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The inverse scattering method of Belinsky and Zakharov is used to investigate axially symmetric
stationary vacuum soliton solutions in the five-dimensional representation of the Brans-Dicke-
Jordan theory of gravitation, where the scalar field of the theory is an element of a five-dimensional
metric. The resulting equations for the spacetime metric are similar to those of solitons in general
relativity, while the scalar field generated is the product of a simple function of the coordinates and
an already known scalar field solution. A family of solutions is considered that reduce, in the ab-

sence of rotation, to the five-dimensional form of a well-known Weyl-Levi Civita axially symmetric
static vacuum solution, With a suitable choice of parameters, this static limit becomes equivalent to
the spherically symmetric solution of the Brans-Dicke theory. An exact metric, in which the Kerr-
scalar McIntosh solution is a special case, is given explicitly.

I. INTRODUCTION

The Brans-Dicke-Jordan (BDJ) scalar-tensor theory was
first investigated, in connection with Dirac's large number
hypothesis, by Jordan, ' and, in connection with Mach's
principle, By Brans and Dicke. ' The theory was origi-
nally expressed in a representation in which the local
measurable value of the gravitational "constant" G is a
function of a scalar field. ' lt can also be put in a form
which is Einstein's general relativity with the scalar field
of the theory acting as an additional external nongravita-
tional field. Another way of representing the BDJ theory
is with a five-dimensional field equation, ' ' where the
metric is independent of the fifth coordinate, and the ele-
ments g„4, where p=(0, 1,2, 3) is a spacetime index, van-
ish. In a vacuum, this is just a special case of the Klein-
Jordan-Thiry theory, where the g&4 components are iden-
tified with an "electromagnetic" vector potential A„. The
Klein-Jordan-Thiry theory is in turn a generalization of
the original Kaluza-Klein unified theory of gravity and
electromagnetism, in which g44

——const.
In order to study the physical implications of a theory,

we must find solutions to its field equations. Fortunately,
it has been possible to find exact solutions of relativistic
gravitational theories, such as general relativity and the
BDJ theory, when physically reasonable symmetries have
been assumed. For instance, many astrophysical systems
of interest are approximately stationary and axially sym-
metric, and can be very well described with metrices hav-
ing these symmetries. It was recognized by McIntosh
that any stationary axially symmetric vacuum metric in
general relativity could be used to generate another solu-
tion in the BDJ theory. Therefore the mell-known Kerr
solution, and any other vacuum solution with the same
space-time symmetries, can be extended to the BDJ
theory. Of particular interest are those solutions that
reduce in the static limit to a class of Weyl-Levi Civita
metrics, which have been studied by Zipoy and

Voorhees, and interpreted as the exterior gravitational
fields of oblate and prolate configurations. In general re-
lativity, with the exception of the Schwarzschild case,
these solutions are not spherically symmetric; however,
the situation is different for their BDJ counterparts, since
in these cases it is possible to adjust the parameters to
achieve that space symmetry. Hence the generation of
new solutions which in the static limit take this
Weyl —Levi Civita form could be relevant to the study of
exterior gravitational fields of stationary perfect fiuids in
the BDJ theory.

In this paper the inverse scattering method of Belinsky
and Zakharov' " (BZ) is used to construct axially sym-
metric stationary vacuum solutions to the BDJ field equa-
tions. In particular I shall consider solutions that reduce
in the absence of rotation to the Zipoy-Voorhees
%eyl —Levi Civita metric with a scalar field present.
With an appropriate choice of parameters this static limit
becomes equivalent to the well-known BDJ spherically
symmetric solution. The analysis is carried out in a five-
dimensional representation of the BDJ theory, where the
application of the BZ technique is generalized in a
straightforward way. Furthermore, this representation
provides a basis for possible future applications of the BZ
formalism to the problem of finding classing solutions of
Kaluza-Klein-type field theories of more than four di-
mensions. %e point out, however, that the BZ formalism
could be applied directly to a particular four-dimensional
representation for the BDJ theory (the Einstein-scalar
theory), since for an axially symmetric stationary metric
in a vacuum the scalar field decouples from the second-
order field equations for the spacetime metric, and there-
fore these equations are identical to those of general rela-
tivity.

In fact, Belinsky' studied exact solutions of the
Einstein-scalar theory that describe the evolution of gravi-
tational soliton waves against the background of Fried-
man cosmological models. A very interesting feature of
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this work is that the energy-momentum tensor of the sca-
lar field is now representing the matter field of a perfect
fluid with an equation of state pressure=energy density.

In Sec. II we will describe the Belinsky and Zakharov
method in its essentials, without restricting the number of
dimensions to four. In Sec. III the BDJ field equations in
its five-dimensional representation (BDJs) are presented.
Next, we applied the BZ technique to the BDJ5 theory,
while in Sec. V the diagonal form of the solution is con-
sidered. The BZ technique relies on the knowledge of a
seed solution g from which a more general one g~h is
generated; hence, in Sec. VI we consider conditions for the
BZ solution, g~h, to become equal to g . Sections VII and
VIII deal with specific applications of the formulas
developed in previous sections to the two cases where the
background g represents a flat spacetime and a
%eyl —Levi Civita metric.

II. THE INVERSE SCATTERING METHOD
OF BELINSKY AND ZAKHAROV

This method allows the generation of large classes of
new solutions from old, when the metric tensor depends
only on two variables. Belinsky and Zakharov' '"
developed and employed the method to obtain exterior
solutions in general relativity. In particular, they have ob-
tained the Kerr solution" starting from a flat spacetime
metric background. The technique can also be used in rel-
ativistic theories of more than four dimensions. This was
done by Belinsky and Ruffini' in the framework of the
five-dimensional Jordan- Thiry-Kaluza-Klein theory, to
generate stationary axially symmetric solutions starting
from a constant metric.

