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By applying long-range N =2 supergauge transformations to the Majumdar-Papapetrou configu-
ration, the set of all superpartners to the bosonic multisolitons is exhibited. The resulting configura-
tion is parametrized by two additional complex Grassmann numbers. Apart from mass and electric
(possibly magnetic) charge it carries a supercharge which is algebraically constrained due to the cen-
tral charges in the supersymmetry algebra. The supercharge gives rise to an “intrinsic”’ angular
momentum. Similar to the Kerr metric, the configuration is stationary with the quantum-

mechanical magnetic moment.

I. INTRODUCTION

In ordinary field theory a classical solution of the field
equations may be interpreted as a soliton, if it has the fol-
lowing properties. The configuration (i) is stationary, (ii)
has finite total energy, (iii) is nonsingular, (iv) is classical-
ly and quantum-mechanically stable, and (v) shows a
high, though nonmaximal symmetry (thus interpolating
between different vacua of the theory).

The soliton concept has to be modified in general rela-
tivity because there are no everywhere-regular time-
independent solutions of Einstein’s equations that are
asymptotically flat (except the flat space-time).

There exist however solutions with the properties (i),
(i), (iv), and (v) displaying singularities which are hidden
behind event horizons. Outside of the horizons space-
time is predictable. Classically one may consider the sta-
tionary black-hole solutions as solitons.

On the quantum level one knows, since the work of
Hawking,! that black holes radiate thermally. In pure
gravity the temperature of the radiation is proportional to
the inverse mass of the black hole. It is reasonable to be-
lieve that the back reaction of the radiation extracts ener-
gy and will eventually lead to the evaporation of the hole.
From this quantum instability one concludes that there
are no solitons in pure Einstein gravity.

The situation changes if other fields are coupled to
gravity and conserved charges prevent total evaporation.
Within the Einstein-Maxwell theory a generic stationary
black hole is completely characterized by its mass (M),
angular momentum (a), and electric (e) and magnetic (g)
charges. If the fundamental fields of the theory are un-
charged (like the Maxwell field), then e and ¢ are un-
changed by the Hawking radiation. One expects the hole
to reach a configuration with the smallest possible mass
for given e and g (Refs. 2 and 3):

ATGM?=e*+¢*

(in units where c=1). These extreme Reissner-Nordstrom
black holes (a has to vanish in the extreme case in order
that the singularity is hidden by a horizon) have Hawking
temperature zero and may be considered as gravitational
solitons.*

In a series of papers the question was examined whether
solitonlike configurations exist in supergravity theories.
The symmetry between Bose and Fermi fields in these
theories gives rise to a conserved spinorial charge. How-
ever, this supercharge expressed as a surface integral over
the spin-3 field at spatial infinity may change under su-
pergauge transformations which do not vanish asymptoti-
cally. One line of reasoning is to ask if a stationary
black-hole solution with nongauge long-range fermionic
fields exists. Within N=1 and N=2 supergravity this
question is solved. The result is that, among the class of
Kerr-Newman black holes, only the extreme Reissner-
Nordstrom metric admits a supersymmetric generaliza-
tion>~® This result generalizes to the Majumdar-
Papapetrou metric of several extreme black holes.!®!!
The most general exact single black-hole configuration
carrying a nongauge supercharge was found.'> Whether
this classical field configuration may be considered as a
soliton, i.e., whether it is in some sense quantum stable, is
not clear.

The other line of investigations is concerned with the
role of the purely bosonic solitons in the context of super-
gravity (for a review see Ref. 13). The extreme Reissner-
Nordstrom black holes, as well as the Majumdar-
Papapetrou multi-black-holes, are classical solutions of
the N=2 supergravity field equations. Within the
Einstein-Maxwell theory, they should acquire position pa-
rameters as ‘“‘collective coordinates” associated with the
translational coordinate freedom at spatial infinity. In the
limit of slow motion, a collection of moving extreme
black holes would then be described by the time depen-
dence of their collective coordinates.!* This philosophy,
well known for flat space, has led to considerable success
in the quantization of solitons.'>!® In gravity the intro-
duction of collective coordinates is subtle. Hajicek!” gen-
eralizing the work of Regge and Teitelboim'® has shown
how to set up the dynamics of Einstein-Maxwell solitons.

In supergravity the question arises whether the addi-
tional local gauge symmetry leads to “supertranslated”
partners (shortly called superpartners), thus introducing
new fermionic variables (essentially the gauge parameters)
as collective coordinates.

