finally introduce the contracted forms of the
structure functions:

C,=CPg, and C,=CPy, . (8.7)

Then, by contracting the identities (8.4) and (8.6), we ob-
tain

C[ayﬁ] '"CyaB.‘r'i'Cycyaﬂ:O (8.8)
and

Caa—Caat+CPrup—CpCPL=0. (8.9)
IX. POISSON BRACKETS OF SPECIAL
OBSERVABLES

For physical systems, the Poisson algebra of linear in-
homogeneous variables characterizes the kinematical
structure of the phase space, while the Poisson bracket of
the Hamiltonian with such variables describes the dynam-
ics of the system through the Heisenberg equations of
motion. This statement remains valid for gauge systems,
with the proviso that one must limit the attention to Pois-
son brackets of special observables. Even then, the redun-
dancy inherent in the gauge description finds its way into
the algebra. If two observables in a Poisson bracket are
changed, each within its own equivalence class, the ob-
servable representing the Poisson bracket is also changed
by a gauge variable. It is a virtue of the gauge formalism
that it keeps track of all such changes. In the end, one ex-
tracts the physical results by collecting observables into
equivalence classes which are identified with the physical
variables. We shall see that the algebra of observables
reduces thereby to the old algebra of physical variables
which we have studied in Sec. I

The projector formalism which we have developed al-
lows us to split special observables into well-defined
pieces.

(1) No splitting is necessary for configuration observ-
ables. Because of Eq. (5.1), any configuration observable
Y (Q) is entirely physical: Y =y(q).

(2) Any linear observable U =U*(Q)P, can be decom-
posed into a physical piece u =u°p, and a gauge variable
v=1vm,E 7" [cf. Egs. (6.14)—(6.16)]:
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U=u+v=u’p, +1%m, . 9.1)

Direct evaluation of the Poisson brackets of U with the
constraints yields

(U} =u po+Ubmg, 9.2)
with

UB=1f ,—CP u"—CPuc. 9.3)

In order that U be an observable, u°, must vanish. By
the reasoning (3.14), this implies that

u’=u4q?, 9.4)

i.e, u is a vector in the physical space T . Equatlon
(9.3) gives an explicit expression for the coefficient U in-
troduced by Egs. (5.3) and (5.4).

(3) The kinetic energy observable G =G“2P,Pp can
again be decomposed into a physical piece g and a gauge
variable y [cf. Egs. (6.17)—(6.20)]:

G =g +v=8%papy +v*Pramp . (9.5)
The Poisson bracket of G with the constraints yields

{G,7a} =8 aPapy +Glhmg 9.6)
with

GE=(yP? +CP) )i, —2CP5p, . 9.7

In order that G be an observable, g%, must vanish.

Again, by reasoning of Eq. (3.14), this implies that
gab=gab(qc) , (9.8)

i.e., that g is a tensor in the physical space.!* We have al-
ready identified it with the physical metric tensor. Equa-
tion (9.7) gives an explicit expression for the coefficient
G® introduced by Egs. (5.6) and (5.7). The procedure can
be applied to other quadratic observables K =K 48P P.

The decompositions (9.1) and (9.5) separate the physical
pieces u and g from the gauge variables v and y. For the
purpose of representing physical variables, the gauge vari-
ables may be simply omitted. We shall call u and g the
standard representatives of the observables U and G.
Remember, however, that standard representatives depend
on the choice (6.22) of the big metric. In the following,
we assume that this choice is made and adhered to
throughout the argument.

Let us write now the Poisson algebra of linear inhomo-
geneous observables:

rz}= 9.9)
pul= auy—uya, (9.10)
)= (9.11)
{u, 0} = —(£,v)°ps +CpuvPm, , (9.12)
{uvi= —<B.,v) To s (9.13)
fv,v)= )Ty - (9.14)

Here, £,v and £ ,v are abbreviations for the Lie brackets
of the physical and the gauge vectors, respectively,
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b_u® b, (9.15)

(9.16)

(£,v)=[u,v]*=0v" u
(£D‘V)a=Va’BvB-—‘Ua,BVB+CaﬁyVBUy .