In what follows we will briefly describe the Belinsky
and Zakharov technique. Their notation" will be fol-
lowed in its essentials. For the sake of generality, we will
not yet restrict the number of dimensions considered,
since the generalization only introduces trivial modifica-
tions to the BZ formulas. Hence, let us consider a
(m+2)-dimensional metric that depends only on two
coordinates: p and z. The line element can be written in
the Lewis form

where we used the conventional notation ( ) x ——(8/
BX)( ).

Equation (2.4) is the compatibility condition for the fol-
lowing system of linear equations:

a u' a PV-XU
Bz A,2+P2 M A,2+P2

(2.7)

8 2AP 8 pU+A V

aP ~2+P2 BA A,2+P2
(2.8)

where k is a complex variable. Moreover, when A, =O,
Eqs. (2.7) and (2.8) are just

PP.A' '=V

pfpf '=U,
(2.9)

(2.10)

which yield, after a suitable choice of the arbitrary con-
stant matrix factor in g(A, =O),

g(A, =O) =g . (2.11)

The solitonic solution g is given as a function of a par-
ticular solution go, corresponding to a given background
metric g, in the following way:

J~k o4=4o+ g ~

where

ice gc.Mb
k 0 I

(~k).b =
I = I Pl

M."=C~[fo '«)t~ '

C~ are arbitrary constants.
go'(k) is the inverse of go evaluated at

A. =pk —=Wk —z+[(Wa —z} +p j'

(2.12)

(2.13)

(2.14)

(2.15)

IVk are arbitrary constants and I 'ik are the elements of
the inverse of the following matrix:

M,"g,bMb
~Ik=— (2.16)

PkPI +P
dS =gzsdX"dX

=f (p,z)(dp +dz )+g~(p, z)dX'dXb,

a, b =1—m . (2.1)

Furthermore, the source-free Einstein equations in m +2
dimensions,

The metric g is then given by

" ~kg'
g =P(A, =O) =g —g

k=l

It also follows, froin Eqs. (2.5) and (2.6), that

(2.17)

Ggg ——Rgg —TgggR =0, (2.2) f =C„fop" g (p )' g (p '+p ) 'd tl,
k=1 k=1

(2.18)

admit the following coordinate condition:

detg—:deig, b
———p (2.3)

With the metric (2.1) and the condition (2.3) the field
equation (2.2) takes the form

where fo is the solution corresponding to g, and C„ is a
constant. Even though g satisfies Eq. (24), it is not a
solution of the field equations (2.2), since now detg is not
equal to detg = —p, but instead equal to

(pg ~ ') ~+(pg ~ '), = U ~+ V,=O,

(lnf) z ———1/p+(1/4p)Tr( U —Vz),

(lnf), =(1/2p)TrUV,

(2.4)

(2.5)

(2.6)

detg=( —1)" ff (p/pk) detg
k=l

g(p/p ) ( —p ),
k=1
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where n is taken to be an even number in order to
preserve the signature of g. However, the new metric

'2/m
n

g h= ff g—=gg (2.20)
k=~ P

is still a solution of Eq. (2.4) and, furthermore, satisfies
the condition

detgph ———p
2 (2.21)

1/mQ —2/mf (2.22)

The function f is also modified by the transformation
(2.20}. The new function, f„h, is

n n

Q '=const&&p '""'"ff(pk)" ' g(pk'+p')fI(pk —
) i)

k=1 k=1 k)1
(2.23)

The power I/m is the only explicit reference to the
dimensionality of the geometry. The Belinsky and Za-
kharov formulas of Ref. 11 are recovered simply by set-
ting I =2. where

Sm.T"„

[3(2'+3)] '/' (3.10)

III. THE BDJ THEORY IN FIVE DIMENSIONS

Let us introduce the following five-dimensional metric:
Thus we have, using Eqs. (3.2} and (3.3),

(3.1 1)

g„„=g„,(X"), Ju, v= 0, 1,2,3,
f~a= g~=—0'(X"»

g4v g v4

(3.1)

TPV

Gp ——Sm (3.12)

(3.13)

where g„„and (|) are a four-dimensional metric tensor and
a scalar field, respectively. Note that gzs is "static" with
respect to the additional fifth dimension X . It is
straightforward to show that

lG„„=G„, =(P,„„g„—„P'. ), —

Finally, defining

|M,V

PV

and

(3.14)

4 1 p64 ———,R ~p, (3.3) (3.15)

gP, V

gPV—
- 1/2

2'+ 3

3

(3.5)

(3.6)

the BDJ field equations in the Einstein-scalar representa-
tion

CO+ 2G„„=Sn Tp„+ (P pP 2g„„g (() ), —(3.7)

6~4 —64~ —0,
where Gqs and G„, are the Einstein tensors for the gzs
and g& metric, respectively. The covariant derivatives
are built with g&, .

Furthermore, with the conformal transformation

we obtain the concise form

(3.16)

The field equations (3.16) are the five-dimensional repre-
sentation of the BDJ theory that is equivalent to
Einstein s equations for a five-dimensional metric which
is "static" with respect to the additional non-space-time
dimension (BDJs theory).

For a specific application of the five-dimensional BDJ
theory in vacuum, where the effect of a scalar field on the
cosmological singularity is studied, see Belinsky and
Khalatnikov.

IV. APPLICATION OF THE BZ METHOD
TO THE BDJg THEORY

can be put in the form

(3.8)

%e can apply the Bz technique, described in Sec. II, to
a five-dimensional vacuum metric gz& when this is a
function of only two variables. Thus let us assume that
the metric gzz, Eq. (3.1), has the form (2.1):

Sm Tp +=(4;„—g„A'; » (3.9)
ds =g„sdX"dX =f(dp +dz )+g,bdX'dX

a, b =1,2, 3, (4.1)
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where we made the identification

g44 1f Q =3,
g4iz =0 if 0+3 .

(4.2)

k k
Mb =C.—WO.b (4.14)

Therefore, we will assume that M, satisfies Eqs. (4.6) and
(4.7).

