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%e carry out the Hamiltonian quantization of a member of a class of gauge theories in which the
internal metric becomes an independent degree of freedom and the gauge group is generalized to
SLC'X, C). The Hamiltonian quantization is carried out both in a gauge where only the SU(E) sym-

metry is manifest and in a gauge-invariant way. These theories have been proposed by Cahill, and
they also arise as the nongravitational sector of a unified theory of gravitational and gauge fields
which has been. proposed by one of us (J.D.). The physical degrees of freedom are identified and a
relativistically invariant functional generator is constructed. The resulting quantum theory is stable,
but not perturbatively renormalizable.

I. INTRODUCTION

Given the successful description of the strong, elec-
tromagnetic, and weak interactions in terms of minimally
coupled Yang-Mills theories, is seems that this is a good
time to reconsider the question of the relationship between
gravity and the other forces in nature, raised by Einstein
in this work on unified field theories. Indeed, as both
Yang-Mills theory and general relativity use a
differential-geometric description of fields on spacetime,
it seems most natural to look for a geometrical construc-
tion which could provide a unified description of all the
known interactions in nature. Such a construction has
been proposed by one of us (J.D.) and leads to a theory
which is a simultaneous generalization of both Einstein
and Yang-Mills theories. '

The purpose of this paper is to examine the dynamics
and quantization of the resulting theory. The basic ideas
which motivated the construction of this theory are the
following: In order to construct a theory that unifies gen-
eral relativity and Yang-Mills theory we must first under-
stand what is common and what is different about the
geometrical formulation in each case. %'hat is common
to both theories is that they can be formulated in terms of
the fundamental objects of differential geometry. These
are the connections, which define a notion of parallel
transport to move objects between points in spacetime,
and metrics, which allow us to quantitatively compare ob-
jects at the same point. In each ease a local symmetry
group acts at each point of spacetime, the Lorentz group
SO(3,1) in general relativity, and a compact semisimple
Lie group like SU(X) in Yang-Mills theory. What is dif-
ferent for each theory is, first of all, the space on which
the metric and connection act: in general relativity the
metric and connection act on vectors and tensors defined
on spacetirne itself whereas in Yang-Mills theory they aet
on objects in an internal vector space set up over each
point of spacetime. %'e will have nothing to say here
about bridging this difference between the two theories.
Another way in which they differ is in the dynamical
roles assigned to the metric and the connection in each
theory. In general relativity the metric is the dynamical

field and the connection is constrained by the conditions

V~~ ——0 and Op„——0

to be a function of the metric. Here 8 is the torsion. In
Yang-Mills theory, on the other hand, the metric on the
internal space is fixed to be 5,b and the connection is the
dynamical variable, and is again restricted by a metric
compatibility condition:

DX6ab ~z~ab ~lab ~Aab (1.2)

Because the metric is constant, this means only that the
connection is restricted by the condition m~ ———co~ to be
in the U(X) subgroup generated by the anti-Hermitian
transformations which preserve 5,b

The basic idea is then that, in order to unify gravity
with the other interactions, it may be necessary to general-
ize both general relativity and Yang-Mills theory to
theories in which both metrics and both connections are
independent dynamical fields. In accordance with the
Einstein philosophy that all aspects of the geometry
should be determined dynamically, we assume no a priori
constraints relating each metric to the corresponding con-
nection. This means that each of the connections must be
taken to gauge the whole invariance group of the space on
which it acts. The spacetime connection must then gauge
GL(4, R), and the internal connection SL(X,C). The con-
stancy of the Yang-Mills metric and the conditions (1.1)
and (1.2) will be recovered in the low-energy limit, where
the extra degrees of freedom introduced are frozen out,
and will no longer be a priori conditions. At high ener-
gies the non-metric-compatible parts of both the space-
time and the internal connections will be dynamical de-
grees of freedom.

Based on these ideas, one of us (J.D.) found a simple ex-
pression for an action involving both metrics and both
connections which gives a unified theory with the charac-
teristics above. - This action is formulated in terms of the
bundle of general linear frames over the product of space-
time and the internal space and is described in Ref. 2.
Here we will only exhibit the form of the action, which is
similar to a harmonic map or chiral Lagrangian on the
natural metric 6 on the tangent space of the aforemen-
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tioned bundle:

I„= Jd xV g—g"'Tr[(L~ G)(Lii G ')] . (l.3}
32m 6~ P

Here g& is the metric on spacetime and, for those fami-
liar with fiber-bundle notation, we mention that L ~ is the

Lie derivative in the bundle with respect to the basic vec-
tor field 8„, the trace is taken in the tangent space of the
bundle and the integral is over any cross section of the
bundle. In addition we note that the theory depends on
the single dimensional parameter GN,„„„.When Eq. (1.3}
is written out in terms of component fields it is found to
contain a purely gravitational part and an internal part

(1.4)Iu =Ig+I
In terms of the spacetime connection I „„and the space-
time metric g„„the gravitational part is

m

+ g""(V~~p 28„(~p))—(V'~ ~ 28'„~') —.

Tr(q 'F ~F"")1

P

+ Tr[(q 'V„q)(q 'V"q)], (1.6)

where F„, is the SL(N, C) field strength formed from ~„
in the usual way,

F~„=B~co —B~p+ [cop,co„],

and the covariant derivative of q is given by

(1.7)

Note that the internal part and the gravitational part
are very similar in form, the major difference being the
term linear in the Ricci curvature in the spacetime part,
which arises naturally from the Lagrangian in (1.3). A
similar term does not arise in the internal part because the
corresponding contraction cannot be made with F„„.The
same dimensional constant M =16m.GN,„„„'occurs in
both parts and sets the scale for the low-energy limit of
the theory. The theory has, in addition, two dimension-
less constants, one associated with the internal connection
(g) and one associated with the spacetime connection (a).
In addition, note that the internal part turns out to be a
gauge theory of SL(N, C) rather than GL(X,C), because
expression (1.6} is actually independent of the determinant
of q, as we will show, and the Abelian factor in ~~ corre-
sponding to GL(N, C)/SL(N, C) decouples from the other
degrees of freedom. Thus, we may also impose on q the
condition

The internal part is a function of the internal metric q,
which is a Hermitian matrix of scalar fields, and the
internal SL(N, C) connection co„, a set of traceless ma-
trices forming a four-vector:

detq = 1,
This is all we will say here about the unified theory and

its derivation. For details the reader may consult Ref. 2.
%'e will also have little more to say here about the gravita-
tional part of the theory. It is more complex than other
gravitational theories that have been considered because it
involves the full spacetime connection dynamically, in-
cluding nonmetric and torsion components, and because it
involves a much larger local invariance group and set of
fields than is usually considered in gravitational theories.
If we constrain the spacetime connection in various ways
then this theory reduces to others that have been studied
before. For example, if the connection is constrained to
be metric compatible the theory is one of the theories with
propagating torsion that have been studied by a number of
authors. If all of the components of nonmetricity are
constrained except for the Abelian component corre-
sponding to local scale transformations then the theory
becomes the conformally metric theory which has also
been studied before. Of course, if the connection is con-
strained to be both metric compatible and torsion-free
then it is one of the higher derivative extensions of general
relativity that have recently been studied a good deal.