Because u®=u%q® [and v®=v%4q®)], the derivatives in
Eq. (9.15) can be interpreted as ordinary partial deriva-
tives: u®,=0uq°)/ dg®. The structure functions appear
in the definition (9.16) of the Lie bracket of two vectors in
the gauge space because @, is an anholonomic basis.
Similarly, 3,v is an abbreviation for

(auv)“=(auv)“+C“Bavﬁu“:(v",a+C°‘Bav3)u“ . 9.17)

Here, (3,v)*=v" ,u“ is the ordinary directional derivative
of the components v* of the gauge vector v along the
physical direction u. This derivative, however, is not co-
variant under the mixing of constraints, i.e., (3,v)* does
not transform as a vector under the transformations (3.5).
The term CQB‘,VB, thanks to the inhomogeneous transfor-
mation property (8.2) of the structure functions C%,,
properly corrects this deficiency so that (3,v)* is a vector
under (3.5). The same is true of the Lie bracket (9.16).

Indeed, these transformation properties are obvious.
The variables u,v and v,v are scalars under the transfor-
mations (3.5). Their Poisson brackets (9.12)—(9.14) must
therefore also be scalars. This is ensured by the proper
transformation behavior of the coefficients on the right-
hand sides of Egs. (9.12)—(9.14): (£,v)? is a scalar,
whereas C%,u“?®, (3,v)%, and (£ ,v)® are vectors under
such transformations.

By Eq. (9.9), configuration observables form an Abelian
subalgebra of the Poisson algebra of observables. Similar-
ly, by Egs. (9.12)—(9.14), linear observables form another
subalgebra. By collecting linear observables into
equivalence classes (U) and (V) and defining the Poisson
brackets between the classes by Eq. (4.6), we learn from
Egs. (9.12)—(9.14) that

fU), (MY ={(u),(v)}=—[u,v]%p,) .

In other words, the Poisson bracket of the physical vari-
ables (U) and (V) can be evaluated by using their stan-
dard representatives u# and v. This evaluation leads
directly to the ordinary expression (2.14) in terms of the
Lie bracket between the physical vector fields
u=u%q*9d/3q° and v=0%q®)d/3q°.

The same procedure can be applied to the Poisson
brackets involving the kinetic energy observables
G =g +v. The operations £, £, and 9, can be natural-
ly extended from vectors to tensors under the constraint
mixing, with the results

(9.18)

(£,8)°=g% u‘—gu® (9.19)

(£,7)B=yB o7 —y7 P L CleB 7 (9.20)
Again, the ,a derivative in Eq. (9.19) can be interpreted as
an ordinary partial derivative with respect to g®. With
this notation, the Poisson brackets involving G take the
simple form

{8u} =(£.8)%papp +2C%u’p,m, 9.21)

{gv}=—2(8%"p, 7, , (9.22)
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(9.23)
(9.24)

{y,u} =@y )r,mg,
{y,v}=(£ ,y)Pr,mp .
The coefficient 3°v* in Eq. (9.22) has the obvious meaning
DV =g, u)*=g(1? , + C% ) . (9.25)

By introducing the physical variables (U) and (G), we see
that Egs. (9.21)—(9.24) imply that

{G), (DN} ={(g),(u)} =(£ ,8)™p.)ps) » (9.26)

which is a replica of Eq. (2.16).
Finally,

(8.7} =—28% sPa 9.27)
and

{v,y}=0 (9.28)
reproduce Eq. (2.15):

{(G), (M)} ={(8),»)}=—28% 4(pa) - (9.29)

X. MODEL GAUGE SYSTEMS

To illustrate various points made in the Introduction
and in the course of the paper, we shall discuss in some
detail a couple of simple gauge systems. In field theories,
the gauge constraints typically arise from the action of the
gauge group. Although the group-theoretical origin of
the constraints may be (sometimes profitably) forgotten in
the further development of the formalism, we shall
nevertheless introduce the constraints in this way.