%e now explore further consequences of this assump-
tion. %'e know that

Then it follows that the metrices (2.20) and (2.22), with
Pl =3, Then the conditions (4.6) and (4.7) can be implemented if

we choose
Pk

(g ), =g
k=1 P

gab(P, Z)

and

1(o,3=0, c~3 (4.15)

~dgd. ~eg.b
gab ~ kl

k, l =1 PkPl
(4.3} (4.16)

(4.17}

f,h
=P'"a-"3f, (4.4)

are a solution of the BDJ5 theory in a vacuum, Gqs ——0, if
the background metric g,b is also a solution, and, further-
more,

Note that the assumption in Eq. (4.15) is consistent with

Eqs. (2.7) and (2.8), if the matrix g satisfies Eq. (4.13).
Hence, we will assume the validity of Eqs. (4.15)—(4.17).

The metric (4.3) takes the form

k o l o~dg~a~.ge3
g3a g3a g 1 kl =0, a&3 .

k, l =1 PkPl

We now consider a sufficient condition for Eq. (4.5) to
be valid. We see that if

T

g11 g 12
g D

gph=+ g2i g2Z 0 =
() ( )gp1 33

(4.18)

M3 ——0, k&q,
Ma"=0, k ~q, a&3,

then the matrix
k 0 I~cgeb~b

~kl
PkPl+P

takes the block form

(4.6)

(4.7)

With the metric in the form (4.18), the field equations
(2.4) become

(pg ~g '),~+ (pg,g '),,=0,
IP[»(g,h)33],~j,p+ [P[»(gph)33], z j,z =o .

(4.19)

(4.20)

Equation (4.20) is equivalent to Laplace's equation with
cylindrical symmetry. Equation (4.19) has the same form
as the second-order equation for a metric of the type of
Eq. (2.1) in general relativity. However, we see, from Eqs.
(2.21) and (4.18), that

where

Q
(4.8)

detg = P
(gih)i3

' (4.21)

I 12 ~lq
while a corresponding 2&(2 metric in general relativity
satisfies

~21
I 1=— (4.9} detgg„= —p (4.22)

I q1

~q+1q+1 I q+1.

Therefore, a solution gg, in general relativity is not a solu-
tion in the BDJq theory. Nevertheless, we can use gz, to
build a solution g, in the following way:

(4.10) ggr
1/2

(gph }33
(4.23)

which implies that

I 2

ga3=ga3 =O~0

I klMdgd M3 ——0, a&3k o l

or, equivalently,

(4.1 1)

(4.12)

(4.13)

Then we see that indeed g, as given by the expression
(4.23), is a solution of Eq. (4.19), if gg, is also, since

(Pg,pg ),p+(Pg, zg ),z =(Pggr pggr ),p+(Pggr, zggr ),z

2~ IP[»(g,h)33],

IP[»(g' h)33],.I,.=o
(4.24)

where we used Eq. (4.20). Furthermore, Eq. (4.23) implies
that
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detg„~
detg =

(gph)33 (gph)33
' (4.25)

On the other hand, we know the following general result
for a nonsingular matrix Nkl.

and therefore

detg h (g h)33detg P (4.26)

det(1+Nk() =detNk(+ (detNk()g N
k, l

from which we obtain

(4.36)

(gph)33

where ln(gph)33 is a solution of Laplace's equation (4.20).
The equivalent result in the four-dimensional representa-
tion has been given by McIntosh. It is also possible to
generalize this conclusion to the case when electromagnet-
ic field sources are present. '

Let us return to Eq. (4.3) and make use of the implica-
tions of conditions (4.15)—(4.17). We obtain

as required by Eq. (2.3).
Summarizing, we have the following result. Given a

solution gs, of the general relativity axially symmetric
and stationary vacuum field equations, we get a corre-
sponding solution in the BDJ~ theory

—I /2 0
(4.27)gph =

0

1 —g
k, l &q

det(1 —Ak()

det( —Ak()

1)n —q

det P

PkP1+P

n 2

1)n —q II P
n &qPk

PkPl
det

2PkPl+P

(4.37)

k 0 1 0
0 M, g„Mdgdl,

(gph)ab gab ri kl
k, l =1 PkPl

k 0 1 0~3g 3.M3g 3b
r2 kl

k, l gq PkPl

Thus we have

~k 0~1 0
c gca dgdb

(gph )ab = gab r 1 kl
k, 1=1 PkP1

a,b&3,
T

M3(g33) M3
(g h)33 II g33 y r2 kl

k, l yq PkP1

(g h)3 (g h) 3

(4.28)

(4.29)

(4.30)

(4.31)

Therefore, substituting Eq. (4.37) into Eq. (4.34), we get

n 2

(g„)„=II(—1)"-q II, g'„
k&qPk

' 2/3
n pk, n 2

=II
k~q P, k&qPk

(4.38)

V. THE DIAGONAL FORM OF THE SOLUTION

where n and q have been chosen as even numbers, in order
to preserve the signature of the metric. Thus, we see that
the expression for the scalar field (gph)33 involves in a
very simple way the background g33 the poles pk, and is
independent of the matrix i))0.

The component (gph)33 can be reexpressed in a simpler
form. In order to do this, we note that

k 0 l
M3g 33M3

~2kl (4.32)
Pkpl+P

In order to study the nonrotational limit of the solu-
tions, we will consider in this section the case where

g12 ——g12 ——0. %e can diagonalize the metric g,b using the
same procedure that led to the block form (4.18). That is,
let us assume that g and go are diagonal and, further-
more,

n
kl 0(...» =II 1- X

k, »q PkPl

where

k, l &q

which implies that

kl
—1

1
~2 kl k 0 1 ~ ~kl= 2M 3g 33M 3 PkP 1 +P

Consequently, Eq. (4.30) becomes

(4.33)

(4.34)

C", =0 if k )s,
C2 ——0 if k (s or k )q,

(5.1)

(5.2)

where s (q, is a positive integer. Then it follows that

M i
——C, Qp, i ——C i goi i ——0 if k )s,k k —1 k

M2=Czg022 ' ——0, if k (s or k )q,
and therefore

(5.3)

(5.4)

(5.5)

PkPl

PkP1+P
(4.35)

0 if k orh&s,
11 kl r„, fk-d I (5.6)
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0 if (k or /) «s or (k or l)&q,
(I 22)k(=

I")k( if s «(k and I) «q .

