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A pure gravity inflationary model for the Universe is examined which is based on adding an eA'
term to the usual gravitational Lagrangian. The classical evolution is worked out, including eventu-

al particle production and the subsequent join to radiation-dominated Friedmann behavior. %'e

show that this model gives significant inflation essentially independent of initial conditions. The
model has only one free parameter which is bounded from above by observational constraints on
scalar and tensorial perturbations and from below by both the need for standard baryogenesis and
the need for galaxy formation. This requires 10"& e ' '

& 10"GeV.

I. INTRODUCTION

The inflationary universe model, ' in which the
Universe has undergone a long period of exponential ex-
pansion, has successfully explained many problems in the
standard Friedmann cosmology. A particularly attractive
feature is that the model provides a mechanism to gen-
erate the small-scale density fluctuations in the Universe
which are needed to seed galaxy formation. ' They are
the zero-point fluctuations of the quantum fields which
get pushed into the classical regime by the large expan-
sion.

In the standard picture of inflation this exponential ex-
pansion of the Universe is driven by the false vacuum en-

ergy density of a Higgs field which acts like an effective
cosmological constant in the Einstein equations. Many
different underlying particle physics theories have been
proposed. The most popular of these are the Coleman-
Weinberg model, Witten's model with a logarithmic po-
tential, and the X=1 supergravity version of Nano-
poulos et ah. and Linde.

These proposals, though, are not without their prob-
lems. First, one has to typically introduce a scalar "infla-
ton" field which is postulated especially for this purpose.
This makes the whole scenario less plausible in that it is
less natural. Second, to achieve a large enough inflation,
suitable reheating after the inflation, and to make the ma-
terial fluctuations small enough to be consistent with ob-
servation, relevant couplings or masses in the suggested
models all have to be fine-tuned in one way or another.
An even more serious problem has been pointed out by
Mazenko, Unruh, and Wald. A quantum field which is
violently fluctuating in its high-temperature symmetric
state may not settle into the false vacuum state as the
Universe cools. This then may invalidate the whole pic-
ture of vacuum-energy-driven inflation. Although the

problem might be circumvented again by fine-tuning the

parameters involved, it is reasonable to assert that the
idea of inflation is very attractive while the "standard"
models which generate the inflationary phase by a false
vacuum energy density are less satisfying.

Is it possible to inflate the Universe by a different
mechanism? Linde' has proposed in his chaotic inflation
scenario that the inflation may be a direct result of large
fluctuations of quantum fields in the very hot primordial
universe. In the Planck regime, a scalar field P will tend
to be excited to large values so that its energy density in-

side some domain will be of order Planck. If P has a very
flat potential, i.e., a small "restoring force," it will remain

roughly at the fluctuated value for a comparatively long
time and hence drive an essentially exponential expansion.
Linde has shown that in a A,P theory there will be a clas-
sically tractable sufficient inflation when A, & 10 (for
more details see Linde ). However, two new questions im-

mediately appear which a cosmology based on chaotic in-

flation must answer: what is the underlying particle
model and what determines the initial fluctuations?
Without these one has neither a complete nor a realistic
model of chaotic inflation. This is one thread leading to
the present work.

A second thread leads from the fact that within dif-
ferent frameworks one is repeatedly led to consider an ac-
tion containing terms of quadratic or higher order in the
curvature tensor. We will discuss this point more fully in

Sec. VI. It is important to understand the implication of
these higher derivative terms on the evolution of the early
Universe. In this work we will restrict our attention to
terms which are quadratic. They can be written as

aR~ g
R"" +PRq„R""+yR =eR~+gC„„q Ct'"~
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{where XE is the density of the Euler number for the man-

ifold and C is the Weyl tensor). When we consider a
Robertson-Walker metric (homogeneous and isotropic
universe)"

df'
ds = —dt +a {t) +r (d8 +sin 8dg )

1 —x'r

(here ~ = + 1, —1, or 0—although, unless otherwise indi-
cated, we will be studying the case Ir = 0}. This metric is
conformally flat so that the C term vanishes. The effec-
tive gravitational Lagrangian density yielding the evolu-
tion of the Universe is then given by

I.=E.+eE. (1.2)

The evolution equation for R determined by (1.2) can be
written as

R+3HR+ R =0,

where the dot denotes a coordinate time derivative
(=d /dt) and H is the Hubble parameter (H =a /a). Thus
R behaves like a damped harmonic oscillator with the re-
storing force given by 1/6s. If e is large, the potential is
flat and R takes up the role of the inflation-driving field.
The aim of this paper is to study the cosmology based on
this model. We show the range of initial data and the al-
lowed value of e so that inflation can be realized in this
curvature-squared model in a manner consistent with ob-
servational constraints. %e consider now the generic evo-
lution of the Universe to be divided into four regimes. (i)
There may be a quantum phase in which the Universe be-
gins its Lorentzian life—as described in the wave-function
picture' —with some expectation values for the initial
conditions but continues with strong fluctuations for some
time. The classical evolution only becomes meaningful
after fluctuations around the average trajectory have be-
come small. Whether this subsequent classical evolution
is applicable to the Universe as a whole or just an homo-
geneous "bubble" part of it (as in Linde's chaotic inflation
picture} we expect to be answered by a proper quantum
treatment at very early times. (ii) At the start of the classi-
cal evolution there will quite generally be an inflationary
phase of superluminal expansion in which the Hubble pa-
rameter decays linearly in time with small slope. (iii)
Vfhen the Hubble parameter hits zero and bounces back
the Universe goes into an oscillation phase in which it is
reheated as material fields are excited by the oscillating
geometry. (iv) There will be a final Friedmann phase in
which our now matter-content-dominated model is joined
to standard cosmology. %e will exhibit and explain the in-
flationary solution, discuss reheating of the Friedmann
universe, and the generation and evolution of scalar and
tensor perturbations. These considerations all place con-
straints on the parameters of the model.