None of these special cases have Ied to a satisfactory
quantum theory of gravitation; it has not been possible to
invent a theory which has a stable ground state and which
is at the same time perturbatively renormalizable, unitary,
and causal. There is, however, some basis for the conjec-
ture that in this theory with a completely free GL(4,R)
connection it will be possible to satisfy all three of these
conditions. This is based on the possibility of using the
GL(4, R) invariance to choose a gauge in which all of the
dynamics are carried by the connection fields, in terms of
which the theory could scale at high energy without intro-
ducing the pathologies that arise from higher derivatives.
Unfortunately, the complexity of the theory makes the ex-
amination of this conjecture difficult.

Thus, before trying to understand the dynamics of the
gravitational part of the theory it seems prudent to first
understand the dynamics of the internal part. Considered
by itself this theory, given by Eqs. (1.6)—(1.9} gives an in-
teresting generalization of Yang-Mills theory, as well as a
simpler example than the gravitational part of a theory in
which both metric and connection are dynamical fields.
This theory has been proposed first by Cahill however,
its dynamics and quantization have never, to our
knowledge, been studied in any detail. Consequently the
body of this paper is devoted to establishing the correct
Hamiltonian quantization of this theory. For systems
with constraints this is a necessary prelude to the con-
struction of a relativistic functional integral from which a
covariant perturbation theory may be defined.

The paper is organized as follows. In Sec. II we
describe the classical theory. In Sec. III we work out the
Hamiltonian analysis of the theory in the gauge q =I, and
try to construct the path integral, but meet a difficulty
due to the presence of second-class constraints. In Sec. IV
we extend the Hamiltonian analysis to the arbitrary gauge
case and construct the relativistically invariant path in-
tegral form for the functional generator. Section V con-
tains our conclusions.
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II. THE CLASSICAL THEORY IN FLAT SPACE

1 = iCX+P, (2.3)

%e begin by reviewing the basic properties of the classi-
cal theory which follows from the Lagrangian (1.6).
Under a local SL( N, C) gauge transformation
parametrized by the matrix k the internal metric q and
connection co„ transform as

q~A, qA. , (2.1)

Np~A, N~A+A, , C)~A, , (2.2)

where X is the Hermitian conjugate of I, in the usual
sense. The covariant derivative V„ transforms homogene-
ously under these transformations.

Given q at a point the generators of SL(N, C) (traceless
N XN complex matrices), denoted by ~, can be decom-
posed into two pieces, which are, respectively, "anti-
Herrnitian" and "Hermitian" with respect to q:

tesimal transformation properties of N„are

5Np = [N~, t]+d~7

and under separate a and p transformations,

5 A„=[A„,a]+B„a+—,
'

q '[(c)„q)a+a c)„q],

5~8~ = [B~,cx] —2 9 [(c)~q)a+a F9],
5@A„=[B„,pl i 9—'t(d„q)p+p c)I 9]

5'„=[A„,p]+ c)„p+ ,
'

q '—[(c)„q)p+p c)„q] .

(2.9)

(2.10a)

(2.10b)

(2.10c)

(2.10d)

The fields A& are perturbatively equivalent to the ordi-
nary Yang-Mills gauge fields for SU( N), and correspond
to the part of the connection that is metric compatible
with respect to q. The fields 8& gauge the additional
SL(N, C)/SU(N) part of the gauge group and correspond
to the non-metric-compatible part of the connection.
Indeed the covariant derivative of q may be written as

ia= —,'(z —q 'r q), (2.4) V~q = c)pq —298' (2.11)

p= ,' (r+q —'rtq) . (2.5)

Q)p=/A@ +Bp
1 i t'

A~ —
x (Np —9 Npq),

B~ = i (N~+9 Nilq) ~

(2.8a)

(2.8c)

However, this separation is not invariant under gauge
transformations, which mix the two parts. The infini-

I

We call (ia) and p anti-Hermitian and Hermitian with
respect to q because they satisfy

(ia)= —q '(ia) q and P=q 'P q . (2.6)

The anti-Hermitian piece ia generates the SU(N) sub-
group of SL(N, C) which preserves q, while under an in-
finitesimal P transformation q transforms as

(2.7)

The connection co& may be split into anti-Hermitian and
Hermitian parts with respect to q:

(V„V„V'„V'„)E= [F„—„,E], (2.15)

or one may derive identities coming from the variation of
the Lagrangian with respect to an arbitrary gauge
transformation k:

involving only the 8& fields. The Lagrangian (1.6) is easi-
ly shown to be invariant under SL(N, C). Taking varia-
tions with respect to N&, N&, and q the following classical
field equations are found:

m
V„(q 'F ""q) (q—'V"q) =.0,

2
(2.12)

m
V ( FPv —1) g (Vv )

—i () (2.13)
2

[(q 'F„~),F""]—g m xV„(q 'V"q) =0, (2.14)

where V& is defined by V„Xt=(V&X) . It is important to
note that these equations are redundant in that the q field
equation actually follows from the SL(N, C) covariant
divergence of the field equation N&. One may check this
directly using the fact that for any mixed second-rank
internal tensor E one has

fd4x5L= Jd4xTr 5L59T+ 'L5 '+ 'L 5N"
Np 5Np

=Id'xTr Tr —. + "+ " 5Z' =05a 5L 5Np 5L 5'
5q M, 5N„M. 5N+ M,

(2.16)

6I. 61. ) t 6L2 Tq — Vp T +q ' Vp, q =0 .
6q 569~ 6co~

(2.17b)

where the first trace acts on q's and the second on k's.
Restricting A, alternatively to be anti-Hermitian or Herrni-
tian with respect to q one finds

5L i t 5L
(2.17a)

5co 5co

l

These equations are an extension of the familiar identity
in Yang-Mills theory by which the covariant divergence
of the field equations vanishes.

Thus q is a redundant variable in the sense that its field
equation is automatically satisfied whenever the field
equations for the connection N„are satisfied. Moreover
because we have set detq= 1, q has no singularities and we
can always use a gauge transformation a to set q =I
everywhere:
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q~q'=a qa =I . (2.18) The q field equation in turn becomes

Given that q is a Hermitian matrix with unit determinant
this condition is exactly sufficient to fix the
SL(N, C)lSU(N) part of the gauge freedom, so that it
fixes completely the Hermitian part of the gauge invari-
ance. Thus with q fixed one is left with only the anti-
Hermitian part of the gauge transformations, which gen-
erates SU(N).