Hence, I takes the block form

(5. /)

Mk~l 0
2 2g 22

detI 22
——det

PkPl+P

II(M ) g det
k&s

(5.15)

Iii 0 0

I = 0 I22 0 (5.8)
detI 33

——det
M "M3g

PkPl+p
0 0 I 33

where we set

We find, from Eq. (4.29), that g~h simplifies to

(g h) &=0 «b
M"M (g)) )

(gph ) ll II g )1 g ~11 kl
k, l = & PkPl

s p2=II H
k=~ Pk

M2M2(g~2)'(...)..=II '.- X ~ -'
k, l &s PkPl

(5.9)

(5.10)

(5.11)

n

II (M", )'g „det
k&q PkPl+p

1
det 1+Ak8l g(i+A„B,)

k, l

we can see that, for m poles Pk,

P II(Pk P()—
1 k~1

det
II(PkPI+P )PkPl+P
k, l

Therefore

Using the following result, shown in Appendix A,

II(~„—~, )(a, —a„)
k&l

(5.16)

(5.17)

(5.18)

2

=II II p o

k&sPk

and also, from Eq. (4.38),

(5.12)
detl )) —— g (M) ) g))

k=1

P'" "II(Pk P()—
k~1

II(PkP(+P )
k, l

(5.19)

(g ) =II II P

k&qPk

where the expressions at the extreme right in Eqs. (5.11)
and (5.12) follow in the same way we obtained Eq. (4.38)
in Sec. IV and we have chosen s an even number to
preserve the signature of g,b.

To get an explicit expression for the metric component

f&s, corresponding to the above diagonal metric, we will
calculate the determinant of I ki. We find

detl'qz —— II (M2 ) gzz
k&s

qP"-'"'-'-" II (Pk PI)-
kgl &s

2II (PkP(+P )
k, l &s

detl 33=
k&q

(5.20)

detI"
~ &

——det

detI" =detI ~~detI 22detI 33,

MkM/go

PkPl+p

(5.13) p(n l71(ng 1) II (PP)
k+l &q

II (PkP(+P )

k, l &q

(5.21)

II(M", ) g„det
k=1

2PkPl+P
(5.14) Substitution of Eqs. (5.19)—(5.21) in Eq. (5.13), and this in

Eq. (4.4), gives

n

f,h=c.foP'"Q '"P" IIPk'
k=1

II(M )g II(M )g
k&s k&q

P II(Pk P()—
k~l

(Pk +P ) II (PkPl+P )
k, /=1

q

p II (pk p()—
k~l &s

(Pk +P ) II (PkPI+P
k, l &s

(n —())(n —q —1)

k~1 &q

II (Pk'+p') II (PkP(+p')
k&q k, l &q

(5.22)
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vk = ~k z+ [(—~k z)'+—p']'",
ul = ~b —z —[(II'k —z)'+p']'"

We see that the condition (1) implies

II ",=rI",=i ",=II '
k &qPk k &sPk k=1 Pk k=1

Also from assumption (ii) it follows that

2
PaPa = —P

p, k+ pk ——2( Wk —z),

(6.1)

(6.2)

' 2/3

H

(6.3)

(6.4)

(6.5)

VI. THE LIMIT g~h ~g
It is important to study under what circumstances the

solution gzh reduces to the background metric g . For ex-
ample, it is useful to investigate the new solution g~h
"near*' the background when the physical interpretation
of g is well known.

We can easily show that the diagonal elements, Eqs.
(4.38), (5.11), and (5.12), reduce to g if either one of the
following two conditions is satisfied: (i) s =q —s = n —q
and pk =p, +k =pz, +k, k &s =n/3; (ii) In each group of
poles, 1(k &s, s gk &q, q gk &n, the poles come in
pairs Pk,Pk, such that

theory in a straightforward way, using Eqs. (7.1)—(7.3) in

Eqs. (4.4), (4.29), and (4.38).
The problem of creating new soliton solutions in gen-

eral relativity from a flat spacetime metric has been dis-
cussed in detail by Belinsky and Zakharov. ' '" In partic-
ular„ they considered the two-soliton case to build the
Kerr metric. These solutions can readily be transformed
into BDJ& solutions using the prescription in Eq. (4.27).
Hence an alternative way of generating solutions from flat
spacetime is to construct them as in general relativity and
then use Eq. (4.27), with the scalar field (g„h)33 given by

Pk

k=1 . P

' 2/3

II P

, a&qPk
(7.4)

(g, )&1 r 1 ———2P
SP r

sin 0, (7.5)

or any other solution of Laplace's equation (4.20). For in-
stance, the Kerr solution can be transformed to get a ro-
tating solution in the BDJ theory. However, this solution
does not become spherically symmetric in the absence of
rotation, if the scalar field is nonconstant, as we shall see
below.

The Brans-Dicke-Jordan spherically symmetric static
vacuum solution, g,~,f,„, in the five-dimensional repre-
sentation (Appendix C) takes the form

1 —5—v

2
(g, )2&= — 1—

SP r
(7.6)

2
(g, )33= 1—

SP r
(7.7)

2
—1

1 — + sin 8 , (7.8)
r r 2

1 —5—v

where 5 and v are constants related by

5 +3v =1, (7.9)

and therefore, using Eq. (6.4),
s 2 q 2 tt 2

II ', =II ', =II ', =~=I (6.6)
k=1 Pk k &sPk k ~qPk

Hence, in both cases (i) and (ii), g~h ——g, since the coeffi-
cients of g,b in Eqs. (4.38), (5.11),and (5.12) are unity.