Gibbons'*!° has considered this problem within N=1
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and N=2 supergravity. By analyzing the infinitesimal
supergauge translations, he concludes that only the ex-
treme Reissner-Nordstrom or, more general, the
Majumdar-Papapetrou  configurations admit super-
partners.

In this paper we construct the exact superpartners to
the Majumdar-Papapetrou configurations. We obtain the
finite supertranslation by iterating the gauge transforma-
tions performed on the initial background to all orders.
Thereby the generated supercharges are constrained due to
the extreme central charges of the background.

The resulting configuration is characterized by two
complex Grassmann numbers. We discuss the solution by
analyzing its asymptotic structure. While mass and elec-
tric charge remain unchanged, the configuration carries a
supercharge which in turn gives rise to an “internal” an-
gular momentum. Similar to the Kerr metric the configu-
ration is stationary with the correct quantum-mechanical
magnetic moment.

II. CONSTRUCTION OF THE EXACT
SUPERPARTNER

The fundamental fields of ungauged N=2 supergravi-
ty?° are the gravitational vierbien field e?=e”,dx", the
electromagnetic potential one-form A =4,dx* and two
Majorana spinor-valued one-forms 1/, combined to a com-
plex (Dirac) field ¥=y'+iy*=1y,dx* (Rarita-Schwinger
field). All fields are Grassmann valued, the bosonic fields
(e,A) being even elements while ¥ is odd (anticommut-
ing).

The theory is invariant under local supergauge transfor-
mations generated by a complex spinor field e=€'+i€
(¢/ Majorana). The infinitesimal form reads

Seaz—%—(gy‘ﬁp—%ﬂe) s (2.1a)
54 =%(€¢—Je) : (2.1b)
sz%ﬁe . (2.1¢)

[The explicit form of the field equations, notations and
conventions may be found in Ref. 21, especially k2=4rG,
signature (+ — — —),

5:D——-§ﬁabg'ab’}/, D=d+‘2LwabUab, '}’z'}/aea‘

We use the Weyl representation of the y matrices which
may be found in Ref. 22.]

The global conserved quantity associated with this sym-
metry is the (spinorial) supercharge?>2*

f:-f gﬁszm ys¥ AW 2.2)

which also acts as generator for the (asymptotic) global
supersymmetry (SUSY) transformations (in the SUSY
literature usually denoted by Q). Throughout the paper
we consider only asymptotically flat configurations, and ¢
has to fall off like O (r ~2) in order to render .#* finite.
The supercharge (2.2) is invariant under gauge transfor-
mations for which the gauge spinor € tends to zero at spa-

tial infinity. On the other hand, consider supergauge
transformations for which € is bounded away from zero at
infinity. Then, the falloff conditions imposed on ¥ re-
quire that

lim e—e, , (2.3

r— o

where €, is a constant (and also time-independent) four-
spinor. This transformation induces a change in %
which may be written as

sz—;lz— ¢5§ ysy ADe

P

= |—iy"PAPM 4 PR AL 2.4)
where
PAPM 4]1(—2 ¢sz % N\ xegy, (2.5)

is the usual Arnowitt-Deser-Misner (ADM) four-mo-
mentum of the configuration, while e and g are the total
electric and magnetic charge, respectively:

e=¢si *F,

q= SZF'

(2.6a)
(2.6b)

Equation (2.4) expresses the global N=2 supersymmetry
algebra with central charges e,q.

In what follows we concentrate on configurations
which are related by gauge transformations of the form
(2.3), i.e., we wish to identify all configurations which can
be obtained by ‘“short-range” gauge transformations
(e—0) from one another, thereby dividing the solutions
into equivalence classes. Usually this is made explicit by
imposing a gauge condition. Here we merely assume that
this is in principle possible and return to this point later.

If the original configuration is extreme, i.e., if

KM?=kPAPMPE L =el+q?, 2.7

the matrix on the right-hand side (RHS) of Eq. (2.4) is
singular. As a consequence there are €, to the eigenvalue
zero leaving . invariant. Also from (2.4) follows that
the variations of . induced by gauge transformations are
constrained by

yePaPM 4 %(e —vsq) |87 =0. 2.8)

For =0 the N=2 supergravity field equations reduce
to the source-free Einstein-Maxwell system. Thus, any
classical solution of the Einstein-Maxwell equations is au-
tomatically also a solution of the N=2 theory. The local
gauge freedom (2.1) may now be used to generate configu-
rations with nonzero Rarita-Schwinger fields from such a
purely bosonic “background.”