With q set equal to I many of the previous equations
simplify. For example the Lagrangian (1.6) becomes in
this gauge

G„„=f„„+[8„,8„],
W„„=D„B„D+„—,

(2.20)

(2.21)

and f„„and D„are the ordinary Yang-Mills quantities
for the gauge fields A„:

fpv=dpAv ~Qp+[Ap~Av] ~

D~Bv=BqB„+[Aq,B,] .

(2.22a)

(2.22b)

In this gauge the particle content of the theory is mani-
fest. The theory consists of a SU(N) Yang-Mills field
coupled to a multiplet of massive spin-one vector bosons
in the adjoint representation, with the couplings chosen
such that the theory can be extended by addition of the
variable q to be invariant under the larger group SL(N, C).
What has happened is that the Hermitian metric field q
has combined with the Hermitian part of the gauge fields
8& to make massive vector fields, while the anti-
Hermitian fields A„remain massless. (At the quantum
level it is possible that the fields A„will acquire masses
from vacuum expectation values involving the fields 8„.
This will be discussed in another paper. )

This is somewhat analogous to the Higgs mechanism in
ordinary gauge theories. However, there are three impor-
tant differences. First, there are no scalar particles left
over after the longitudinal parts of the massive vector
fields have been taken into account. Second, there is no
way in which one could form mass or self-interaction
terms directly for the q field. This is forbidden by the
SL(N, C) symmetry; the only invariant that one could
form out of q is detq and this is one by construction.
Third, although one may say that in the mass spectrum of
the theory SL(N, C) has broken down to SU(N), this is
not spontaneous symmetry breaking, in that nowhere have
we needed to assume that the vacuum, or ground state, is
not invariant under the whole SL(N, C) symmetry. All
that we have done is to exhibit a gauge in which the parti-
cle content of the theory is manifest.

In the q =I gauge, the field equations for A„and 8„
are

D„G"'+i [B~,W&"]=0,
D~W"" i [Bq,G"")—+g m 8"=0 . (2.24)

P7lTr(G~„G""+lV~ W"")+ Tr(BqBI'),
4g2

(2.19)

where we have defined

DqB" — [G„„,W""]=0 .
g fthm

(2.25)

L„= (i fqy—„V"g H c )—+cg. (.y„V"q)P . (2.27)n —m

When we go to the q =I gauge both of these terms reduce
to

L„~= —(1+2C)gyqB"g . (2.28)

It might be interesting to see if one could attempt to
model the weak interactions with terms of this type. One
difficulty that may arise is that they break a discrete sym-
metry of the original Lagrangian (2.19), which is invariant
under the operation

Bp ~—Bp, A~ ~A~ . (2.29)

We call this operation B parity. Thus, once one intro-
duces direct couplings of the fields 8„ to spinors one will
no longer have conservation of 8 parity and it may be
necessary to introduce into the Lagrangian additional
dimension-four counterterms that would otherwise be ex-
cluded. Conversely we can see from the fact that the non-
minimal couplings to spinors violate B parity that such
couplings will not arise in the effective action generated
from (2.19) to any order in perturbation theory.

III. HAMILTONIAN QUANTIZATION
OF THE SL(2,C) THEORY

We proceed in this section to the construction of the
Harniltoruan quantization of the theory. For simplicity
we will begin by working in the gauge q =I. We expect
that we would get the same answer if we quantized the
theory with q as a dynamical variable and only at the end
made the gauge choice q =I. This is, however, a delicate
point, as we will see later.

In addition, to simplify the notation we will work with
the simplest case, in which the group is chosen to be
SL(2,C). This will allow us to use three-vector notation
for the internal Lie-algebra indices. SL(2,C) is familiar to
us as the covering group of the Lorentz group SO(3, 1) and
has the Lie algebra given by

Note the important fact that the q equation may be con-
sidered to be an evolution equation for Bo.

We close this section with a brief description of how
one couples the SL(E,C) theory to matter. We may form
the usual minimal coupling of the SL(2,C)-invariant
theory to multiplets of spinors and scalars by

L = ,'(&'gq—y„V~P+H.c.)+ —,'(V„P) q(VI'P) . (2.26)

Choosing the gauge q =I one can see that the new non-
metric fields 8& couple to scalar fields but not to spinor
fields. This is unfortunate as, it makes it difficult to use
the massive 8& fields to model the weak interactions.
One can remedy this problem somewhat by introducing
nonminimal couplings of the fields 8„ to the spinors.
This may be done in two different ways by adding Hermi-
tian terms to the Lagrangian:
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c, =cr, /2, d, =l'o, /2, a =1,2,3,
[Ca «Cb ]= l Eabc C

[Ca «db l =«abed

[da«db] l&abcc

i)„„=diag(+,—,—,—) = 8-,"8'=—g (8,.')2 . (3.14)(3.1b)

(3.1c)
In order to ensure that a constrained Hamiltonian sys-

tem such as this defines a consistent theory we must make
sure that the constraints once fixed at an initial time are
preserved in the evolution defined by the Hamiltonian. If
they are not, we must modify the Hamiltonian in such a
way that the initial constraints are preserved or, that fail-
ing, add additional constraints in order to guarantee the
preservation of the original ones. In order to be consistent
with the classical equations of motion the Hamiltonian
can only be modified by adding terms proportional to the
initial constraints, times arbitrary functions of the fields.
If this does not suffice to guarantee the preservation of
the constraints and we have to add additional constraints
we must then make sure that there additional constraints
are also preserved under evolution defined by the Hamil-
tonian, and the procedure is thus, repeated. The pro-
cedure continues until a system of a Hamiltonian and con-
straints is found such that all of the constraints are
preserved by the evolution generated by the Hamiltonian.
(For an exposition of the Hamiltonian quantization of a
constrained system the best reference we have found is the
book by Dirac. There is also the excellent review by
Hanson, Regge, and Teitelboim. s)

We begin by seeing if the initial constraints mo
——0 and

po ——0 are preserved. Taking the first case,

(3.1d)

We will see that this is related to the constraint algebra we
find. We proceed to write the theory in component form,
expanding in terms of the SU(2) generators c, . We use
the three-vector notations

A, B'=A 8, .cab, A 8'=(A XB)a, (3.2)

and so we get for all relevant quantities, up to an ir-
relevant overall factor in the Lagrangian:

PlL = —
2
(G„G""+Wq„W"")+ B„B", (3.3)

(3.4)G„,=a„A„—a~„—A„XA„+B„XB„,
8 ~„——Dp8„—D 8~,
D„B„="de„AqX—B„. (3.6)

A. Classical Hamiltonian analysis

We begin the construction of the canonical theory by
finding the canonical momenta of A; and 8;:

o BL =0,
BA'