We start with models having only one constraint which
arises from the action of a one-parameter group on the big
configuration space of the system. Globally, the group
may be either that of translations 7(1) or that of rotations
SO(2). For simplicity, we shall pay no attention to the po-
tential terms in the Hamiltonian and shall concentrate
only on the free motion of the system described by the ki-
netic energy. Again for simplicity, we take .# =E* and
endow it with the Euclidean metric:

H =58P, Py, GAB=548 (10.1)

A. Translations T(1) acting on E?

Let the orbits of a one-parameter translation group act-
ing on E3, with coordinates 04=(X,Y,Z), be

X(1)=X(0), Y(1)=Y(0), Z(1)=Z(0)+7. (10.2)

The generator of translations, ¢ =03/0Z, yields the con-
straint 7=P;. Because translations are isometries of E 3
£4G=0and

(H,7}=0. (10.3)

One can take x =X and y =Y for the physical coordi-
nates ¢°=(x,y). The physical metric is flat and the coor-
dinates g are Cartesian: g®®=8%. One can picture 7 as
a plane embedded in E3, perpendicular to the orbits, with
the induced metric g,, =8,

Even this trivial example allows us to illustrate two
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points. The flat metric G42=5842 in the big space is
equivalent to a curved metric
aAB=6AB+2¢A¢B+Q(A¢B) , (10.4)

where 2(Q) is an arbitrary scalar and Q4(Q) an arbitrary
vector which we choose to be orthogonal to ¢P:
5,50492=0. Hence comes our first point: a curved
metric in the big space may very well induce a flat metric
in the physical space. Another illustration of the same
fact is any gauge system with C =N —1 independent con-
straints; the physical space is one dimensional, n=1 and
hence flat.

The new Hamiltonian H=+G*8P,P; is now
preserved by the constraints only weakly:

(H,m} =3 3w 420" P 7 . (10.5)

Also, and this is our second point: the physical metric
cannot in general be interpreted as the metric induced by
G on the surfaces perpendicular to_the orbits. In fact,
with respect to the new standard G, the field ¢ is no
longer necessarily hypersurface orthogonal. For example,
the simple choice ==0, Q4=(—Y,0,0) leads to
$ 4=(Y,0,1 +2Y?), which does not satisfy the well-known
integrability condition for hypersurface orthogonality:

¢-curlg =85 ,§c p =2Y>— 140 . (10.6)
B. Rotations SO(2) acting on E?
Let SO(2) act on E3 by
X (1)=X(0)cosT+ Y (0)sinT ,
Y(7r)=—X(0)sint+ Y (0)cosT , (10.7)

Z(1)=Z(0).

The orbits are circles about the Z axis and the points on
the Z axis. The vector field ¢=Y3/0X —X3/dY gen-
erates the orbits. One can choose r =(X2+Y?)!”? and
z=Z for the physical coordinates q®=(r,z). The physi-
cal metric g% =28 is again flat, but the physical configu-
ration space is geodesically incomplete. Due to the limita-
tion r >0, it is a half-plane with the boundary r=0.

The physical Hamiltonian h =+ (p,2+p,?) generates a
uniform rectilinear motion in the half-plane (r>0,z).
What happens when the particle reaches the boundary?
The motion of the particle in the big space, which is
governed by the Hamiltonian H = +(Py?+Py2+Pz?), is
also uniform and rectilinear. However, the big space is
complete, and the particle moving on the constraint sur-
face m=0, i.e., with its velocity in a plane through the Z
axis, does not meet any obstacles. When the motion is
projected into the physical space, it yields an elastic
bounce at r=0. The gauge origin of the physical motion
thus provides a “hard wall” boundary condition at the
edge of an incomplete physical space.

C. Translations T(1) acting on E* by helical motions

Let the translation group act on E* by
X (r)=X(0)cosT+ Y (0)sinT ,
Y(r)=—X(0)sint+ Y (0)cost ,
Z(1)=Z(0)+7.