We also expect that, when gzh ——g, then f~h fo. In-—
Appendix 8 it is shown explicitly that when gzh is diago-
nal, then for each one of the conditions (i) and (ii), indeed
we have f~h fo, with a su——itable choice of the constant of
integration.

VII. SOLUTIONS WITH PSEUDO-EUCLIDEAN
BACKGROUND

The simplest application of the Belinsky and Zakharov
method to the BDJq theory is the generation of solutions
using a flat spacetime metric with a constant scalar field
as background:

p 0 0

g = 0 —1 0 (7.1)
'0 0 1

(7.10)

z =(r —p}cos8 .

We can reexpress g,„ in terms of p and z:
—5—v

(7.11)

and (8—v/a}p must be identified with the gravitational
mass of the system (Appendix C). The spherical coordi-
nates r, 0, are related to the cylindrical coordinates p, z via

p=r 1—2P sin8,
r

(7.2)

where the constant scalar field g33 has been normalized to
unity. A particular solution $0, corresponding to the
metric (7.1), is

(gap)ii =

( )
PP

P
2v

(7.12)

(7.13)

0
0

0 0
—1 0, A,8:—A, +2&—p2.
0 1

(7.3)

We can get new soliton solutions g~„,f~„ in the BDJ5

(7.14)

where the functions P and P are just the poles, with
8'k= —P and +P:



34 STATIONARY AXIALLY SYMMETRIC EXTERIOR SOLUTIONS. . . 2997

p—: (—p+z)+[(p+z) +p ]'

=(r —2P)(1 —cos8), (7.15)

r sinO

p, —:(p—z) —[(p—z) +p ]'

= —(r —2P)( 1+cos8), (7.16)

(7.17)
(gp) )33

On the other hand, according to Eq. (4.27) the gph BDJq
solution generated from the Kerr solution background

gKerr ~s given by
—1/2

(gph )33 gKerr
g

(gph)33 gSe
—1/2

gph =
0 (gph)33

2
fs, —— 1 — +, sin 8

r

then we have that, without rotation,

(7.18)

(7.19)

and since in the absence of rotation the Kerr solution be-
comes the Schwarzschild solution

To compare the metrices (7.5)—(7.7) with Eqs. (7.19) we
must identify (gph)33 with (1—2p/r) ". Thus we get

„21 2P
r

—V

sin O

21—
r

1 —v

1—2

r

2v

(7.20)

(gph)33 ——const . (7.21)

which is just like g» but with 5=1. Therefore the condi-
tion 5 +3v =1, can only be satisfied if v=0, or
equivalently when

or, equivalently,

6=+(s ——,
' q),

v=+( —,'q ——,
' n),

(7.26)

(7.22)

+(n/3 —q+s)
PP

. p'
+( —2n/3+q)

(7.23)

(7.24)

which is similar to the functional form of g,p. Neverthe-
less, in order for g„h to be equal to g,p we must identify

fl5+v=+ s ——
3

Conversely, if the scalar field (gph )33 is not a constant the
solution (7.20) does not represent a spherically symmetric
configuration.

More generally, if half of the poles, yk (k odd) are
chosen equal to p (or —p /p) and the other half equal to
P (or —p /P) then the diagonal solution, Eqs. (4.38),
(5.11), and (5.12), takes the form

+(n /3 —s)

PP 2
(gph)» = p

. p'

but again, 6 + 3v cannot be unity unless v vanishes.
Thus it seems that to obtain the spherically symmetric

solution as a diagonal limit of a soliton inetric we must
start with a nonflat metric g . In particular, if we put
g =g,p, it is possible to obtain the reduction gph~g p
when either of the conditions (i) or (ii), discussed in Sec.
VI, are satisfied. Another possibility is to start with a
static axially symmetric but not necessarily spherical
background solution, and, instead of imposing conditions
(i) or (ii), require that the diagonal metric generated is
equal to g,p. The study of solutions of this type, where g
is given by the BDJ~ generalization of a well-known
Weyl —Levi Civita solution of general relativity, is dis-
cussed in the next section.

VIII. SOLUTIONS %'ITH A %'EYL—LEVI CIVITA
BACKGROUND

A solution of the BDJ5 field equations that describe the
exterior gravitational field of a static axially symmetric
configuration is given by (Appendix C)

Pl
5—v=+ ——q+s

3
4', 7.25)

o 21 2P
F11 P
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0 2g22=—
7

' 2v

(8.2)
iim yo(X)
P 0

—A, 8 0 0
0 —1 0
0 0 1

(8.17)

0 2

0

2P
(T —s—Y

1—

1 — + sin 8
7 p

(8.3)

(8.4)

Thus, when p=0, the seed solutions g, go are the same as
for the pseudo-Euclidean case (Sec. VII).

Let us consider the diagonal form, Eqs. (5.11), (5.12),
and (4.38). We see that a Weyl —Levi Civita-type solution
can be obtained when the poles are chosen in the follow-
ing way:

o =5 +3v (8.5)

=r(1 —cos8), k odd,

(8.18}

(&—p)(& —P)
Oll

A, S' (8.6)

When v=0, this solution is a well-known Acyl —Levi
Civita static metric. '

We can verify that a particular solution of Eqs. (2.7)
and (2.8) when g =g is

—s—v

p2 ——— ———r(1+cos8}, k even,
p

since, in this case,

2 2
(gph) ii =P (8.19)

022
(A, —p)(A, —p, )

J

'S—V

(8.7)

2P
(g h)22=-P r

(8.20)

(A, —p)(A, —P)
033 8'

2v

(8.8)

where

2
P

ZV

(8.21)

The evaluation of fo at A, =p~ gives

(I I, I )(I I I }- —
2~kPk

S—V

(S I V)(I I I )— —
2~kP k

lofti«) = —2II'a@A

4ozz(k} =—

Note that

lim go(A, )~g
A. ~O

' 2v
(I ~ V)(I I, I )— —

Po33(k}=
krak

(8.9)

(8.10)

(8.11)

(8.12)

5—:5+ —s,
2

nV=—V+
3 2

'

(8.22)

(8.23)

In other words, if we start with g (5,v) as the back-
ground, the new diagonal metric will be g (5,v}. Further-
more, if the parameters 5 and v are chosen such that
P =—5 +3% =1, we will obtain g (5,v)=g, ~ and
f (5,v)=f,p.