(3.7)

[H„iro(x)]= C'(x) =(D—;m" 8; XP')'(x—)=0, (3.15)

where H, =fdx H, (x). This defines the constraint C',
which is just the usual constraint arising from gauge in-
variance in Yang-Mills theory, and generates the time-
independent SU(2) transformation laws of the various
fields, as the reader may verify. An additional set of con-
straints arise from the second case:

aL

aA;
l oj6

g
(3.8)

~OI
g

2Pa =
«38 ';

As in ordinary Yang-Mills theory the Lagrangian (3.3) is
not a function of Ao and 80, and so the momenta conju-
gate to them vanish and we have two sets of constraints.
The canonical Hamiltonian is then

[H„PO(x)]= D"(x)—
=(D;P'+8; Xm'+m 80)'(x)=0. (3.16)

(3.1a) Note that because of our convention for the metric

H, (x):nA,'+P B;a'l.—. — (3.10)

BOA = — gn'; 8+, A+0(AOXA;)' —(BOXB;)',

BOB = gP + c3;Bo+(A—OXB;)'—(A; XBO)'.

(3.11)

(3.12)

After some integrations by parts we get for the Hamil-
tonian in terms of canonical variables:

H, (x)= — (n;-.8+P; P') — 8; 8'

+ (6;"6"+W, - W'~)

Ao. (D~m' 8; XP')— —

Inverting the expressions for the momenta to solve in
terms of the velocities we find

[C,(x),Cb(x)] = —5 (x y)e,b, C'(x),— (3.17)

which is just the Lie algebra of SU(2), up to a sign con-
vention. However, the Poisson brackets of C' with D"
does not close. Instead

[C,(x),Db*(y)] = —5 (x —y)e,b, [D*'(x)—m 80(x)] .

(3.18)

These new constraints D" correspond to the
SL(2,C)/SU(2) gauge symmetry of the original theory.
However, as we have broken this gauge invariance by set-
ting q =I this constraint does not function like the usual
gauge constraints.

We may now ask if the constraints we have found, no,
Po, C', and D ', generate a closed algebra under the
Poisson-brackets operation. We find

Pl—8o D;I"+8; XH+ 8o (3.13)
This is not a constraint, and so C' and D*' are not first-
class constraints. Luckily this problem is easy to fix. We
can add to C' a linear combination of other constraints to
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make it first class. We define a new SU(2) constraint by

C"—:C' —(Bo XPo)'

The new constraint also generates the SU(2) algebra

[C"(X),C""(x)]= —5'(» —y)& 'C, (x)

and the Poisson brackets with D" now closes

[C,'(x),Db'(y)] =—5 (x y)E—,b,D "(x),

(3.19)

(3.20)

(3.21)

which shows that D" transforms properly under the
SU(2) transforinations generated by C*'. In addition the
Poisson brackets of the D""swith themselves also closes:

[D* (x),D (y)]=5 (x —y)E [C, (x)+(BoXPo),(x)] .

[D"(x),H)] =(Ao XD* B—o X C')'(x)
'x D*'x,F'y Pb y =O. (3.31)

The expression F' relates to the time evolution of Bo lii
the following way: we have

In order to solve this problem we must add a term propor-
tional to Po to the Hamiltonian

H, —=H, — d xE'x P, x

This makes the new brackets vanish on the constraint sur-
face:
[C"(x),H, ]=(Wo X C*+8,XD"+P, XF)'(x)=0,

(3.30)

(3.22)
aB'o(x)

[Bo(x),H, ]= = F'(x)—. (3.32)

[n;(x),nb(y)] =0,
[P,(x),Pb(y)] =0,
[m, (x),Cb (y)] =0,
[ir, (x),Db" (y)] =0,
[n, (x),P (y)]=0,

[C,'(x), Cb'(y)] = —5 (x —y)e,b, C"(x)=0,

(3.23a)

(3.23b)

(3.23c)

(3.23d)

(3.23e)

(3.24a)

However, because of the extra term containing Po the
constraints C" and D*' do not form a representation of
the Lie algebra of SL(2,C}. The complete algebra of all

the constraints is now

If we plug in the momenta in terms of the velocities back
in this equation we get

DqB" —[Gq„,W""]=0 .
g m

(3.33)

Hf(x) = [(,')'+(P,')']+ [(8 )'+(Bo)']

This is just the field equation for q, in the q =I gauge.
We see then that our gauge choice implies, in the present
formalism, a definite time evolution for Bo, which would
be normally undetermined.

Note that in the presence of the constraints we may
write the Hamiltonian as

(3.24b)[C.'(x),D,"(y)]= —5'(x —y)e.b,D "(x)=0,
[D,'(x),Db'(y)] =5 (x—y)e,b, [C"(x)+(BoXPo) (x)]=0, +,[(G,)'+( W, )'])0 .

2
(3.34)

[P,(x},Cb'(y)] = —5 (x y)e,b,Po—(x)=0,
[P,(x) Db (y)]= m5ob5 —(x —y)40

(3.24c)

(3.24d)

(3.25)

[ D( )x, H]=(A XD*—8 XC)'(x)+m F',
T

(3.27)

2 2 Q

F'= DB' AoXBo+ ~ Xp—'+ G XW'" (x)m' ' g'm'

4,
'3.28)

We see from the fact that this last commutator does not
vanish on the constraint surface that Po and D" are
second-class constraints. The other constraints mo andC" are first class as in Yang-Mills theory. The reader
may check that no further linear combination of the
second-class constraints is first class. The presence of
these second-class constraints is due to the gauge choice
q =I, as we shall see, and it makes the analysis of the
theory in the present form awkward.

We must now check to see if the new constraints C*'
and D" are preserved by the Hamiltonian. Calculating
the brackets with H, we find that, as in Yang-Mills
theory,

[C"(x),He] =(Ao XC*+BoXD*)'(x)=0 . (3.26)

However, the bracket of H, with D' does not vanish on
the constraint surface. Instead

Thus we see that, while not manifestly positive, the Ham-
iltonian is positive in the presence of the constraints. A
problem that could arise from the mass term due to the
indefiniteness of the Minkowski metric in 8&8" is
resolved because the constraint D*' serves to switch the
sign of the term m Bo in the Hamiltonian.

Note also that, as in Yang-Mills theory, the field Ao in
the presence of the constraints is absent from the Hamil-
tonian and the constraints, and may be used as a Lagrange
multiplier for the constraints C"(x). This is not the case
for Bo, which is present in both the Hamiltonian and the
constraints and has its own time evolution, given by H, .