The effect of higher derivative terms on the evolution
of the early universe has been studied by many authors.
Zeldovich and Pitaevskii' have discussed the possibility
of avoiding the initial singularity by including the
higher-order term. Starobinsky' has shown that the
quantum corrections for a conformally invariant free field

will modify the Einstein equations with higher-order
terms such that an unstable de Sitter solution will result.
%'hitt' points out that the evolution equation for an

R + eR Lagrangian admits primordial inflation.
Hawking and Luttrell' have also shown that the wave

function of the Universe for this Lagrangian is peaked
about classical trajectories which exhibit an exponential
expansion. In fact, the initial motivation for our work
comes from the desire to understand and investigate in de-
tail the inflationary phase displayed in the numerical solu-
tion of Hawking and Luttrell's wave function.

Parallel to conducting our discussion directly in the
physical space-time we will make use of the fact that this
theory can be rewritten as pure Einstein gravity plus
matter in a conformal space-time. Whitt' has shown that
by a transformation, g„„=(I+2eR }g„„,we can discuss
the theory as Einstein gravity described by g„„plus a sca-
lar field R (which is the scalar curvature in the physical
space), with minimal coupling to gravity by means of the
equation

R„,——,g„—,R = Sm.GT„—,(R ),
where

6e

8m G(1+2eR )

—g„„—a Ra.R+,1 g R

(1.4a)

Here, the scalar field R can be given an action

2

g[R]= Jd'x 6e'V' g(l+—2eR) 'a.R-a R+

(1.4b)

II. CLASSICAL EVOLUTION

%e begin discussion of the Universe and its evolution at
the time when it emerges from the Planck era. The

(1.5)

In this conformal picture —as we are working with stan-
dard Einstein gravity —we already have some known
tools which provide for us both insight and a good check
on the less familiar behavior of the full fourth-order
model. We will appreciate its full power in evaluating
scalar and tensor perturbations.

In Sec. II we consider the classical evolution of a flat
(a = 0) Robertson-Walker universe under the influence of
an R2 term in the effective Lagrangian. In Sec. 111 we
then treat in greater detail the exit from the inflationary
phase„ the reheating of the Universe, and the subsequent
join to Friedmann behavior. Next, in Secs. IV and V, we
estimate the generation of gravitational wave and scalar
perturbations in the model. In Sec. VI we display some
present constraints on and possible origins for e. Finally,
conclusions are presented in Sec. VII.

Throughout this work we use units in which
fi = c = k~ ——1. We measure all quantities in Planck
units so that the gravitational constant 6 is equal to 1lp~

(where lpi denotes the Planck length).
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T» =(p+p )Q»Q +pg»„, (2.2)

where p = p/3 (a relativistic equation of state) and
u = 8/Bt (comoving four-velocity). It is simple to verify
that the left-hand side of (2.2) is divergence-free so that
energy-momentum conservation is still given by

which lmplles

1p- a4
(2.3b)

as in the standard Einstein cosmology.
There are only two nonvacuous field equations. The t- t

component of (2.1) can be written as

1 R RH H 4m Gy (2.4)
12 H 2e 3 e H '

and the contraction of (2.1) gives

8+3'+ ' R=O.
6e

(2.5)

The relations of R and H to the scale factor a(t} are
given by

R =6H+12H' (2.6)

Universe would then be filled with relativistic particles of
violently fluctuating energy density and its space-time
geometry, too, would be violently fluctuating. However, a
region not too big compared to the Planck size could be
approximately isotropic and homogeneous and could then
be described by the Robertson-Walker metric (1.1). For
simplicity we consider only the case a = 0. We follow
the evolution of this small region with the classical equa-
tions of motion derived from the Lagrangian density (1.2).

It is straightforward to write down the field equation
for the effective gravitational Lagrangian density (1.2)
with a cosmological constant term and matter field terms
added ""
R„„—,

'
g„„—R+Ag»„+ 2e[R(R„, ,g—»Q—)

+R „i(g". g„„5»5—„)]
= 8m GT„„. (2.1)

For the most part in this paper we will set A = 0 (except
briefly in Sec. VI) and we will always use a perfect cosmo-
logical fluid expression for T„„:

1 1 ~

2
~ 1

H ———H +3HH+ H=O.
2 H 12m

(2.8)

The remaining dependence on the parameters H;, 8;, and
e can then be discussed as follows.

(A) e & 0, R; & 0, and H; & 0. We will show that
this is the only case that will be of interest so that we will
consider it in detail.