For these types of solutions, the functions 1(o(k), Eqs.
(8.9)—(8.11) take the form, for k odd,

—S—v

as required by Eq. (2.11). An alternative form for the
solution can be obtained using the expression

goI'& 2Pr (1—cos8) 2 1 ————(1+cos8)
T

(8.24)

)L. &=A, +2iz —p =(A, —po)(A, —Po), (8.13) Pozz
—— 2 1 ——(1+cos8)

r
(8.25)

where the functions po and Po are poles with W~ =0:
2 1 ——(I+cos8}

2v

(8.26)
po=z+(z +p )'

I o= z —(z+a }—2 2 I/2

(8.14)

and, for k even,
—S—V

It is worth noticing that, as follows from Eqs. (8.1)—(8.3), go, I =2Pr ( 1+cos8) 2 1 ——( 1 —cos8)
T

S—V

(8.27)

p 0 0
limg ~ 0 —1 0

0 0 1

(8.16}
Poz2 ——— 2 1 ——(1—cos8}(zi p

T
(8.28)

and furthermore, using Eqs. (8.6)—(8.8) and (7.15), (7.16),
2 1 ——(1—cos6))

r
(8.29)
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(b —a cos8)
sin 8

Thus we can construct generalizations of the Weyl —.Levi
Civita metric by substituting the above matrix go and the
metric (8.1)—(8.14) in Eqs. (4.29), (4.38), and (4.4). The
case n =q =s =2, is given explicitly below

1 4yR
(grab)»= ~ 2&+

(gp~)i2=

(8.32)

2P
(g &)33—— 1—

P
(8.33)

Z Z 2[b,(a b—cos8) —a sin 8(a b——MR)],
Qy

+a sin 8—b, g~~(5, v), (8.30) Qf (5,v)

(r —2P)2
(8.34)

(g~z)22 ———(b, —a sin 9)g22(5, v), v—=v ——, , (8.31)
n

where

P—Mo P+Mo
+

1—2

1 — + sin~6}
7$2

(8.35)

Mp —P Mp+P
2

+
2

1—2
r

1 — + sin 8
r 72

(8.36)

1
2

7'

ao —bo p
1 ——(1—cos8)

2 r

—25
ao+bo p+ 1 ——(1+cos8)

2 7'
(8.37)

r 5
2p bo ao —pb—= 1— 1 ——(1—cos8)
r 2 7'

$

' —25
bo+ap p+ 1 ——(1+cos8)

2 r
(8.38)

R—: (r —P)+M,

Q=R2+(b —a cos8)
2

[r (r —2P)] =(R —M)' —y' .

(8.39)

(8.40)

(8.41)

The constants ap, bp, Mp, and P have been chosen such that Mp 13 =ao bp—, in order —to obtain the Kerr-NUT
(Newman-Unti-Tamburino) solution when 5=v=O, as we shall see below.

The study of the physical interpretation of the above solution is under way, but we can already state the following re-
sults.

(i) If 5=v=0, then y =P, M =Mp, a =ao, b =bo, and the solution becomes equivalent to the Kerr-NUT metric, since
one can verify that the time coordinate transformation

w= t +2aoy

leads to the Boyer-Lindquist Kerr-NUT line element

ds = ——
I (b, asin 8)dr 4[kb —cos8 —a sin 6}(—MR +b )]dr dy0
+[6(a sin 8+2bcos8) —sin 8(R +b +a ) ]dq& I+. (dR +.b, dg ) . —0

(8.42)

If bo ——0, we get the Kerr solution with mass M and
geometric angular momentum Ma.

(ii) If ao ——bo ——0, we have (g~q)&z
——0, and therefore

zero angular momentum. The metric (8.30)—(8.34) be-
comes a %'eyl —Levi Civita solution

2P
I —8 —v

(gz„)» r 1 — s——m 8,
7

p
s—v

(g ~)22=-P

(8.43)

(8.44)
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2
(g~h)33 —— 1—

fph =f'(»»
—6—v

1—
r

(8.45)

2
' —CT

1 — + sin 8, (8.46)
p r 2
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where 5:—5+1, descending on the choice Mo ——+P. If,
furthermore, o =5 +3v =1, we have spherical symme-
try.

The solution (8.30)—(8.34) has been verified with the
algebraic computing program REDUCE.
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APPENDIX A

det
1

1+Ak8l
= ff (A„—A, )(8,—8„)

k&l

In this appendix it is shown that

The author would like to thank Professor Emil Kazes
from the Pennsylvania State University for his continuous
encouragement and advice in this work. Thanks are also First note that

X ff(1+A,B, ) -'.
k, l

(1+AkB )
det

1+AkB(
—=det ff (1+AkB ) = fI( 1+AkB ) det

k, m 1+ k I
m~l

(A2)

where we used the fact that det(bkakI ) =(ff k bk )detaki. Hence Eq. (Al) is equivalent to

det ff (1+A„B ) = ff (A„—A, )(8,—8„) .
k&l

(A3)

The proof of Eq. (A3) will be by induction. Hence let us assume that Eq. (A3) is valid for a ( n —1)X (n —1) matrix:
n —1

C„", '—= g()+A 8 ), (A4)

m~l

detCgI '= ff (Ak A()(81 Bk)—. —
k&l

(A5)