B. Canonical quantization and the functional integral

Thus we have found that the total Hamiltonian H, to-
gether with the constraints C*', D", mo, and Po define a
consistent generalized Hamiltonian system. While this is
enough to show that the theory can be formulated con-
sistently at the classical level, we need to do some more
work to construct the quantum theory. First we need to
rework the canonical analysis performed so far but in
terms of commutators instead of Poisson brackets, and
verify that we do not run into ordering problems. This
was done, and it was found that the antisymmetry of the
structure constants of the Lie group is enough to guaran-
tee the absence of ordering problems, because it precludes
the appearance of products of two fields with the same
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(&;+—A, X+—8; XP')'(x) =0,
(a,P' —A, XP'+8, Xe)'(x)= —m'8', (x) .

(3.35)

(3.36)

We may choose now to solve the second equation for
80 and substitute in 0, . This is convenient because, be-
sides eliminating the variable 80 from the system, it
decouples the constraint system, and one is left with only
one equation. At this point we have

internal index, which are the ones which might not com-
mute. Second, we must identify the physical variables
satisfying canonical commutation relations and then con-
struct the physical Hamiltonian which will give us the un-
constrained evolution of the canonical variables on the
physical subspace of phase space, that is, the constraint
surface.

We do this in several stages. First, we solve all of the
constraints to express the theory in terms of uncon-
strained variables. Second, for each first-class constraint
associated with gauge invariance we add a subsidiary or
gauge condition. Third we may have to introduce Dirac
brackets in terms of which the commutation relations of
all quantities with the second-class constraints mill be
zero, closing the constraint algebra. Fourth, we construct
the path-integral representation of the functional genera-
tor of the Green's functions of the theory, in order to have
a perturbative expansion and a set of Feynman rules for
the theory.

Let us have a look at our constraint system. The solu-
tions for no and Po are obvious, but we still have a cou-
pled system of equations:

&=a, (a a')-'a, ~,'J=5, —& (3.40)

O'V =0 and 8(;VJ') ——0, (3.41)

C.=8;~'. —(A; yH). —(8, &&P'). =0,
C, (mb )=0.

(3.42)

(3.43)

%e now need to choose a subsidiary condition to elim-
inate the gauge freedom represented by the first-class con-
straints. The constraints n; =0 are obviously related to
the conditions Ao ——0, which are not necessary to impose
explicitly, as Ao has vanished from sight already. For C'
it is convenient to choose A,' =0, or

X':—8;A "(x)=0 . (3.44)

As det[X', C ]&0, this condition suffices to fix the gauge.
We are at this stage left only with the unconstrained vari-
ables on the constraint surface:

H =H, [A ",~',8',P',8',P'] . (3.45)

These are the degrees of freedom of a set of massless ( A)
and massive (8) vector particles, as expected. These coor-
dinate fields satisfy the usual canonical Poisson-brackets
relations:

where V stands for any of our three-vectors. Now the
constraints C, can be solved for the variables n', , giving
some solutions m,',

H, =H, [A,',8,',n.',P.'],

(a, ~' —A, X~'—8, XP')'(x) =0,

(3.37}

(3.38)

[A (x),g (y)] =A, , J5s5'(x —y),
[8 (x),P) (y)]=A; ~5b5 (x —y),
[8 (x),P}c (y}]=A,;J5s5 (x —y) .

(3.46)

(3.47)

(3.48)

V =V +V =A, 'V +k 'VJ l J (3.39)

where the square brackets in (3.37) are used to indicate
that H is a functional of the quantities in the bracket. To
proceed further it is convenient to decompose the remain-
ing fields and momenta into transverse and longitudinal
parts in the usual way

The next step ~ould now be to introduce the Dirac brack-
ets for these quantities, but in our case this is not really
necessary. This is a further advantage of our choice of
field variables, for, as they are just some of the original
canonical variables in their original roles, their Dirac
brackets coincide with their Poisson brackets, as can be
seen from the definition

[A (x},8(y)]n ——[A (x),8(y)]+ fd z e' C, (z) I [A (x),P, (z)][8(y),Pi (z)]—[A (x),Pb(z)][8(y),P, (z}]I
2&i

2 f d zc [A (x),P, (z)][D "(z),8(y)] —[A (x),D "(z)][P,(z),8(y)]J . (3.49)

We may therefore directly identify the Poisson brackets
of the remaining fields with the quantum commutators.
We are therefore at this point ready to define the quantum
theory, with the use of the Hamiltonian (3.45) and the
canonical brackets (3.46), (3.47), and (3.48). Equivalently
we may define the functional generator as a Hamiltonian
path integral over the constraint surface:

Z =fd[A,",~.",8,',P.']

Xexp i f d x[n,' A'; +P,'8,'—H(x)] (3.50}

where we denote [dA dB dC dD] by d [A,B,C,D] and H
is given by (3.45). Unfortunately this Haniiltonian is a
highly nonlinear function of the physical variables, as a
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result of the substitution of the solutions for the con-

straints into it. In particular, the integration over the mo-

menta is nontrivial and the result will not be manifestly
relativistically invariant.

%'e proceed then to reintroduce the missing variables

and appropriate 5 functions in order to express our theory
in terms of an equivalent functional integral over the
whole phase space, in the hope that the result will be rela-

tivistically invariant.
%e begin by reintroducing the longitudinal components

of A and ~ We. had the conditions

A;L ——0, m'a'L =7r a'L, C'(m bL )=0;
and we may therefore write for Z,

Z = fd[A, m,',B,Pa]5[A,"r ]5[m,'I —Tr',L]

(3.51)

/exp i x w,'3',. +P,'9',. —+ ~, 3.52
L

where 0 is now a function of the variables

H =H [A,',8,', rr'„P,'] . (3.53)

We may change variables in the 5 functions to C' and the
gauge condition 7, =8;A,' =0, in terms of the field A,':

5X, 5Cb
Z =fd[A, m'„B,P,']5[X']5[C']det

5A,'L 5n';g
exp i fd x[m A;'+P,'8,'—H(x)] (3.54)

We must now reintroduce 80 in order to get back the original version of H

Z =fd[A, m, B„',P,']5[7']5[C']det
/
[X„Cb]/5[8, —8, ]exp i fd'x[n A ;'+P,'8'; —H(x)] (3.55)

where 8, is the solution of the constraint equation D*'=0 and we now have for the functional dependence of H on the
fields

H =H[A, Bq, ma', Pa] . (3.56)

We may now exponentiate 5[C'] by means of the reintroduction of Ao, which is a free function at our disposal, and we
may also change variables in the last 5 functional to D '

5D aa
Z =fd[Aq, B„',m,',P,']5[7., ]5[D,']det

&&0

T

det
~

[ga, C"j ~
exp i fd x [~a A ;'+p,'8 ;'H(x) +A O—C, ]

(3.57)

where H is now just H, in the constraint surface (CS)

H =H[Ap»p n'a Pa ]=H~
l cs . (3.58)

At this point we almost have H, in the argument of the
exponential. Let us recall that

H, (x)=H (x) AoC,
' —BOD,*—, (3.59)

where C,' =C, for P, =0, so we see that the term propor-
tional to D,* is missing, due to the fact that we cannot use
80 to exponentiate the 5 functional in D,*, because Bo is
not a free parameter. In order to do this exponentiation it
is necessary to introduce a new set of fields A,„but we
would be introducing the time components of some four-
vector without introducing the space components, and it
is difficult to see how the result could be relativistically
invariant. Also, one wou1d still have extra terms in the
exponent, of the form

(A,, 8, )D*', —

in addition to the original Hamiltonian H„which would
change the integration over momenta.

