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Einstein s equations with spherical symmetry are formulated in double-null coordinates, and the
high-frequency approximation to a unidirectional radial flow of unpolarized radiation {the Vaidya
metric) is studied in detail. For this case the Einstein equations reduce to a single first-order non-

linear partial differential equation. Integration of this equation introduces an arbitrary function (of
one null variable) which must be chosen so as to regularize the metric across horizons. Although the
problem is, in general, not analytically solvable, we are able to extend the class of known analytic
solutions from the constant-mass case {Kruskal-Szekeres metric) to linear and exponential mass
functions. In the linear case we give the first explicit regular covering of a spacetime with a naked
shell-focusing singularity.

I. INTRODUCTION

The Vaidya metric gives the general-relativistic field as-
sociated with the high-frequency (eikonal) approximation
to a unidirectional radial flow of unpolarized radiation.
The metric has seen considerable use: at the semiclassical
level for the study of evaporating black holes, ' at the clas-
sical level as a model for the exterior of spherical radiat-
ing objects, z and as a model of a spacetime which
develops a naked singularity.

Despite the usefulness of the Vaidya metric, relatively
little attention has been paid to the coordinates used to
describe it. Most often, the metric is considered in radia-
tion coordinates ( r, 8, ttp, ui), where it takes the form

ponential mass functions. In the linear case, our coordi-
nates give the first explicit regular covering of a spacetime
with a shell-focusing singularity.

11. EINSTEIN'S EQUATIONS

A. Development

The spherically symmetric metric in double-null coordi-
nates is

ds = —2f(u, v)du du+r (u, u)dQ

The algebra relevant to the metric (1) is summarized in
Appendix A.

The energy tensor is taken to be of the form

ds =2c dr dio — 1 — dto + r d 0
r Tap h(u, U)kakp/S——n, (2)

with dQ =d8 +sin 8dg . For c=+1 the field is ingo-
ing and trt is monotone increasing in io (advanced time),
and for c = —1, the field is outgoing and rrt is monotone
decreasing in io (retarded time). It has long been known
that the radiation coordinates are defective. Also long
ago, a more useful, but less intuitive, set of coordinates
was given by Israel. These have seen too little applica-
tion.

It is natural to ask if double-null coordinates can be
constructed for the Vaidya metric. A little experimenta-
tion with the inetric shows that looking for transforma-
tions from radiation coordinates to double-null coordi-
nates is fruitless. In this paper we retreat from coordi-
nate transformations, and consider the Einstein equations
with spherical symmetry ab initio in double-null coordi-
nates. We find that the Einstein equations, for the radia-
tion field under consideration, reduce to a single first-
order nonlinear partial differential equation. Regulariza-
tion of the metric across horizons is achieved by a suitable
choice for the function which arises from the integration
of this equation. This procedure offers little hope for
many analytic solutions, although we are able to extend
the Kruskal-Szekeres case (m =const) to linear and ex-

where k is a radial null vector. This is the high-
frequency approximation to a unidirectional radial flow of
unpolarized radiation. We can choose either
k =(u, 0,0,0} (flow along the U direction) or
ka=(0, 0,0,U') (flow along the u direction) where a dot
denotes d/dA, , A, an affine parameter. Since the u and U

directions are unspecified, it is not in fact necessary to
consider flows both along the u and U directions for ener-

gy tensors of the form (2}. In what follows we consider,
without loss of generality, a flow along the U direction
only. From Eq. (A3) it follows that the radial null geo-
desic equation for u gives

fu =const.

For a Aow along the U direction then

T p h(u, u)5'Sp/Sn, ——
where the constant has been absorbed into k.

The Einstein equations with Eq. (4) give a zero Ricci
scalar so that either from Eqs. (A5) or (AS) we have

2(fir)/f r„)/r =0, —

2(r, r4+rr, ~)/f +1=0,
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2(f4r4/f r—44)lr =h(u, u), 8(u) is dictated by regularity conditions, see below. )
With m4&0, it follows from Eqs. (3), (11),and (18) that

(fif4/f f—,4)lf 2—riz/r = [m4[
(19)

h =2A~r, 4/Ari .

Integrating Eq. (5}with respect to u gives

f=28(u)ri,

(10)

where 8 is a second arbitrary function of u. Equations (8)
and (11) reproduce Eq. (9). With the substitution of Eqs.
(6) and (11),Eq. (9) yields

B. Simplification

Differentiating Eq. (6) with respect to u and using Eq.
(5) gives

r r,4lf+A(u)=0

after integration with respect to u, where A is an arbitrary
function of u. Similarly, differentiating Eq. (6) with
respect to u and using Eqs. (7) and (9) yields

along U=const. As a result, we say that the radiation
field is "ingoing" (i &0) for m&&0 and "outgoing"
(r & 0) for m4 &0. In both cases the null geodesics with
u =const represent a "backscattered" test field.