(i) First, we look at the case where R starts at roughly

its maximum value, that is R(t=0) = 0. Then Eq. (2.4)
relates E.; and H; by

1/2

g 6H2
6eH, ' (2.9)

The typical behavior of H(t ) for this case is shown in Fig.
1. There is a long phase in which H decreases linearly in
time with a small slope. This slope may be estimated
from Eq. (2.8). For e & 1 and H & 1/6v 6e we have

1

36m
(2.10)

term on the right-hand side of Eq. (2A) to be negligible
(that is, p; = 0}—we shall insert its contribution at a later
point. Now the initial size a; of the small homogeneous
domain does not enter the dynamical equations and it re-
lates coordinate length to physically measured length at
t = 0 [the equation for a(t) is trivially integrated in
terms of H(t)]. We will take e to be a free parameter,
since before appeal to a higher theory it can be regarded
as a new fundamental constant subject to experimental
verification. So, one way to phrase the question that this

paper addresses is what are the allowed ranges of e and
the initial data, H; and R;, so that the non-Einstein term
will produce a sensible inflation, give sufficient expansion
to solve the horizon and flatness problems, command an
exit from the inflationary phase, yield a reheating tem-
perature high enough to not thwart standard baryogenesis
but low enough to avoid the grand-unified-theory (GUT}
phase transition and its associated monopole problem, and
finally deliver the correct material and gravitational per-
turbation spectrum and magnitude~

We study first the classical evolution by means of Eqs.
(2.4}—(2.7). To ensure the classical validity of the evolu-
tion we will think of Ht and R; to be both less than or on
the order of the Planck scale. We may combine Eqs. (2.4)
and (2.6) to derive a master equation for the classical evo-
lution with zero matter content:

and

H=a/a . (2.7)
Hence the total expansion in the scale factor of the
Universe after this linear near —de Sitter phase is given by

Equations (2.4)—(2.7) are then a complete set for describ-
ing the classical evolution of the Universe.

Next we notice that with p given by (2.3b), Eq. (2A) is
the first integral of (2.5). Therefore the system we have
left is equivalent to a third-order differential equation in
the scale factor a(t). We set the time coordinate origin
so that our analysis begins at t =0, which is the time the
classical evolution begins to make sense. A complete set
of initial conditions for the system is then given by p;, a;,
H;, and R; (the subscript i will be used to denote quanti-
ties at t=0}. We first assume for simplicity the matter

18eH,.~

a(ttt 0) =a;e (2.11)

Although this linearly decaying Hubble parameter means
that the expansion is slower than that of an exact de Sitter
phase, a comoving length will still get pushed outside of
the horizon as a(t)H(t) is increasing in time. This is
sometimes caBed generalized inflation. ' To obtain a
cosmologically significant expansion —say a factor of e
(cf. Linde )—we see that we need only to have
eH; & 4.2, a perfectly natural value in our picture. This
explicitly is the sought-for inflation in the model. When
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ExpansIO~ J» o( )]l j We can thus perfectly well regard H(t ) and R(t ) as the
initial values from which the linear phase begins.

(iii) If R;«6H; I 1+[1+(6tH; ) ')' J, then

and

HR-—
2E

(2.15a)

H= —2H (2.15b)

t[=tm= o 75
t (/p))

FIG. 1. A model cosmology for e=1Ipj, H;=1/pj ', and

R;=0 [corresponding to (i) of case (A) of the text so that

R; = 12.5!p~ 2]—showing typical behavior of the Hubble param-
eter [H(t)/1/p~ '], the normahzed scalar curvature [R(t)/R;],
and the inflation-normalized number of expansion e foldings
[lna(t )/1geH, '].This plot has been generated from a numerical
integration of the field equations (2.4)—(2.7) with zero initial
matter content. The Hubble parameter displays a clean separa-
tion between the linear inAationary phase and the subsequent os-
cillation phase at t =36eH —[1/(2')] =33.61p~ [cf. Eq.
(2.23)]. The slight initial rise in H(t) is real since at the start

H =
6 (8 —12H )»0. For models with a much higher value of

the parameter e (we are observationally constrained to
e» 10"I~~) the linear phase is stretched out to a shallow slope
and the subsequent oscillations are correspondingly reduced in

both amplitude and frequency.

25 t =M6/p[ 50

(2.12b)

Therefore 12H will catch up with R at t~:
I /3

t =5.2
R;

(2.13)

H =H(t )=0.2
1/3

l
(2.14)

Then by Eq. (2.6), H will change sign and then go into the
linear decaying phase of the previous case (i}. The total
expansion accumulated during the initial rapidly rising
period is negligible:

H finally gets small, as shown in Fig. 1, it switches from
the linearly decaying phase into a damped oscillation.
This oscillation will be seen to reheat the Universe.

(ii) What if R;»6H; I 1+[1+(6'; } ')'/ I? From
Eqs. (2.4) and (2.6) it is clear that both R and H will in-

crease rapidly:

1 ~lR= t (2.12a)
12 H;

and

Both H and R will fall rapidly. For a typical value of H
there will not be sufficient inflation before it bounces at
zero. The Universe will go -into the oscillation phase
without having been inflated.

(8) H~ & 0. From Eq. (2.8) we can see that as H~O,
H must also go to zero so that H /H is finite. Therefore,

H is negative if H approaches zero on the negative side.
Thus when H hits zero it will bounce back and remain
negative (on the other hand, a positive H will remain posi-
tive for the same reason). For the case H; & 0 the domain
in consideration wi11 always be contracting unti1 it col-
lapses back to the Planck regime.