This is a strange situation, as the relativistically invari-
ant gauge condition

(3.61)

seems to give rise to a nonrelativistically invariant result
in the end.

At this point it is possible, however, as was shown by
Popovic, using methods developed previously by Senjano-
vic, and also by Fradkin and Vilkovisky, ' to perform a
sequence of formal substitutions and other operations on
the path integral that render it in a relativistieally invari-
ant form. The result of Ref. 9 is what one would get from
the direct application of the Faddeev-Popov ansatz to the

A& field only, and there are no extra fields, as the k, pa-
rameters are integrated out. This is a surprising result, in
a theory with second-class constraints, in particular be-
cause the content of Ref. 9 implies the remarkable result

f d [A„',8„',~,',P,']5[7']det
~

[X',C ] ~
5[D,*]exp i fd x[n,'A,'+P,'8;'H, (x)]—

=afd [A„',8„',~,',P,']5[7']det
~

[X',C ] ~
exp i fd x[m,'A,'+P,'8,'—H, (x)], (3.62)
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which means that the second-class constraint D "{x)may
be lifted, in this case. This is in sharp contrast to the
original Dirac treatment, in which the second-class con-
straints must be imposed as strong relations between the
quantum operators. This situation is similar to the one
encountered in the case of the massive Yang-Mills field, '

in which the breakdown of gauge invariance introduces
second-class constraints. In our case, however, there is no
such breakdown, and in order to clarify the role that the
second-class constraints and the variable q play in the
theory, we, in what follows, repeat the whole analysis of
the theory without the q =I gauge condition imposed be-
forehand.

k=detq, $0——(I+/, (t')'

co„=(iA „'+8„')8, .

(4.2)

(4.3)

p q =v k boa in~a+ 1
0 p

+28, [(D„P)'+$'d„»v i) 0'08—) ] (4.4)

Note that because in (3.1) c, =8„1,=i8„ this last ex-

pansion is just an expansion in the generators of SL(2,C).
Next we compute V'@q and F& in component form, and

get

IV. GAUGE-INDEPENDENT ANALYSIS
OF THE SLI,'2, C) THEORY

F~„iG——p„+Wp„——(iGp„+ W„„)8 (4.5)

q
' = — -($0—2P, 8'),1

(4.1)

We begin with the general Lagrangian (1.6) and write
both q and 0)„ in terms of component fields and the SU(2)
generators Ha=8, . For convenience we decompose q in
terms of its determinant exphcitly, so that we have the ex-
pansions

q =&X(go+2y. 8'),

Here we are using the vector notations defined in (3.2),
and G„'„,W&„are given by the expressions (3.4), (3.5), and
(3.6) in terms of the potentials. Note, however, that our
fields are now decomposed into Hermitian and anti-
Hermitian parts in the usual sense, not with respect to q
as in Sec. II.

Our next task is to express the Lagrangian in terms of
the component fields. Apart from an unimportant overall
factor of 2 we get

mG""+W 'W"")+ & &"+ D y D"y+ (&p X({))(&"Xy)
gg 2

(PXG, ).(({)XG"")— (QX W „) (((tX W"")— (((t 8 P)(P 8"P)+ PP (G, X W)'")1 1 m 1 1

2g2 I 2 2 2 y
2 P pv

m2 m[&„D"P+(PX&„)(PXD"P)]+ (B„lnVA)(&in' l) .
0 2 P (4.6)

Note that, as stated earlier, A, decouples from the other de-

grees of freedom, and may be dropped from the theory.
We are now ready to begin the canonical analysis. We
have the pairs of canonically conjugate variables:

[i( (n)b] —i gb +
cb bX, =(t,e, ' = —X, .

(4.12)

(4.13)

(A„',ii", ), (B„',P,"), ((()',Q, ) . (4.7)

We calculate then directly the momenta. In order to write
the results in a concise way, as well as to facilitate the in-

version for the velocities in terms of the momenta, we use

a new matrix notation. We get

Note that in the p, =0 (or q =I) gauge irnn' and P," reduce
to the previous results, and Q, becomes —m 8, . In our
previous analysis Q, was missing, and because Q, =O is
not a relativistically invariant statement, we can see now
where the apparent noninvariance of our result came
from. In order to invert these relations we first establish
the following properties of b, '") and X:

m"= 5' ' G "+()() X W"
2

1 2 2

a 2 a b 0 a b

2 2

PP 1+24 g(2)bWGP ~ ybGoy
b Y'0 a b

Q, =b,"' 8 Q +X,A Pb,'" B„, —

where P =P,P'and

(4.8)

(4.9)

(4.10)

g(n)y yi( (n) [i( (n)] —ly y[g(n)] —1

y2i) (0) g(0)g(0) g(0)

(4.14)

(4.15)

G '= —g (I+2/ )i( ")m'+2g P XP',

W = —g (1+2(t) )i(( P 2g POXrr—
(4.16)

(4.17)

Note that 5' ' is a projector and has no inverse. We then
get, for the velocities,

noh @b
g(a)b gb

1+nP
(4.11) ~04=, [~'"] 'Q &Ao+4080 . — (4.18)
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m, =O=P, . (4.19)

%'e are now in a position to construct the canonical Ham-

From these one easily gets 3 ' and 8 '. Note that we have
two primary constraints as before: namely,

iltonian, given by

H, (x) =A ;'vr', +B,'P,'+P'Q, —L(momenta) . (4.20)

After some calculation with our matrices and integration
by parts we get, dropping total space derivatives,

H, (Aq, Bp,P', ~,'P', Q, ) =H, (x)= g—(b + —,
'

)(vr; b"'v&'+P; b ' 'P')+2g'borr; XP'

($'+ —')(6"5"'6"+W"6,'"WJ) — $ W XG"1 1
" 1

2g

f71 P7
(d +1)Bb'"B' — $ A b, 'A'+m-goB XA'

l l l

8;$h "8'$+m A;XB'Q+m QoB;b "t3'$

+,Q[~" ] 'Q —Ao C —Bo D,
2Pl"

(4.21)

where m;b, ' 'n', for example, stands for n;'b, ",n'b, and in
the last two terms we have

C'= C'+ (Q XP)',

C'=(D;H B; XP')—',
D'=D' —4oQ'

D'=(D;P'+B; X ~')' .