The gauge transformations (2.1) leave the field equa-
tions invariant only at the linearized level (i.e., to first or-
der in €). Finite transformations are obtained by iteration
(or, if one prefers, exponentiation) of (2.1). Formally set-
ting ®=(e% A4,v), one may write
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D edD=P+ 5D+ 51;88<1>+ e (2.9)

thereby the law (2.1) is simply repeated. As an example,
we compute

88e%= — i;‘—(@y“&p— 8y%)

-— é[?y"ﬁe—-(ﬁ ey%] . (2.10)

After the calculation, all fields (in this example they are
contained in D) are set equal to their original (back-
ground) values. These transformations leave the full non-
linear field equations invariant.

Since we shall be interested in the soliton structure of
the theory, the backgrounds under consideration will be
time independent. The identification made among config-
urations lying in the same equivalence class still permits
gauge transformations of the type (2.3) acting between dif-
ferent classes. All equivalence classes obtained from the
background by time-independent gauge transformations
are called superpartners, leading to a degeneracy of the
soliton sector. On the linearized level, i.e., to first order in
€, the supercharge . of the superpartners to a given
background configuration is given by Eq. (2.4) with 8.
replaced by .% (since ¥ =k ~'De).

We now specify the background to the Majumdar-
Papapetrou solutions?>2¢ given by

'=vV7ldt, e'=Vdx', i=1,23, (2.11)

A=—(kV) ldt, (2.12)
where
3 aZ
AV =0, A= 2 . (2.13)
i=10x?
For
n GM;
V=14 3 , Xy7#xg for J#£K (2.14)

i 1 x=x;

this configuration describes n static extreme charged
black holes with mass parameters M, and electric charges
e;=kM;. Without loss of generality we restrict ourselves
to the case of positive electric and zero magnetic charges.
The sign of all electric charges may be reversed by chang-
ing the sign of A, while magnetic charge can be generated
by a duality transformation.

Moreover
PAPM—(M,0,0,0), M = 2 My, (2.15)
J=1
and
e= i ey . (2.16)
J=1

The domain of outer communication for the metric
(2.11) and (2.14) is

RX(R3—{xp,...,%X,}) 2.17

on which the source-free Einstein-Maxwell equations are

satisfied. The points x;=0 are coordinate singularities,
the location of the inner boundary of the extreme holes.?’

To exhibit the parametrization of all superpartners we
consider first linear gauge transformations

1 A
=—De,
4 k
where € goes to a constant spinor €, at infinity. Accord-

ing to (2.4), the associated supercharge is

(2.18)

S =iM(1—yye, . (2.19)
Splitting the gauge parameter € into
e=+(1—yole+3(1+yode=e_+e, , (2.20)

we see that the €, generates no supercharge.

It is well known®»?® that the Majumdar-Papapetrou
metrics allow for supercovariantly constant spinor fields
X, satisfying

DX=0, (2.21)
where

Xee=3V " 1+70e, . (2.22)
Comparing (2.20) with (2.22) one notices that

lim (e, —X)=0. (2.23)

r— oo

But since X, does not generate any ¥ field, €, contains
only short-range gauge freedom. All superpartners are
generated by € _ whose asymptotic form satisfies

(1+4+v9le,=0, (2.24)
and the associated supercharge is then given by
S =2iMe,, . (2.25)

In the following we restrict ourselves to gauge spinors
satisfying (2.24). In the Weyl representation of the ¥ ma-
trices®? this means that € has the form

) (2.26)

where ¢ is a complex two-spinor. Two gauge spinor fields
which approach the same €, give rise to short-range
equivalent ¢ fields. Thus the set of gauge equivalence
classes is parametrized by €, and hence by c.

A suitable way to construct one representative of each
equivalence class explicitly is to impose the gauge condi-
tion

Y“lﬁp =0

at the linearized level. This implies that € satisfies the su-
percovariant Dirac equation

(2.27)

y*D,e=0. (2.28)

As pointed out by Gibbons,'? these conditions plus the re-
quirement of € being regular at the horizon and time in-
dependent project out all the short-range gauge transfor-
mations. Thus any time-independent regular solution of
(2.28) is uniquely determined by its asymptotic value €.
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The solutions are spanned by

€= V_!/2 —c = —I.YSXSC (2.29)

and

4
Xo=V~1" u : (2.30)

Clearly, only the first class gives rise to superpartners.