(C) R; & 0, H; & 0. From Eq. (2.6) H will be decreasing
rapidly as long as 8 is negative. Since H has to remain
positive as argued in case (B), R will have to cross zero
and become positive. Again, typically the total expansion
in the initial period will be negligible and we arrive back
at case (A).

(D) e & 0. From Eq. (2.5) we see that when e is nega-
tive we have an antirestoring force. Indeed, it is easy to
see that when H; is positive, the solution will go into a
linearly increasing form asymptotic to a slope

1

36m

which is physically unacceptable. When H; is negative
H(t) will be decreasing and will not be interesting as
described under case (8).

We conclude that (i) e has to be positive to give a finite
period of inflation (note that tachyonic solutions would
also exist if e were negative' ). (ii) To study the inflation
we only have to study the case with positive H;. The in-
flation occurs during a period when H decreases linearly
with a slope —1/36@. The total expansion factor in this
phase is given by Eq. (2.11) [with H; replaced by H~ in

(ii) or (iii) of case (A)). (iii) The linearly decaying H(t)
will bounce into an oscillation phase when it approaches
zero. These descriptiorts of the evolution have been veri-
fied numerically.

Now we return to consider the contribution of the ma-
terial term which we neglected in Eq. (2.4). By Eq. (2.3b)
the energy density p of the relativistic particles evolves in-
versely proportional to a . It is then clear that once the
inflationary era begins p will be quickly red-shifted away.
Thus by Eq. (2.4) the effect of p on the evolution is just to
give R an initial kick. That is, if p; is large while H; and
R; are of order 1, then R will quickly rise to

1/2
16m

pi

in a short time. The subsequent evolution is then given by
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(ii) of case (A).
It is nice to see the inflationary solution also by consid-

ering the conformal picture. In the conformal picture the
classical background consists of gravity described by a
scale factor a(t) and a spatially homogeneous scalar field
R(B. They evolve according to

d R 2e dR —dR R(F)
1+2eR di di 6e(1+2' )

J.

and we will refer to the infiated region as "the Universe. "
In the linear phase, eve have, by comparing terms in Eq.
(2.8),

1 1 ~

2—H—«i3HHi.
2 H

(2.20)

As H decreases and becomes small the inequality sign will
eventually flip and we will go over to the oscillatory
phase. Equation (2.8) then becomes

and

(2.16)
~ 1 1 ~

2 1
H ———H + H= —3HH=O.

2 H 12m
(2.21)

(1+2eR )

dR R
6e

(2.17)
If one neglects the 3HH term in Eq. (2.21), the solution is
given easily by

where dt = (1+2sR }'~ddt. It is easy to see that there is
a consistent solution for eR ~~1:

(2.18)

H(t)=const X cos cot,

where

(2.22)

and

R(~) =R;—
3e 6e

(2.19)

Transforming back we find a linearly decreasing Hubble
parameter as discussed above. The fact that in the confor-
mal picture one has a solution as nice as the de Sitter solu-
tion makes the prospect for further analysis very promis-
1ng.

From now on we consider only the case (A) above since
the other cases either lead back to it or are uninteresting

To do better in approximation and in particular to obtain
the damping for the amplitude we have to include the
presently neglected term. We do this by substituting a
form for H( t ) which is H = f( t )cos2rot and then finding
f(t) in the approximation that the damping is slow

f If = 0, ff = 0. The initial value of f is determined
by matching on to the linear phase —that is, requiring the
two terms in (2.20) to be equal at t = t~, the time the os-
cillation phase begins. When this has been accomplished
we determine the following approximate analytic forin for
the whole classical evolution of the Universe in the ab-
sence of matter fields:

H(r)=
H — (t t }, t &t—&r

1

3 3 3—+ (r —r ) + sin2co—(t —t„)
N 4 Sco

cos rd(r —r~), ros &t,
(2.23)

where R(t ) = 0, co=(1/&24@), and r = 36eH +t —[I/(2')] = 36eH~ . A simple approximate solution for
a(t) in the oscillatory phase can be obtained by integrating the H averaged over a few cycles:

T

H (t —t )+(t /72')(2t —t ) —(t /72')

' 2/3
co(t ros)—

ao, 1+—

(2.24)

where a~ =a exp(18'~ =,', ). In the oscillation phase R is essentially 6H [cf. Eq. (2.6)] so that we have

R(r)=.
2

36@

H
(r t )+ (t t —), r &r &t-

9e
(2.25)

co sin2co(t t ), t„&t . —3 3 3—6 —+ (r i, )+ si—n2co(t —t~)—
6) 4 869
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Notice that a(t) and H(t) are matched at t = t„
whereas R(t) is not—otherwise we would have had an ex-
act solution. It is important that the oscillatory phase de-
pends only on the parameter e for size and shape —the os-
cillatory solution has no dependence on the initial condi-
tions except in the time the phase begins (at
t„= 36eH ). Equation (2.24) shows that the scale fac-
tor expands like a matter-dominated universe:
a(t) cc t ~ as —in the post-inflationary phase of the
Starobinsky model' where it is known as the "scalaron"
phase.