Then we have

n —1 n —1

ff(A„—A, )(8,—8 )= fI(A„—A, )(8,—8„) fI(A„—A, )(8,—8„)
k&l l k&l

fI(A„—A, )(8~ —8„) detCld
l

(A6)

where we used Eq. (A5). We know that

n —1

n —1 n —1 n —1 n —1 n —1
detCkl ——e;, ;, ;,C1;, C2;, ' C, 1;,=&l, ,, . . . ,

.„,gg C1, ~

Also, it is easy to show that

n —1

ff (A„—AI )(8(—8„)= ff ( A„—AI )(8;,—8„)
l l

n —1

= ff [(1+A,B„)(1+A„B;,) —(1+A„B„)(1+A,B;,)],
l

for any particular choice of n —l,iI Consequent. ly, using Eqs. (A7) and (AS),

(AS)
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n n —1

II(A —A, )(8,—8„)=e;,;, ;,g c,";, '[(1+A,B„)(1+A„B;,) —(1+A„B„)(1+A,B;,)]

n —1=e;;; g [C(";, '(1+AiB„}(1+A„B;) —(1+A„B„)(i+A(8;)Ci"; ']
l

The terms

=e. . . , II[c,",
, '(1+A,B„)(1+A„B;,) —K, ] .

l

(A9)

n —1

K, =(1+A„B„)(1+A/8;,)C,";, '=(1+A„B„)g(1+A,B„) (A 10)
k

are independent of ii H. ence any term on the right-hand side of Eq. (A9) that contains a factor such as KiK~ K, is
symmetrical under permutations of ii,i, . . . ,i, Th. erefore these terms do not contribute to the sum in Eq. (A9). Thus,
the only surviving terms are either independent of Ki, or linear in Ki. Consequently, Eq. (A9) becomes

r

n —1 n —1 n —1

II(A„—A, )(8,—8 )=;, ;, ;, IIC,";, '(1+A,B„)(1+A„B;,) —g K g C";, (1+A 8„)(1+A„B;,) . (All)
kpl l m l

E~m

Using Eq. (A10), we obtain, after some rearrangement,
r

n —1 n —1

K II C(";, '(1+A Biv„}(1+A„B;,)= II(1+A Bk)
l k

1~m

n —1

=c"„c„",IIC,",
,
=

l
1~m

n n
mn Cni

nci,
l

Cn

n —1

(1+A„B„)II(i+A„B,, )
l

n —1

II C(";, '(1+A(8„)
l

E+m

(A12)

where we use the definitions
n n —1c"„=II(1+A 8, )= II(1+A.B„),
k k

k~n
n n —1 n —1

c„"; = II (1+A„B„)=(1+A„B„)II (1+A„B„)=(1+A„B„)II(1+A„B;,),
k~i k~i E~m

n n —1

c/";, = II(1+A,B )=(1+AiB„)II(1+A,B )=(1+A,B„)c";,
k~il k~iI

Substituting Eq. (A12) and using again the definitions (A13)—(A15) in Eq. (Al 1) we get

(A13)

(A14)

(A15)

n n —1 n —1

II(A„—A, )(8,—8, )=~.. . , II c,", c„"„—g
k)1 m

n nC nc„; n —1

II cd,
mim l

(A16)

On the other hand, we know that
n

detcki =&i, i, . . . , i II,cki„.
k

Equation (A17) can be reexpressed as

n —1 n

detc,",=e, , , „IIck,„c„"„+e... „, II c„",„c„",„
k k

k+n —1

(A17)

k k
k~s k~1

n —1 n

=e;; „II c„";„c„"„—e;, ;, ; „g c„";,c„"
k k

k~n —1

n

ll, l2, . . . , E,l +1, . . . , n kik sn
k

k~s

—c, , „II c,",,c",„.
k

k~1

(A18)
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l] I2~ ~ ~ . &I&sl~+]t ~ ~ kik sn I ],I 2,
k

k+s

n —1

~ ~ ) n' s+]'
k

Ck „C.n „C.".

C,";

n —1Ck; C„";C,"„
k s.n

k $7

(A19)

Therefore, applying Eq. (A19) to Eq. (A18), we obtain
n n

n —1 n —1 Cki Cni Cn —1n
n k n —1

detCpg e;, ;,—— „gCk;„C„„—e;, ;,
k k n —li„

n —1

l ],l p j. . . , ig, lg + ], . . . , n
k

Cn Cn Cn

Csi

n-1 Cki, Cni, C 1n
~ e ~ ' 'rr

k li]

n —1 n —1 n —1 Ckik Cni Cmn

rr C"„C.".—X rr (A20)

Comparing Eq. (A20) with Eq. (A16) we see that

detCkl —=det ff (1+AkB )
m

m~1

= ff (Ak —/I()(B( —Bk),
k&l

or, equivalently, from (A2)

S

f Cpl/3Q2/3f p3$gp6
k=1

S

g (M kM kM k
)2g 0& &g 0+0

k=1

P"' " g (Pk PE)—
k~l =1

S S

rl(Pk +P )rI(PkPI+P )

'3

(82)

k=1 k, l

(/Ik A))(BI —Bk)—
det '+ k I k, I II(I+~kBI)

k, l

(A22)

We know that

g11g22g3& ——detg = —p,p p p p (83}

det
1

&+PkPi

Q(Pk Pl }(PI Pk )
k)l

ff(1+PkPi }
k, l

Since (A22) is valid for a 2&(2 matrix, then we have
shown that it is valid for all n & 2. Q.E.D. In particular,
if &k Bk=pk, weha——ve

M]M2M3 C)C2C3$0)f (k)f (k)f (k)

=C ) CpC3 detfo '(k) . (84}

It can be shown that

detg(A, ) =XG ( W),

where G( W) is only a function of

g(Pk Pi)—
k~l

(I+PkPi)
k, l

(A23)
W(A)

A'+2k —p'

Since, using Eq. (2.15),

(86)

APPENDIX 8

It is shown below that when g~h is diagonal, then for
each one of the conditions (i) or (ii) in Sec. VI, we have

Pk +2@kg —PlI'(Pk ) = =2W, ,
Pk

detp(pk)=constXPk .

(87)

(88)
f~h ——const &(fo .