At this point we wish to stress that for the construction
of one representative of each equivalence class it is suffi-
cient to choose any regular spinor field € with the corre-
sponding asymptotic values (2.26). On the classical level,
imposing the gauge condition (2.27) is just for conveni-
ence.

Applying the same reasoning to the Schwarzschild
black hole in N=1 supergravity, Gibbons has argued that,
because there are no regular time-independent solutions to
the Dirac equation, no superpartners exist. This means
that regular static gauge configurations ¥ =k ~!De, which
carry supercharge, are projected out by the gauge condi-
tion. However, unless a gauge condition of the type (2.27)
is dictated by the quantum theory, classically these con-
figurations are acceptable.

Now we turn to the construction of finite gauge
transformations with the gauge parameter (2.29). Because
¢ contains only two complex (four real) anticommuting
Grassmann numbers, the series (2.9) stops after the fourth
order.

Iterating the variations 8, one may make use of Eq.
(2.21). The computation is tedious but straightforward
(part of the calculations have been checked using the alge-
braic computer program REDUCE). At second order one
introduces the quantity

%i:cfa,»c (2.31)

satisfying the identities

J

3009
€€ ;=—8;(c"e)cTe), (2.32)
Cic= —(c*c)a,-c s (2.33)

which follow from the Grassmann nature of c¢. Using
these relations in the third- and fourth-order calculations,
one arrives at the final form of the solution. The exact
superpartners of the Majumdar-Papapetrou configura-
tions (satisfying the full nonlinear field equations) are
given by the fields

O=[V - g VTV V ilc el Te)lar

+ V_ZV,kfkﬁ(gjdxi ’ (2343)
ei:V-4V'k6kingjdt
+ i+ 5V Wiile'e)c'e x/ 2.34b)
[V, +LVSWylcle)cTe)ldx! (2.3
A=ty et
+ % V= e € pdx’ (2.34c)
Y= [V krit SV VP el |dr e
1 ‘ -
+o V‘lV,kyky,-—éV““W,-kyk(cTc) dx'e ,
(2.34d)
where
Wy=3VV ;—8V .V ;+28,V iV i (2.35)

and V is still given by (2.14). The above given configura-
tions (e% A,v), parametrized by the two complex parame-
ters ¢, are exact solutions to the N=2 supergravity field
equations and constitute the superpartners to the
Majumdar-Papapetrou spacetimes.

For a discussion of the solution in the next section we
also display the metric following from the vierbien (2.34a)
and (2.34b):

g =TNgpe’®el=[V"24+3 V=Y, V,k(c*c)(cTc)]dtz+4V”3V,kek}-,-%"jdx"dt — V28ijdxidxj

~VTHVY =V V438,V iV e o) Terdx 'dx

and the determinant of e, is given by

det(e?,) =V —g =V - Zy—*y, ¥ (eice) . 237

We close this section by noting that the gauge condition
(2.27) does not carry over to the nonlinear level:
y#%:iz—; V=SV AV aletole .

III. DISCUSSION OF THE SOLUTION

(2.38)

Let us first note that the superpartner configurations
are regular at the horizons (which are located at x;) when
transformed to a regular tetrad. Since the higher-order

(2.36)

I

terms behave softer at x; than the “body” and the first-
order part of ¥, this is just a consequence of the regularity
of the linearized field De.

The behavior at spatial infinity is governed by the
lowest-order parts, the geometry being asymptotically flat.

Since the superpartner solutions may be used as candi-
dates for solitons in N=2 supergravity, they have to be
treated, in some approximation, as point particles
described by a set of physical quantities. These quantities
should clearly be extracted from the asymptotic behavior
of the solution presented. Moreover, their transformation
properties under asymptotic Lorentz transformations have
to be known in order to describe moving solitons. For
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these reasons we study now the asymptotic (or “global”)
characterization of the superpartners.

A. ADM momentum

The ADM four-momentum PAPM as given by Eq. (2.5)
has still the form (2.15), the rest mass M being un-
changed. This is because the Grassmann valued (or
“soul”) part of g;; goes like r~3 at infinity. The same re-
sult is obtained when the Komar mass? is calculated

from go,. Here the soul part goes like » ~*.

B. Electric charge

The total charge is still given by the body of the electric
field. The soul part behaves like » —>, and thus does not
contribute to the integral (2.6a). As a consequence the
condition e =kM is maintained. For a single black hole
(n=1), the potential is spherically symmetric and there
are no higher multipole moments.