III. REHEATING OF THE UNIVERSE
DURING THE INFLATION/FRIEDMANN

INTERPHASE

These oscillations will excite the material fields and
reheat the Universe. To estimate the reheating, we con-
sider the simple case of a scalar field P satisfying

g"'P.q„——0 . (3.1)

The energy density of the scalar particles produced can be
easily determined. I.et

p= fd k(aking +a ktlp ) (3.2a)

and the coordinate energy density p (8/BrI) (where p
=momentum per unit comoving volume) is given by

p„=,f dr) f drl'V(rl) V(i)') f dk(ke~'"'" "') .

1 1 "d dV "d, V(i)')
8 (2ir) o dr)

d'g (3.8)

We restrict attention to a case where V(i) )

=F(rt)sin(k'rt) and the amplitude F(q) for the oscillation
is only slowly varying in time, which is the case for our
present model. Then with k'i) && 1, Eq. (3.8) gives ap-
proximately the energy production rate

k'F (g)cos k'rt
drt 32ir

(3.9)

(3.7)

Note that prior to the inflation V= —,
' a R is many orders

of magnitude less than its value during the oscillating
phase. Also V becomes small after the Universe goes into
the radiation-dominated Friedmann phase [cf. Eq. (3.17)
below]. Thus we can drop the surface terms in evaluating
(3.7) and arrive at

and
k'a4 —,

R (3.10)

u (kx, t ) = Xk(t )—e'ikx (3.2b)
(2ir)

where ak and a k are the usual annihilation and creation
—1operators. In terms of the conformal time rt—: a 'dt,

0
Xk satisfies's

Here R denotes the scalar curvature (2.25) with a m. /2
phase shift in the oscillating factor and the scale factor
a(t) is given by (2.24). The proper energy density,

p—:
~ p (8/Bt),1

a
d Xk

, +k'&k=~&k
d'g

where

is determined by

dp 1 dS'g NR= —4pH + = —4pH +
dt Q 1152m. ' (3.11)

V= —,a R.1 (3.3b)

As we shall see, the typical wave number k which
enters our calculation is much bigger than one whereas V
is of order one at early times (r) —0). Therefore, the
wave is essentially living on a flat background at early
times and the positive-frequency mode is then given by

2k
(3.4)

Now we follow Zeldovich and Starobinsky' and rewrite
(3.3) as an integral equation:

Xk(rl) =Xk ' '+ —f V(i)')sin(kg krt')Xt, (rt')dr)' . —(3.5)

1 co R
3 1152~ H

(3.12)

The complete field equations with the back reaction of the
particle generation included can be estimated by putting
this p and p [Eq. (3.11) and (3.12)] back into the field
equations. The t tpart of Eq. (2.1) b-ecomes

where co = k'/a = I/&24' is the angular frequency of
the oscillation in proper time and is given by (2.23).

When the final term in (3.11) vanishes at late times we
have d(pa )/dt = 0 as radiation with an equation of
state p = —,

'
p should give. %hen the R term is nonzero

the equation of state is modified. The pressure of the par-
ticles is determined by Eqs. (2.3a) and (3.11) to be

For a first-order iteration, we substitute gk ' in the in-
tegrand of (3.5) for Xk(i)'). At asymptotically late times
the Universe will be flat again and the positive frequency
mode function is again given by (3.4). Hence the Bogo-
liubov coefficient describing the particle production is
given by

H +2c(HR —„R +RH ) = —68m

a4

X f ' R'a'dt
'os 1152m

8m
Gpmatter(t ) (3.13)

13kk =~kk f2k
(3.6)

and the trace of Eq. (2.1) gives
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jj 3' 1 g 4&6%
+66

Q)R

1152mH
(3.14) TF ( 1X10' GeV

' —3/4

~ 1/4 (3.19)

T, = 3X10 /v e = 4X10' GeV
11pi'

—1/2

(3.15)

If e is not too much bigger than one this particle produc-
tion time scale may be shorter than the thermalization of
the particle content. Still, the reheating temperature, T„
is a useful characterization of the reheating energy (we
will, however, show that e must be indeed large). If this
temperature were higher than the GUT phase transition
temperature, we would be left with the monopole prob-
lem. If this temperature were too cool then baryogenesis
may no longer go through. %e will return to this point
shortly.

When t t ~y I/—co, the time dependence of p «t„ is
given by

3 32 ¹o

where we have insertai a factor X which denotes the
number of fields that can be excited by the cosmological
oscillation (since massless conformal fields will not be ex-
cited this X will be less than the total number of particles
in the theory).

The right-hand side of Eq. (3.13), 8n.cpm««, /3, can
be estimated using (2.24) and (2.25). Not too long after the
Universe has come into the oscillation phase, say at
r t ——10/ro = 10''24m we have p = 6X10 N/e,
which corresponds to a reheating temperature of

Notice that the ways T, and TF depend on e are different.
It is clear that any constraint on TF will not be signif-
ican. There are important constraints on T„however. It
must be higher than 10' —10' GeV so that gauge and
Higgs bosons can be created and baryogenesis can proceed
in the usual way, but lower than any GUT phase transi-
tion temperature —10' GeV so that the monopole prob-
lem can be avoided. Equation (3.15) then requires e to be
in the range

103/F12 & 6 & loi2 1015 lpl (3.20)

+ 12 OOOE3/2/GX

' 2/3

(iii) The Universe will then go over to a radiation-
dominated Friedmann phase with the temperature TF
given by Eq. (3.19). To red-shift this to the present value
of 3 K we must have an expansion factor

' 3/4

5 )( 1029 ~1/4
3K

These bounds will be tightened when we consider pertur-
bations generated in the inflationary phase. We summa-
rize the classical evolution of the Universe as follows.