III. SOLUTIONS

The problem at hand may be viewed in the following
way: given T~p (that is, given m, m4, and 8), the Einstein
equations reduce to the single first-order nonlinear partial
differential equation (12), the solution to which yields the
metric (1) via Eq. (11). Unfortunately, Eq. (12) is, in gen-
eral, not analytically solvable. Moreover, the arbitrary
function of u which enters the integration of Eq. (12)
must be chosen so that f, from Eq. (11), is regular The. re
is, unfortunately, no algorithm for this choice.

A. Review of the Schwarzschild solution (Ref. 8)

r4 ———8(u}[1—2A (u}/r) .

Substitution of Eq. (12) into Eq. (10) gives

(12) With m =const the function 8(u) is not specified
a priori. However, Eq. (12) is immediately separable, giv-
ing

h = 48(u)A4lr— (13)

In summary, Einstein's equations (5)—(8) follow from
Eqs. (11)—(13).

f = —JBdu+ C(u),
1 —2m /r

(20)

where C is an arbitrary function of u, so that Eq. (11)
gives

C. Interpretation of free functions

If we define the "mass" according to

m —= —,r 82323

it follows from Eqs. (A2) and (A4) that

m =r/2+rrir4lf .

Equations (6) and (9) then give

(14)
Let

alld

f=2BC, (1—2mlr) .

2m
1

(21)

(22)

(23)

A(u)=m . (16)
Equations (20), (22), and (23) then give

%'e take m &0.
The metric (I) and Eq. (11) show that 8 defines the

scale for u which, of course, is required for a proper defi-
nition of m. From the weak-energy condition and Eq. (4)
we note that

8(u)m4 &0 .

If we suppose that the metric (1) is asymptotically flat we
can choose U such that the U=const null geodesics ter-
minate on W. [That is, say, on W for an ingoing field
(m4, &0) and on Jr+ for an outgoing field (m«0), see
below. ] Then, u is the proper time as measured in the rest
frame at infinity as long as

8= —mg/2
~
mg ~, my+0 .

Equation (18) offers a "natural, " though not required,
choice for 8 as long as m q&0. [With m4 ——0, the form of

(1—r/2m)e'i =uu, (24)

where we have oriented uu&0 for r &2m. Equations
(21}—(24) then give

16mf ™—t /jill (25)

B. Linear mass function

where A, is a constant ~0 and c=—28. VA'th

(26)

(27}

We make use of Eq. (18) and consider mass functions of
the form
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it follows that Eq. (12) can be written as

1ncU+ =D u
g —g/2+ k

where D is an arbitrary function of u. From Eqs. (11)
and (28) we find

f= —cDi(r , cv—r+—Av )/r .

It remains to choose D(u) [that is, via Eq. (28), to define
r (u, v) ) so as to remove zeros in f.

With A, & —„,f is without zeros and so, for example,
with

4

2

A= ~/~6

gO

D= —cu

we have

f= ( r ,' cvr +—A, v —)/r .

From Eqs. (28) and (30) we have

cu =—Tln
I
r —

2 c""+~v
I +—arctan

I 2 1 4r —cU

5 cv5

(30) -2
0 20

I

30

FIG. 2. As in Fig. 1 but for A, = —,6. The u axis (u &0) is a

"shell-focusing" singularity.

where 5=&16K,—1. Equation (32) defines r(u, v). The
spacetime diagram is shown in Fig. 1.

For A, = —,', , we have we find

(35)

cD i (4r cv)—
16r

where, from Eq. (28),

D(u) = +ln
CU —4r

&»hs

—:L.

(33)

(34)

4r —cv 2

f= [L +4+cL(L +4)' 2)
32r

which, on the horizon (4r =cv & 0, u =0) reduces to

CUf(u =0, v &0)=—.
4

The spacetime diagram is shown in Fig. 2.
For A, & —,', we have

cD i (r or /4—)(r —ir /—4)

(36)

(37)

(38)

3 gO

where or:—cv(1 —5), ir—:cv(1+6, ), and b, =—V 1 —16k,.
From Eq. (28) we find

-3 I I I I I I i l I

0 I 2 3 4 5 6 7 8 9 10 1$ 12
V

D(u)=ln (r —r/4)' "~ (r —,r/4)' +'

With

D(u)= lnIcu
I

1+6
25

and cu &0 for ir/4 & r, we find

+
( /4)2/( /+a)

2hr

(39)

(40)

FIG. 1. u- v diagram for a linear mass function m =ok, U with
and c=+1 (ingoing field). The curves represent sur-

faces of constant r [The particular c. ase shown is A= 1, and the
values of r shown are (from top to bottom) r =0, 0. 1, 2, 1, and

5.] The future is to the right and up. The general characteris-
tics of this diagram are summarized in Appendix B. The Pen-
rose diagram is inserted. Note that the outgoing case (c= —1)
is obtained by reflection about a horizontal axis (so, e.g.,

W+).