C. Supercharge

Only the linearized part of ¥ contributes to the integral
(2.2), & being given by (2.25). As noted in the foregoing
section, it is not arbitrary but obeys the constraint (2.24)
which in a Lorentz-invariant form reads

(Y PAPM M7 =0 (3.1)
 is conserved and behaves as a spinor under asymptotic
Lorentz transformations.

D. Angular momentum

Inspection of (2.36) shows that the metric g is nonstatic
but only stationary due to nondiagonal terms g;.
Asymptotically

k
g0i~ZGMx_3€ijkng (3.2)
r
from which one reads off the angular momentum
Si=M(cloc) . (3.3)

Clearly, this coincides with the value of the ADM angular
momentum.” Because this angular momentum is gen-
erated by a static spinor field it is more appropriate to
speak about the intrinsic angular momentum or spin of
the configuration. This interpretation is strengthened by
the correct relation between spin and magnetic moment
(see below).

The Lorentz-covariant formulation of (3.3) is easily
found by noting

?wa,-jew=ie,-jk(gk . (3.4)
The spin tensor is given by
oy g i
Sab=_lMEmUab6m=_m'?aab‘Y (3.5)

expressed in terms of the supercharge. It is related to (3.3)
by
(3.6)

Sij=€xSk,  Soi=0.
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The last equation reads covariantly
PAPMgab_q (3.7)

and follows from (2.15) and (3.5). Any spin tensor which
satisfies (3.7) is equivalent to a spin-four-vector

Sf=— ﬁeﬂbfdsbcp,;“’“ , (3.8)
PAPMga_q | (3.9)
and one finds
i ,ADM b
Sa= m‘Pb (?‘}’50’“ -Y)
=—af Trr' ), (3.10)

the last identity coming from (3.1). In the rest frame the
spatial components S; are just (3.3) and Sy=0. The in-
verse formula to recover S, is

Sgp=— iea,,c,,PgDMs" . (3.11)

M

E. Magnetic moment

Since the vector potential behaves like
k

x
4rr’’
the supergauge transformation has generated a magnetic
field with magnetic dipole moment

Al~€pe€; (3.12)

,u,,'=e(cta,-c) . (3.13)
Comparing this with (3.3), one finds
pi= ﬁs,. =kS; . (3.14)

Note that this gives not the classical but rather the
quantum-mechanical gyromagnetic ratio, just as for the
Kerr metric.

Because of relation (3.14) the Lorentz-invariant nota-
tion of u; runs along the same line as for S;: y; is incor-
porated in an antisymmetric tensor p,, just as the mag-
netic field vector in F,,. Then we set pg, =kS,;, and the
relation py; =0 denotes the absence of an electric dipole
moment.*?

F. Magnetic charge

It is zero in the solution presented but may be generated
by means of a finite duality rotation (which leaves the
field equations invariant:*!

e’—e?,
F—>Fcosf+ *ﬁ—%ﬁ/\wp sing , (3.15)
Y—exp(—50ys)Y .
Electric and magnetic charge thereby transform as
e +ig—e'®e +ig) , (3.16)
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the supercharge changes according to

S —exp(30y5).S . (3.17)

Note that by setting 8 =1, one may change the sign of the
charges e;.

Concluding the analysis of the asymptotic behavior, we
summarize that, seen from infinity, our (positively
charged) superpartner solution (for n=1) looks like a
point particle (in flat space) with rest mass M (equal to its
electric charge), four-momentum p, =PfD M and a spi-
norial quantity . which obeys the constraint (3.1). The
spin tensor as well as the magnetic dipole moment are de-
rived from these quantities. As the basic “equations of
motion” of such a particle (soliton) one would take

d
—_— —_— 3-1
25 Pe 0, (3.18)
d
= ¥=0. 3.1
dsf 0 (3.19)

Far from having touched upon the interaction of such ob-
jects, we have exhibited the kinematics, i.e., the physical
quantities by which solitons might be described. Since we

have constructed time-independent multisoliton solutions,
one expects that—in any reasonable theory of soliton
dynamics—an equilibrium between a certain set of soli-
tons is possible. In the limit | x; —xg | >>GM; we may
attach an almost asymptotically flat region around each
hole and identify the individual supercharges (cf. Ref. 32):

C

S y=2iM, , J=1,...,n. (3.20)

—C

Thus, solitons equipped with supercharges as in (3.20) and
which are at rest initially should remain in equilibrium.
All questions concerning the interaction in other cases re-
quire to include the dynamics of N=2 supergravity.
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