(i) A homogeneous and isotropic region near the Planck
time with a Hubble parameter H wi11 expand with a
linearly decreasing H for a total expansion factor
—exp(18' ).

(ii) Particles will be created during the oscillation phase.
The total expansion factor during this time will be

T

If we now neglect the back reaction, H at late times is
given by (2.23) to be

4 1H 9(r —t )' (3.16)

Hence at (t t„) = 1200—@i~2/GN the term on the right-
hand side of (3.11) will be comparable with H and the
matter produced will begin to have a significant dynami-
cal effect on the evolution of the Universe. The solution
of Eq. (3.13) gradually goes over to a radiation-dominated
Friedmann expansion with

0 0 tip 2 and 1/t2
2i ' (3.17)

p(t~) & 4x10 'GN'/e' (3.18)

and the Friedmann universe thus begins with the tempera-
ture

However, the transition from the oscillation phase to the
radiation-dominated phase will be slow even after
8+op,«„/3 is comparable to H as a numerical integra-
tion of Eq. (3.13) shows. We estimate the time it takes for
the Friedmann phase to begin by taking roughly 10 times
this value so that the time the Friedmann phase begins is
given by tz & t +12 000 e /GX. The energy density
will then be

Therefore, the total expansion since the Planck era is ob-
tained by multiplying the expansion factors under (i), (ii),
and (iii) and it should be greater than the present horizon
size, where 1/Ho —10 lpi. This requires in terms of the
expansion factor

H
~ 2)( 1029

1IP1
(3.21)

IV. GRAVITATIONAL %'AVE GENERATION

It is crucial to study the generation of gravitational
waves in the model since it is well known that inflation
close to the Planck time tends to yield excessive gravita-
tional wave generation. ' ' ' In the transverse-traceless
gauge, a gravitational wave can be expressed in terms of a
scalar amplitude, h. For a wave with wave number k the
metric can be written as

(where we have dropped a very weak dependence on e, and
have set E = 100 as a typical value —also with a weak
dependence). The expansion factor is very sensitively de-
pending on eH so that unless the initial parameter, H~,
is fine-tuned the left-hand side of Eq. (3.21) is likely to be
very much bigger than 10 . %'e thus expect to have
much more inflation than is necessary.
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ds = —dt +ai(t)(5J.+hej. )dx'dx', (4.1)

where ij = 1,2, 3 and e,J is the polarization tensor satisfy-
ing both the transverse condition e,&kJ = 0 and the trace-
less condition e = 0. The field equation (2.1) then
reduces to

hk ——hk exp —~k(i) . df
0

(4.10a)

large parentheses in Eq. (4.9) is of order 1 as t —+0 and is
thus negligible compared to k/a. Once again we are con-
sidering a wave evolving on essentially a fiat background.
Thus, the initial mode function can be chosen as

6 (1+2eR H ai (4.2)
L

and the normalization hk"' is determined by Eq. (4.5) to
be

where

L, =(1+2eR)gi'"B„hap (4.3b)

[here we use the background metric of Eq. (1.1) (with
~ = 0) to compute the qiuuitities v' —g, g&„, and R].
The quantization condition is then

BL()G5(xg)
'ah

For I. given by Eq. (4.3b) we have

x-
[h(t,x),h(t, y)]=iG

a (1+2eR)

(4.4)

(4.5)

[note that the additional factor of 1/(1+2eR ) in the nor-
malization enters because of the eR term]. It is straight-
forward to check that the evolution equation preserves
this commutation relation.

If h is composed of modes of more than one wave vec-

tor, it can be written as

ikx ~~ e —i'h(t, x)=fd'k(akhke' +akhk'e ' ), (4.6)

The second term in the large parentheses is due to the
presence of the eR term in the gravitational Lagrangian.
Other than this term h(t) satisfies the same equation as
an ordinary scalar field in a Robertson-Walker back-
ground. Since Eq. (4.2) is second-order in the space-time
derivatives, the quantization can proceed in the usual way.
We construct an action S from which (4.2) can be derived:

(4.3a)

fh "'/=
v'2k (2~)'"a(1+2eR )'" (4.10b)

(4.11)

where th, denotes the initial horizon crossing time in the
linear phase. At that time H ——1/36e, so we have

eR(th, ) —12eH'(th, ) . (4.12)

%e assume waves which reenter the horizon at late times
have left the horizon during the inflationary epoch so that
2eR(th, ) » land

k (4.13)

Notice that the spectrum is fiat. Comparing to the hT/T
limit for the microwave anisotropy ' we have

In the linear phase a(t) is rapidly increasing so that the
wave is soon well outside the horizon (i.e., k g&aH) and
the third terin in Eq. (4.9) becomes negligible so that hk

approaches a constant. This constant can be estimated by
extrapolating (4.10) to the horizon crossing time. hk then
remains at this value until it finally reenters the horizon
in the Friedmann phase. This "freezing out" of the gravi-
tational waves often goes by the name of amplification
since it is amplification above the adiabatic behavior [Eq.
(4.10)]. The amplitude of the gravitational wave of wave
number k at reentry is thus given by

i/GH(th, )
~k =(2'irk )'"