D(u)= ln
I
cu

I

5—1

25
and cu ~0 for or/4~r, we find

(42)

f ( /4 )2/1 —a
2dr " (43)

so that the choice (40) is useful for r &or/4. Similarly,

with
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FIG. 3. u-U diagram for a linear mass function m =cA,U with A, g —,6 and c =+1 (ingoing field). (The particular case shown has

A, = —,'s . ) (a) A portion of the spacetime obtained from Eq. (40) {r ~ Or l4, r =y./4 at u ~ oo ). The curves represent surfaces of con-

stant r, where the values of r shown are (from top to bottom) 0.1, 0.2, T, 1, and 5. r =0 is given by the positive u axis. (b) A portion

of the spacetime obtained from Eq. {41) (r & ~r/4, r =,r l4 at u ~—oo ). The curves represent surfaces of constant r, where the
values of r shown are (from top to bottom) r =0, 0.05, 0.1, 0.2, —,, 1, and 2. The u axis also gives r =0. In both diagrams the fu-

ture is to the right and up. The general characteristics of these diagrams are summarized in Appendix B. The Penrose diagram is
shown. Again, the outgoing case ( c = —1) is obtained by reflection about a horizontal axis.

so that the choice (42) is useful for r &,r/4. The space-
time diagram is shown in Fig. 3.

Px+21n
l
r 2/P+x

l

——Pcu/2=P(u), (45)

where P is an arbitrary function of u, and x is defined by

C. Exponential mass function

Finally we consider

m =—[u exp(Pcu/2) + 1],1

x =(r 4r/P+4m—/P)'

From Eqs. (11) and (45) we find

(46)

(47)

where a and P are constants & 0, c = 28 as above—, and
—oo & U & ao. With the source function (44), Eq. (12) can
be integrated to give

Since x ~0, we can simply choose P= —ctt to define r
The spacetime diagram is shown in Fig. 4.

IV. SUMMARY AND DISCUSSION

-20 .

-40 .

-60 .

-80-

-100 '

0 1 2 3 4 5 6 7 8 I 10 11 12 13 14 15

FIG. 4. u-U diagram for the exponential mass function (44}
with a=P=1. We have chosen e =+1. The curves represent
surfaces of constant r, where the values of r shown are (from
top to bottom) 0, 10, 25, and 50. The future is to the right and
up. Although only positive values of U are shown, U can be neg-
ative as well. The Penrose diagram is inserted. Again, the out-
going case (c= —1) is obtained by reflection about a horizontal
axis.

We have examined the construction of double-null
coordinates for the Vaidya metric, and reduced the prob-
lem to the integration of a single first-order nonlinear par-
tial differential equation [Eq. (12)]. This equation has
been integrated for linear and exponential mass functions
[Eqs. (26) and (44)] and a complete regular covering of the
associated spacetimes has been given. In the linear case
we have given the first explicit regular covering of a
spacetime with a naked shell-focusing singularity.¹teadded in proof. Recently it has been shown'o that
shell-focusing singularities in the ingoing Vaidya space-
times are strong curvature singularities (in the sense of
Tipler") only for mass functions which are initially linear
functions of the advanced time.
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APPENDIX A: THE ALGEBRA ASSOCIATED %'ITH A
GENERAL SPHERICALLY SYMMETRIC METRIC

IN DOUBLE-NULL COORDINATES

The following appendix gives the algebra for a general
spherically symmetric metric in double-null coordinates.
Although some of this has been given previously by
Synge, it is repeated here for convenience. The calcula-
tions were carried out with the aid of MACSYMA. Only
nonvanishing terms are given.

The general form of a spherically symmetric metric in

double-null coordinates ( u, 8,P, U) is

The Ricci tensor then reduces to

2(f, r, lf r—i, ) lr,
R22 ——sin 8R33 =2(r

& r4+ rr &4)/f + 1,
R44 =2(f4r4 lf r44—)lr,

=(f f /f f,—)If 2r—, /r .