First consider case (i}. In this situation Eq. (5.22) becomes
Furthermore, we will also use the foHowing relation,
which is shown in Appendix D:
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m ~ 2(Wk —W/)
II(pk —Pl}= II II(Pk)
k~1 k+I (Pk I+P') k

(89}
Substitution of Eq. (813) into Eq. (810) gives the desired
result:

S

k=1

g~pkpl+P )

k, l

On the other hand, from Eq. (2.23), we have

g —1 const X (n —+ 1) /2

k=1

(810)

Substituting Eqs. (83); (84), (88), and (89) in Eq. (82) we

obtain

f~h ——constXfo . (814)

Some consequences of Eqs. (6.4) and (6.5) will be derived
below. First consider

g~pk Pl ) If (PI Pl'}(PI' Pl )
k~l 1

We now consider condition (ii). Let us recall Eqs. (6.4)
and (6.5):

PkPk = —P
2

Pk+Pk 2( W——k
—z} .

(811}X II(PkP/ +P'),
k, l

where we used Eq. (89). The last factor of Eq. (811) can
be reexpressed in the form

N S

II (PkPI+P»= II (PkPI+P» (812)
k, l =1 k, l =1

where we use condition (i). Thus we have, putting n =3s,

COnSt X
—~3s+&} /3 ~ 2(1 —3s)

k=1
'6 3/2

but

X II (Pk Pl)(P—k Pl )—
k~1, 1'

(Pk Pl )(p'k Pl') Pk Pk(PI+Pl')+PIP/'
2=pk —2pk( Wl —z) —p

=2pk( W/, z) 2p/, (—W/ ——z)

=2pk( Wk —Wl »

(815)

(816)
X II (PkPI+P )

k, l =1
(813)

where we used Eqs. (6.4), (6.5), and (87). Consequently,

(Pk PI ) =If (P—I PI )(PI PI—) II 2( w—k
—wl )Pk

——const x II
k~1 1 k~1,1' 1

Also it can easily be shown that

g~pk +P )= If (PI +P )(Pl' +P') =g p'(Pl Pl }-
k l l

Therefore we have, for m poles pk, or equivalently m /2 pairs pl, pl

2 Pk
P k

(817)

(818)

II(pk —Pl }
k~1

2
——const x II

(p 2+p2)
k

where we use Eq. (6.4).
We can now simplify the last

II Pk

p'

m/2

k
=const& m 2/2 —2m=const Xp

three factors of Eq. (5.22) using Eq. (819), since we have, for m poles pk,

(819)

p-'--"II(p. -Pl )
k~1

II(pk'+P') g~pkp/+P')
k k, l

const &p
2(m —1}I gk

k

2

Q~pk Pl)—
k~1 —3m=const Xp(Pk'+P')
k

(820)

where we used Eqs. (89), (819), and Eq. (6.4). On the other hand, with Eqs. (819) and (6.4), the expression for Q
' also

simplifies to

Q =const Xp

Using the results (820) and (821) in Eq. (5.22), we get
r

s q

If(M ) gf h =coIlst xfo II (M 1 ) g 11
k=1 k&s k ~q

(821)
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Finally, if g and g are diagonal then it follows that

2

1t (A, )g 'iI'I =I' ( W'),

is only a function of W(A, ) (Ref. 20) and therefore

5

ds = — 1 — dr+ 1—z 2P 2 2P
r r

+r d8 +sin Ody

0 '(PI)gP '(PI)=4 '(PI)gf '

Pl

'[W(PI )]=const,

or, equivalently, for a =1,2, 3

l l' l l' —1 0M,g.,M.'=&.&.'4.. (PI )@—,. (PI )g—..

1 —5
-„2 „z 1

213

r

gpv=(t' {gEs)pv ~ (C7)

A solution of the BDJ5 field equation g is built, from
the metric (Cl)—(C3) and the scalar field (C4), using the
transformations (3.1), and Eqs. (3.5) and (3.6):

=const

(no sum over a'). This implies that

(825)
2

r

' 2v

(C8)

ff (M", )zg„
k=1 kgs

~k2 0 ff (M3 )zgi3 =const .k 2 0

kpq

(826)
2

gab = 1— (gEs).b* &.b =I»

or, in the canonical form (4.1),

(C9)

Hence again

f~i, =const&(fo .

Q.E.D.

APPENDIX C

2
g33 =

r

2f= 1—
r

2v

fEs

(C10)

(Cl 1)

A solution of the Einstein scalar field equations (3.7)
and (3.8) that represents the exterior gravitational field of
a static axially symmetry configuration is

APPENDIX D

%'e will see below that

'1—5

{gps)i i =r 1—z 2P 2sin 8,
r

(Cl)

{P +PkPI )(Pk PI)

k kI 2{Wk I)
Pk

k~1

(D 1)

2
{gES)22 r

where n is the number of poles, Pk. Thus consider two
poles Pk, PI. They satisfy Eq. (2.15), which in turn im-
plies

pk 2pk{Wk z)—p =0, —

ES

1—2P
r

v/a
2'+ 3

3

o =5 +3v
1 — + sin 8

r r Pk+Pl
k

2

Pi( Wk —WI )

Pk —Pl
(D4)

Substitution of Eq. (D4) in Eq. (D2) yields

pI —2pI( W'I —z) —p =0 .2 2=

The difference of these two equations gives, after some
rearrangement,

where t3 and 5 are constants, and the coordinates r, 8 are
related to p and z by Eqs. (7.10) and (7.11). If v=0, the
above equations transform into a well-known Weyl —Levi
Civita metric in general relativity. The total gravitational
mass of the system is (5—v/a)P, which follows from the
requirement that the equations of motions become
Newtonian in the limit r~ ao.

The case o. =1 is of particular interest, since we get a
spherically symmetric gravitational field. The line ele-
ment takes the form

2PkPI( Wk —WI )

P = —PkPl+
Pk —Pl

or, equivalently,

{P +PkPI){Pk PI)—
2( W„—W, )

Thus we have

(D5)

(D6)

~ {P +PkPI )(Pk PI)—
k~1 k~1
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