I hk(the) I
=

2[1+2eR(th, )]'~'

with the creation and annihilation operators satisfying the
usual relations

[ak, ak ]=5i(k —k'), etc. (4.7)

Then Eqs. (44) and (4.5) determine the normalization for
(4.6):

or

2k= (v 7X10

e) 3X10 Ip]

(4.14)

(4.15)

hkh k
—hkhk ——

(2n) a (1+2eR)
The evolution equation for hk is then

r 2' . k

(4.8)

(4.9)

Now we consider a wave with wavelength equal to or
smaller than the present horizon size, 1/Ho. If the expan-
sion factor in the linear phase is much greater than the
minimum requirement (3.21) [cf. also text following
(3.21)] the wave number k of these waves will be much
greater than I. On the other hand, the term inside the

which tightens up the bound (3.20) somewhat. Unlike
usual inflationary models, it turns out that the microwave
measurements constrain not the value of H(tq, ) but rather
the value of e. This is due to the fact that the quantiza-
tion condition (4.5) is modified by the curvature-squared
coupling.

In the conformal picture we arrive at the result quite
easily due to the de Sitter background. Note that the can-
formal transformation maps backgrounds, but leaves the
perturbations unchanged: A = A, so we have by conven-
tional means

(4.16)



MILAN B. MDIC, MICHAEL S. MORRIS, AND %AI-MO SUEN 34

which leads to e & 7&10 Ip~, agreeing with the above
limit (4.15) to the order of approximation we are using.

Note that in this picture one matches the amplitude at
aH = k, while the true perturbation crosses the physical
horizon at aH = k. However, the difference between the
two is O(R/R ) so that with the same accuracy one has
obtained the de Sitter solution one can safely evaluate the
perturbation at aH = k.

A comparison between the two pictures sheds more
light in understanding why the final result does not de-

pend on Hh, as in the usual case. In the standard calcula-
tion one can estimate the amplitude of the wave by requir-
ing that the expectation value of the total energy of waves
within the horizon equals the zero point energy of quan-
tum fluctuations E = (I/2)ro = (I/2)(k/a):

1

64+6@ 1

2'
1 dR

2 1+6'
R

(5.2a)

—1

64+Go
1

1

2'
1dR '

. 2 1 —6e
R

However, it is not really one, as can be seen by its stress
tensor. We may use the stress-energy tensor given by Eq.
(1.4b) to find the background energy density and pressure
during this expansion phase (when the matter content is
negligible):

, (p&=~ . (4.17) (5.2b)

The amplitude of the wave at the horizon crossing is ob-
tained by extrapolating this relation to th„which gives
A 0: Hh, . Now in conformal space where the gravity is
pure Einstein and the stress tensor for gravitational waves
has the usual form one imposes

5+ 1)+542) (5.3a)

where, in particular, to leading order in I/(eR ) we have

For a scalar wave perturbation of wave number k, we
can fin the linear and quadratic corrections to the energy
density:

, (p&=& . (4.18)

(4.19)

Since Q = (1+2eR ) = 24eHh, we have that the Hubble
parameter drops from the final answer.

V. SCALAR PERTURBATIONS

As is usual in inflationary models, rather stringent con-
straints on the model parameters arise from present obser-
vational limits on scalar perturbations. In our model sca-
lar perturbations are generated by quantum fluctuations in
the scalar curvature around background values. A major
obstacle to evaluating these fluctuations is that we are
dealing with a fourth-order gravity in which the quantiza-
tion is not easy. We thus avoid the problem by working in
the conformal picture. In the conformal picture there is a
neat separation of the degrees of freedom and the back-
ground is the de Sitter solution so that our result is easily
obtained. From the action (1.5) we obtain a field equation
for 5R which is full of nonlinearities. However, we may
make use of the fact that during the inflationary epoch eR
is large (eR = 12eH ) 20, where physical quantities are
without tildes, conformal quantities have tildes) and the
field equation reduces in this exponential expansion phase
to

However, this relation is not conformally covariant as
Q

—'~~H, E=Q '~iE, and p = Q 'p [here 0 is the
conformal factor = (1+2eR )]. So, in terms of the physi-
cal 0 and R this relation reads

T 2 2
3 k QR

16m6 g R
(5.3b)

Now we proceed in determining the mean-square quan-
tum fluctuations of 5R (i.e., for waves much shorter than
horizon) from the fact that their energy is just the zero-
point energy. That is,

1 ()) (2) — 1 k
(5p +5)-. )=Z= ——.

H 2 a
(5.4)

We evaluate Eq. (5.4) using (5.3) for scales much shorter
than the horizon. The expectation value (5p'") is zero
and we obtain

(5R p) 8irG A:
2

(5.5)

Finally, we extrapolate this to the horizon crossing of the
fluctuation, where it is physically matched to the classical
post-horizon-crossing amplitude by

~
Mh,

~

= 2(5R ),
so

2+6
3 E'

' 1/2

=4 Hi„ . (5.6)
E

~-5(")=2u5r=2u "'
—2
Q

f5Rh, f
(5.7)

Now we may determine the metric potential A due to a
classical wave of amplitude

~
5Rh,

~

using the "time-lag"
method of Guth and Pi:

d (M) —d(M)
dt dt

(5.1)
If we now plug (5.6) into (5.7) we obtain

1/2

(5.8)
That is, 5R evolves like a minimally coupled scalar field.