The orbits (10.8) are helices about the Z axis (and the Z
axis itself). The generator of the action,

$=Ya/8X —X3/3Y +9/3Z ,

(10.8)

(10.9)

is the sum of the rotational Killing vector field of Sec.
X B with the translational Killing vector field of Sec.
X A. Hence, it is also a Killing vector of the Euclidean
metric G42=84® and { H,7} =0.

In the cylindrical coordinates

0*=(R,8,2),

X=RcosO, Y=RsinO, Z=27, 10.10
the metric takes the form

G 4p-=diag(1,R% 1), (10.11)
and the Killing field (10.9) becomes

¢=0/00+03/3Z . (10.12)
The equation

d¢°/30©+03q°/3Z =0 (10.13)

for the physical coordinates ¢° has two functionally in-
dependent solutions, e.g.,

g'=r=R, ¢’=60=6-2Z. (10.14)

Consider the ranges of r and 6. Because of
r=(X*4+Y)"?, we have r€[0,0). In principle,
0€(— 0, ). However, the points in .# differing in 6 by
2m lie on the same helix and hence correspond to the same
point in 2. The coordinate 6 is thus an angle variable
and can be assigned the range 0 €[0,2).

By projecting the metric (10.11) into the physical space,
we obtain g,, =diag(1,72/(1+r2)). The line element has
the form

ds*=dr’+prd6*,
p(r)=r?/(14r?),

(10.15)
(10.16)

which indicates that (r,0) is a cylindrical Gaussian system
of coordinates. The line element (10.15) and (10.16) is
regular throughout the whole range of coordinates,
r€[0,0) and O€[0,27), and describes a geodesically
complete Riemannian manifold. For small r’s, r <<1, the
line element ds?~dr?+r3d6? is flat, without any conical
singularity. For large r’s, r >>1, the line element is again
flat, ds’~dr?>+d6* corresponding to a cylindrical sur-
face with embedding radius 1. The Gaussian curvature of
the physical space, given by the only nonvanishing com-
ponent

Ri=—3p"(r++('(r))/p(r) (10.17)



3042

of the Riemann curvature tensor, is

Rypp=3r2/(14r%3 . (10.18)

Outside the asymptotic limits » —0 and r— oo, the physi-
cal space is curved. This exemplifies the point that a flat
metric in the big configuration space may lead to a curved
metric in the physical space.’*

On passing to the curvature coordinates (p,6) by the
transformation (10.16), we cast the line element into the
form

ds’=(1—p*)~*dp*+p*d6* .

One can visualize the curvature of the physical space by
an embedding diagram, requiring that the geometry
(10.19) be identical with that on a surface of revolution
obtained by rotating the curve z =f(p) about the axis Z
in a fictitious Euclidean space with cylindrical coordinates
(p,6,2):

d32=(1+fr2(p))——3dp2+p2d92 .

To obtain f(p) in a closed form is messy; the embedding
diagram shows the resulting cylindrical vessel curving
rather abruptly into a flattened bottom.

Other useful coordinates are those which bring the line
element (10.15) into a conformally flat form

(10.19)

(10.20)

ds’=a*o)(do*+0%d6?) . (10.21)
This is achieved by the transformation

o=r=((1+r)"? =~ Dexp((14r})'7?) , (10.22)
which should be inverted, » =r (o), and substituted into

a=(1+r)""%r /g (10.23)

to yield the conformal factor a?(o).

Note that the physical geometry cannot be interpreted
as the geometry induced by the flat metric in the big con-
figuration space on surfaces perpendicular to the helical
orbits of the translation group. Such surfaces do not exist
because the Killing vector field (10.9) is not hypersurface
orthogonal.* Indeed, by working in the Cartesian coordi-
nates Q“4=(X,Y,Z), one easily checks that

¢-curlg =845 ;¢ p =240 . (10.24)

D. Translations 7(2) acting on E*

This example is as trivial as that in Sec. X A. Still
there are things to learn, because we have now two con-
straints instead of one.