(4.22a)

(4.22b)

(4.23a)

(4.23b)

[~o(x),H, ]=C'(x) =0, (4 24)

[Po(x),H, ]=D '(x) =0, (4.25)

where H, = Jd (x)H, (x) Using our . previous knowledge
about C' and D' it is not difficult to compute the whole
constraint algebra. The nonvanishing brackets are

Imposing now the consistency of the primary constraints
with the time evolution generated by H, we get two
secondary constraints:

[C'(x),C (y)]= —5 (x —y)e'"'C, (x),
[C'(x),D (y)] = —5'(x y)e'b'D, —(x),
[D'(x),D (y)]=+5 (x —y)e' 'C, (x) .

(4.26a)

(4.26b)

(4.26c)

We see that this constraint algebra closes. Note that it
reproduces the Lie algebra of SL(2,C), Eq. (3.1). We still
have to impose the consistency of the secondary con-
straints with respect to H, . After a rather long calcula-
tion we get the brackets

[C'(x),H, ]=(A, X C+B,XD)'(x) =0,
[D '(x),H, ]=(Ao XD —Bo X C)'(x) -0 .

(4.27)

(4.28)

The secondary constraints are therefore also consistent,
and so a/I the constraints are first class. This tells us that
the existence of second class constraints in our previous
analysis is purely an artifact of the gauge choice we made
beforehand.

Next we examine the positivity of the Hamiltonian.
For this it is convenient to introduce some further, 6~ 6
matrix notation and write H, (x) in the form

H, (x)= [Q'+(y Q)'] Ao C Bo D—+g . ~—;,P; . M +-
2ftl . . 2

1 I
p +, 8',~, 6,~ M +—

I 2g, , 2

m'-
+ 3;, ——8; M+

2
(4.29)

where

(4.30)

is a 6)& 6 real symmetric matrix, and
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for example, stands for a six-vector. Note that we lowered all spatial indices and changed the signs accordingly. We see
that H, will be positive in the presence of the constraints if and only if all the eigenvalues of the matrices

(4.31a)
0 I

0 0
M+ 0 I (4.31b)

are positive. We must therefore write out the secular equation for each matrix, find the roots and see if they are all posi-
tive. Note that the matrices depend only on the three parameters P, (a=1,2,3). This calculation was done on the com-
puter with the help of the symbolic manipulation program (SMP} package:

(4.32)

0 0
det M+ 0 I AiI =A, —(i(,—1)[i(,—(p +itio )]2 .

\

H =Hc [A i'~ ~a & Bi'i Pa ~ Ã Qii ] ~ (4.34)

and we have the four first-class constraints mo, Po, C',
and D'. The first two are trivially solved and relate to
the fact that now both Ao. and Bo have vanished from
sight. We must impose two additional subsidiary condi-
tions, and we choose

Ai'I=0, p,'=0, (4.35)

so that we are back at the q =I gauge. We then use the
constraints to solve for the corresponding momenta, m';L

and Q, . This choice of gauge is convenient because the
constraint system decouples -into

Note that the roots are all SU(2) invariant, as one should
expect. An independent proof of the positivity of the
Hamiltonian can be achieved by remarking that as C'
and D' form a representation of the SL(2,C) Lie algebra
(just integrate the constraints over fd x) and are con-
sistent with H„one can rotate the vector (iI}o,i', }to (it}o,0)
by means of a gauge transformation, and return to our old
form of H„which we know to be positive.

The final step is to construct the path integral for the
functional generator. We shall see that it is possible to
choose the gauge in such a way that the resulting pertur-
bation expansion is relativistically invariant. The Hamil-
tonian in the presence of the constraints is

(4.33)

I

so that we may solve explicitly for Q, . We have, for the
Hamiltonian at this point,

H H[A;.—. .8;,P, ], (4.37)

Xdet
(
[X',Cs]

~

det
5Qb

and therefore our physical variables are the same as be-
fore, and we have, for the path integral,

Z =fd[A'T, m', T,B,P,'j

X exp i fd x[A,'Tm', T+8,'P,' —H(x}] . (4.38)

We may now extend the integration over the whole phase
space as before. After reintroduction of the longitudinal
components we get

Z = fd[A, m,',B,P,']5[/']5[C']det
~

[X',C ] ~

r

Xexp i fd x[A';m', +8';p,' —H(x)] . (4.39)

We next reintroduce the momenta Q, and the constraint
D', and get

Z =fd[A, n'„B,P,', Q~]5[7']5[C']5[D']

C'(7r gg }=0 (4.36a} Xexp i fd x[A ';n +8,'P,' —H(x)] (4.40)

and

a =Do (4.36b}
We may now use both Ao and Bo to exponentiate the con-
straints, and so we get

z =fd[A„',n'„B&,P,', Q']5[1']det
~

[7',C ] )
det

~
[P',D ] ( exp i fd x[A';m', +8;'P,' H(x)+Ao C+BO—.D]

(4.41)

where now we substitute back in H(x) all of the variables
that were reintroduced. The variable Q, may now be in-
tegrated out by the completion of a square, because

(4.42)

t

is independent of Q', and so we get back the complete
H, (x) in the q =I gauge:

Z =fd [A„',n, B„',P,' ]5[7']det
/

[X',C ] /

Xexp i d x A';m,'+8;'P,' —H, x . 4.43
J
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The integration over momenta now gives us back I.:

Z =fd [&„',Bq]5[7']det
~

[X',Cb]
~
exp i fd~x L

(4.44)

This result coincides with the one found by Popovic.
The relation (4.43) tells us that the (q =I) gauge happens
to be a ghost-free gauge for the SL(2,C)/SU(2) part of the
gauge group, and this is why we are reduced to the
Faddeev-Popov ansatz. One can now easily change from
the transverse gauge AL ——0 to a covariant gauge, " and
derive a covariant perturbation expansion from (4.45).
We see that one can in fact lift the constraint D. In doing
so we are extending the integration to the orbits of the
generators of SL(2,C)/SU(2), but this is immaterial since
the weight (volume) of the orbits is a constant, indepen-
dent of the fields. The reason why this was not clear be-
fore was the absence from our previous analysis of the
momenta Q, conjugate to P'.

V. CONCLUSIONS

1 Tr(F „F""+F+g+"")
8g &2 P~ Iji

k]
I Tr[(q V „q)(q 'V"q)] I'

k2

32 [Tr[(q V„q)(q 'V~)]I2

and they lead, in the q =I gauge, to the terms

1 (A, i
—81i ')

4 i2 P~ P~(6 6""—W W"")— (8 8")
g

(5.2)

k2 (8„.8 )(8"8 ) . (5.3)

These terms do not affect the analysis of the constraints,
either in a general gauge or when q =I, and, for the prop-
er signs of the coefficients, will lead to a positive-definite
Hamiltonian. However, while they will absorb a number
of divergences, they are not enough to lead to a renormal-
izable theory. This is because the longitudinal part of the
Bi' propagator has not been modified. In order to do this
we must add an additional dimension-four term

i (re„P„P„/P—) i—P„P,/P-
D (P)= ", ", +p2 ~2 7?l

(5.1)

Thus me see that the longitudinal mode is not damped,
and this will lead to the usual problems involving massive
vector fields.