From the components (A2) and (A5) we find that the Ric-
ci scalar is given by

R =R =2I(fi4 fif-4/f)/f'

+[1+2(r,r4+ 2rr, 4)lf ]/r ]
ds = —2f(u, u)du du+r (u, u)dQ

where

dQ2=d8 +sin 8dg

and the contravariant metric tensor is given by

g' = —1/f(u, v),

g =sin 8g =1/r (u, u) .

(A 1)

(A2}

and that

R RI=2[2f'ri4+r(ffi4 —fif4)]'Ir'f'
+2(f +2rr ~4+2r ~ r4) /r f
+8(fr ( i r if»(f44—r4f4) lr'f—' . (A7)

From (A5) and (A6} it follows that the components of the
Einstein tensor are

The associated Christoffel symbols of the second kind
are Ging =2(fir|/f —r»)«

1 h=fi/f
I 22

——stn 81 33=rr4/f,1 ~ —2 1

I » ———sine cose,
2 3

2 3f 42 P43=r4/r,

I 23 =cos8/stn8,
4 ~ —2 41 22

—sm 81 33 rr, /f, —

1"44=f4/f .

644 =2(f4r4/f r44)lr, —

G~4 ——[f+2(r~r4+rr&4)]/r2 .

(A3} The Weyl tensor is given by

C&224 r'(f if4 ff i4 }/6f'—
f/6+ (rr ~4 r& r—4 )/3, —

~ 2
C1»4 =sIn eC1224,

(A9)
=2

1414 C1224 ~r2The Riemann-Christoffel tensor as calculated from (A3) is

G22 ——sin 8G33 r(f ~f4/f——f~4)/f —2rr, 4lf-
(A8)

R»~2 ——sin '8R(3)3=r(f)r)If r)()—
R„,4 ——sin- eR1»4=rr14,—2

R i4i4 = fi4+fif4/f-
R2323 ——r sm 8(1+2r,r4/f),

R2424=stn 8R3434="(f4r4/f r44}—

—2r 2

C2323 = Sin 8C ]224

As usual, the Weyl scalar is given by

C p gC ~~ =K—2R~Rp+ —,'R (A 10)

where K is the Kretschmann scalar (R pzsR ~"s). For
the metric (I) we find

K=4(f+2r)r2) /r f 1+6(fr)) —r)f))(fr44 r4f4)lr f +1«)4 I—r f +4(f&f4 ff(4) lf— (Al 1)

[For the case considered in this paper, from Eqs. (11},
(12), (13), and (15) we find K =48m /r . ]

APPENDIX 8: CHARACTERISTICS OF THE u-u

DIAGRAM FOR LINEAR MASS FUNCTIONS

For A, & —,', , from relation (32), we find that the singu-
larity r =0 is given by

1 1 1
cu = ln +—arctan

AXU
L

The surface r=const—:r, ~0 intersects with the u axis
(U=0) at u=u„where

CKeg, = — lnr, +
25
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and u is extremal (maximal for c=+1, minimal for
c=—1) at

(83)

where we have orientated cu &0 for r &ri/4. Since
b &1, cu~cc as rior/4+. That is, given the surface
r= const=r, &0, the associated curve u(u) has cu~ac
as cu ~cu~, where

where (810)

1 SA, —1
cu = —1nr, +—arctan

5 5
(84)

For A, = —,', , from relation (34), we find that r=0 is

given by

Moreover, u =0 for

and v =0 for

(811)

c ——u = 1+1n1 cU

u 4
(85)

2h, /(A, + 1) (812)

so cu ~0+ as cv~ ac. The surface r =const=—r, &0 in-

tersects the v axis (u =0) at cv =4r, and intersects the u

axis (v =0) at u =u„where

(86)

cu=(y /4 r)( r/4 —r)' +"—' (813)

where we have orientated cu & 0 for r & or/4. It follows
that r =0 is given by

To cover the region r &,r/4 we make use of Eqs. (39) and
{42) from which

The curve u(v) {defined by r=r, ) is extremal (maximal
for c =+1,minimal for c = —1) at

(1—5) 4
cu =

( 1 +g )(1+6)/( i —h)

' 2h, /(1 —h, )

(814)

cU =Sr,
and cu y0, where

(87) The surface r:r, &0—intersects the v axis (u =0) at
cv =4r, /(1 —6) and eu ~—ac as cv ~[4r, /(1+ b )]+.
The curve is extremal again at

—u~ =2+1nr, . (88)
rg

cUm =
2

(815)

cu =(tr/4 r)(r or/4)' ——"/'a+", (89)

For A, & —,', , we must consider relation (39) defined by
both Eqs. (40) and (42). With the definition (40) we have
r & or/4. In particular, from Eqs. (39) and (40)

where

(1—6—8A, ) 8A,

( I+g gg)(1+a)/(1 —a) (816)
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