Take ¢,=03/0X and ¢,=09/3Y as the generators of
translations. The orbits are planes perpendicular to the Z

axis. We have two constraints,
771=P1 and 1r2=P2 , (10.25)

which have a vanishing Poisson bracket because 7T(2) is
Abelian:
{m,m}=0. (10.26)

One can choose g =Z for the physical coordinate ¢'. The
physical metric g;; =1 is, of course, flat and g is a Carte-
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sian coordinate. Each of the two constraints (10.25) has a
vanishing Poisson bracket with the Hamiltonian (10.1).

An interesting point arises, however, when we choose
an anholonomic basis 7,7y in the algebra 7~ of linear
gauge variables, instead of the holonomic basis (10.25). In
particular, let us scale the original basis into

mp=elm, my=Alg,Y)m,, (10.27)

where A(x,Y) is some nonvanishing function of the physi-
cal coordinate g and the gauge coordinate Y. In the sim-
plest case, A can depend only on g, e.g., Alg)=1++¢>
The constraint mixing (10.27) is everywhere regular. The
Poisson bracket of the scaled constraints no longer van-
ishes:

{1T1',1T2'} =A(q, Y)ﬂ']' . (10.28)
Our new basis has the structure functions
Cl,=—Cl=A(g,Y), C*,=—C%=0, (1029

which are not constant. This simulates, at the level of the
linear gauge constraints, the situation which we find in
general relativity for the quadratic super-Hamiltonian
constraints associated with “parametrization.” The func-
tion A(q,Y) plays here the same role as the contravariant
metric does in the Poisson bracket between two super-
Hamiltonians in general relativity. The Poisson bracket
of the Hamiltonian with the scaled constraints also does
not vanish outside the constraint surface. Therefore, even
for this trivial model, a factor ordering problem arises
upon quantization.

E. Rotations SO(3) acting on E3
Let SO(3) act on E* by rotations about the origin of

Cartesian coordinates Q*=(X,Y,Z). The generators of
the action, viz.,

$1=—Z3/3Y +Yd/3Z ,

¢,=7Z0/3X —X9/3Z , (10.30)
¢;=—Y0/3X +X3/9Y ,

lead to the familiar Poisson brackets
{Ta,mg} =87 opm, (10.31)

for the angular momentum m,. The constraint 7,=0 al-
lows only motion with zero angular momentum, i.e., the
radial lines.

The generators (10.30) are linearly dependent. The
space "¢ of vectors v=v*(Q)¢, at Q is two dimensional
(instead of three dimensional), and at the origin Q4=0 it
becomes trivial. A two-dimensional basis can be defined
only in patches. For example, ¢, and ¢, can serve as basis
fields everywhere, with the exception of the coordinate
plane Z=0, on which they become linearly dependent.
We have
%Trl—‘g‘ﬂz . (10.32)
The basis 7,7, is thus characterized by structure func-
tions

{171’772} =



34 HAMILTONIAN DYNAMICS OF GAUGE SYSTEMS

X

_;:’ C*p= ‘“C221=—)7 ,

instead of structure constants. In Sec. XD, structure

functions were introduced by mixing the generators of the

gauge group. Here, they arise by a selection of linearly in-
dependent generators of the group from a redundant set.

The orbits of SO(3) are spheres centered about the ori-

gin (and the origin itself). The radius
r=(X*+Y*4+2%'?

Cly=—Cy= (10.33)

(10.34)

can be chosen for the physical coordinate g'. The projec-
tor Qi =58,508/r leads to the flat physical metric
g''=1; hence, r is a Cartesian coordinate. The physical
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space is geodesically incomplete, due to the limitation
r >0 (Ref. 15). The equations of motion in the big space
(together with the angular momentum constraint 7,=0)
predict uniform rectilinear motion along straight lines
passing through the origin. The projection of this motion
into the physical space again yields an elastic reflection at
r=0.
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