One may of course attempt to solve the problem of non-
renormalizability by adding to the theory additional terms
as was done in Ref. 12 by one of us (L.S.). There are, to
begin with, a number of terms which one can add to the
theory without compromising the stability of the Hamil-
tonian. These are (assuming that we do not want to break
8 parity)

We have shown that the SL(N, C) metric connection
theories proposed by Cahill, Kim and Zce, ' and Dell2 can
be consistently quantized in the canonical formalism. In
spite of the fact that the group is noncompact a consistent
constrained Hamiltonian quantum theory can be con-
structed in which the constraints are first class and con-
sistent quantum mechanically and the Hamiltonian is
bounded from below. We have also shown that a rela-
tivistically invariant functional integral may be defined,
given an arbitrary fixing of the SL(N, C) local gauge free-
dom. From this we can in principle define a relativistical-
ly invariant perturbation theory in any gauge, and show
that the resulting S-matrix elements are gauge invariant.
Furthermore, by constructing the full Hamiltonian theory
without any prior gauge fixing, we were able to show that
the q =I gauge is indeed a ghost-free gauge with respect
to the SL(2,C)/SU(2) part of the gauge group, and that
the form of the functional constructed by Popovic is in
fact correct.

The resulting perturbation theory is, however, not re-
normalizable. This is easily seen from the fact that the
propagator for the 8" field will take the form, in q =I
gauge,

Tr[(V q ')(V q)], (5.4)

which becomes, when q =I,

2h
Tr(D„B"D„B"). (5.5)

When this term is also added, the theory becomes re-
normalizable, as was shown in Ref. 12. However, in this
case the Hamiltonian is no longer bounded from below.
In Ref. 12 an ansatz for a perturbatively stable vacuum
state was found which led to a unitary perturbation
theory. While this is interesting, it does not change the
fact that the Hamiltonian is not bounded from below, so
that nonperturbatively, there is an instability.

Thus, the situation for the metric-connection gauge
theories is exactly the same as the one that holds for the
metric theories of gravity. We have a choice between a
theory which is stable, but nonrenormalizable and a
theory which is renormalizable, but unstable.

Is there then anything further to be done with these
theories? It mould perhaps be easier to dismiss theories
which lead to this dilemma, were it not for the fact that
the dilemma is shared by all known local quantum field
theories which involve gravity. Therefore, if gravity is
described by a local quantum field theory, there must be
some way out of the dilemma. In this regard we may note
that while one horn of the dilemma, that associated with
stability, is apparently a desease of the full nonperturba-
tive theory (in our case is need not show up at all in the
perturbation theory), the other horn, nonrenormalizability,
is known only to be a desease of the perturbation theory.
Thus, it may still be useful to look for nonperturbative
mechanisms to cure the problem of renormalizability.

As a final comment, we may note that there is one pos-
sibility concerning these metric-connection gauge theories
which has not yet been studied sufficiently to permit de-
finite conclusions. This is the case when we set the pa-
rameter I to zero. In this case the theory has genuine
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second-class constraints in any gauge, these being just the

q field equations when m=0. These constraints are pure-
ly quadratic, for example, in the q =I gauge they are of
the form

class constraints, which do not follow from any gauge-
fixing conditions, may affect perturbation theory.
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ber of degrees of freedom of the theory. Thus, the limit
rn —+0 of the theory is not continuous, and it is not true
that the properties of the quantum theory for m strictly
zero will be the same as the theory we have analyzed in
this paper, when we take the limit m ~0. Thus, one may
learn from an analysis of this case how purely second-

The authors wish to thank Andrew Strominger and
Dieter Brill for useful comments during the course of this
investigation. J.L.L. thanks Coordenacao de Aperfercoa-
mento de Pessoal do Ensino Superior (an office of the
Brazilian Ministry of Education) and Yale University for
their financial support. Two of the authors (J.D. and
L.S.) wish to acknowledge the following grants to the
various institutions where this work was carried out:
DOE Grant No. DE-AC 0282ER-40073 to the Institute
for Advanced Study, Princeton, New Jersey, and NSF
Grant No. PHY85-46627 to Yale University, New Haven,
Connecticut.

'The internal sector of this theory was first proposed by K.
Cahill, Phys. Rev. D 18, 2930 (1978); 20, 2636 {1979);J.
Math, Phys. 2I, 2676 {1980);Phys. Rev. D 26, 1916 (1982);
see also J. E. Kim and A. ~, ibid. 2j., 1939 {1980);B. Julia
and F. Luciani, Phys. Lett. 90B, 270 (1980}.

2J. Dell, University of Maryland report, 1979 (unpublished);
Ph.D. dissertation, University of Maryland, 1981; University
of Texas report, 1983 (unpublished).

D. E. Neville, Phys. Rev. D 21, 865 (1980);21, 2075 (1980};21,
2770 (1980); 23, 1244 {1981); E. Sezgin and P. van

Nieuwenhuizen, ibid. 21, 3269 (1980).
~L. Smolin, Nucl. Phys. 8160, 253 (1979}.
5See for example, the article by D. Boulware, A. Strominger,

and E. Tomboulis, in Quantum Theory of Grauity, Essays in
Honor of the 60th birthday of Bryce DeWitt, edited by S.
Christensen {Hilger, Bristol, 1984), and references therein.

6Lee Smolin, Nucl. Phys. $247, 511 (1984).
7P. A. M. Dirac, Lectures on Quantum Mechanics (Yeshiva

University Press, New York, 1964).
SA. Hanson, T. Regge, and C. Teitelboim, Constrained Hamil-

tonian Systems (Academia Nazionale Dei Lincei, Rome,
1976).

D. S. Popovic, Phys. Rev. D 34, 1764 (1986).
P. Senjanovic, Ann. Phys. (N.Y.) 100, 227 (1976). The form of
the path integral for systems with second-class constraints is
also given in E. S. Fradkin and G. A. Vilkovisky, Phys. Lett.
558, 224 (1975).

i~L. D. Faddeev and A. A. Slavnov, Gauge Fields: Introduction
to the Quantum Theory (Benjamin, New York, 1980); C.
Itzykson and J. Zuber, Quantum Field Theory (McGraw-Hill,
New York, 1980).

'2Lee Smolin, Phys. Rev. D 30, 2159 (1984).