THE R2 COSMOLOGY: INFLATION VGTHOUT A PHASE. . .

(1+p/p)

T

2 k 1
+CH 1+—

aH ( I+@/p)

where (I)tt is now a gauge-invariant metric potential given
by

(1) da r —j4& ——4mga V' T- —3a V T-J -.tt
dt ),j (5.10)

We stress that this is the asymptotic value of the metric
perturbation at the end of the inflationary phase and
therefore gives the magnitude of the inhomogeneities in
the subsequent Friedmann evolution.

Alternatively, we proceed more cautiously using the
gauge-invariant formalism of Brandenberger and Kahn.
We neglect the effect of sources outside the horizon so
that we may use a quantity, g, as a conserved gauge-
invariant expression between horizon crossings:

d@H
40 +H

We may now drop the tildes at reentry since during this
late phase the conformal factor is = 1. We have

35
k. .«= 9 @'0(t. .«)=4.

and finally the metric potential after reentry is
' 1/2

@H(t. .«)=
3

78 2' 6
(18eHh, ) .2

35 e

(5.15)

(5.16)

~hcHhc k ~ reentryHreentry ' (5.17)

We plug into this our evolution law (2.23)—(2.24) assum-
ing of course that the initial horizon crossing occurs dur-
ing the linear inflationary phase of the model and we ob-
tain

We see that C)»(t, „«) —A [here A is given by Eq.
(5.8)] to within numerical factors. In the Hh, factor we
have some weak scale dependence in the perturbation
spectrum. In fact, the spectrum is scale invariant up to a
logarithmic term as in the case of standard inflation. We
calculate this dependence in the following way —at both
the initial and final horizon crossings we have in the
physical space

—2 ' (1) .
Here 7 is the inverse I.aplacian and T„„ is the first-
order perturbation in the stress energy. We may calculate
from (1.4b) to leading order in I /(eR ) (that is, during the
inflationary epoch after the horizon crossing so that the
wave is fully classical),

Hh, ——H0 hc (3 3 1031)
0

' —1/12

~—.5/12 (5.18)

(1) ~1) 1 1 5R
64rrGe eR

(5.11a)

hc
2O 5p~"

+
(p+p)

——1 d5p"
dt

(p+p)

35~"
+

P
(5.12}

where 5p
" is now calculated in (5.11a) from the classical

amplitude
I 5Rhc I

in Eq. (5.6). We may find ghc by put-
ting (5.1 la) and (5.11b) into (5.12):

26 2+64.=39&
I 5Rh. I

=
3

1/2

(18eHhc ) . (5.13)

This fixes g at the initial horizon crossing, which quantity
is roughly conserved until reentry. At the reentry of the
scale of interest, the Universe wi11 be in a matter-
dominated Friedmann phase (p = 0) and we may use the

8Friedmann equation at reentry, H = —,n Gp, to find

and from the stress energy (1.4b} we find, again to leading
order (this term is the same order as the first, contrary to
Brandenberger and Kahn )

(1)
(5.11b)

a dt

We have then at the horizon crossing of Eq. (5.9),

where H() is the Hubble parameter today (we use
HD ——50 km/sec Mpc ' = 3)&10 6'lp) ' and ko is the
scale which crosses the horizon today). From this equa-
tion we may directly exhibit the logarithmic scale depen-
dence of the perturbations:

A2 ='1— k2
ln

18tHh, k1
(5.19)

We note that Eq. (5.18) for a given scale of observational
interest completely fixes the horizon crossing Hubble pa-
rameter in terms of the model parameter e. That is, the
metric potential, A, given by Eq. (5.8), again for a given
scale, is only dependent on e. Scales which are inside the
horizon today are bounded by the microwave anisotropy
limit~' so that A & ~7)(10 and k, „«/ko ——1. We
have

Hhc(kclust«) =2&& 1o 'lp) ' »«(7X 10 lp)' . (5.21)

Hhc«0)=5&10 'lp) ' »d e&1XIO"l»'. (5.20)

If we want this primordial sp(x:trum of density fluctua-
tions to be a successful seed for galaxy formation and we
use a standard value for the scalar perturbation amplitude
of —10 ~, then essentially our bound in (S.20) would
change into an equality. If, however, we choose a dif-
ferent scenario that is less constraining in which

& 10 for scales k,~„«/ko —150, we have

gQ 1)
C'a(t. .«}=—

2 p
(5.14) The bound (5.20) tightens up (3.20) considerably—

although this number is only to be taken as very rough.
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VI. PRESENT BOUNDS ON e
AND POSSIBLE ORIGINS

It may seem that the condition e ~ 10"lp~ places a
very large unnatural limit on e, which in terms of Planck
units it does. We would like to point out that in terms of
any presently measured curvature this is really quite
small.

We can manipulate the field equation (2.1) in the usual
way to get

A 4m.G(ps+ 3ps) =3—HO (cr qoo) „

where

(6.1)

3e R 2ps—= —RH —RH
4mG 12

(6.2a}

Notice also that 18e[Hh, (ko)]i = 45 so that the early
evolution for H(t) & Hh, (ko) —5)& 10 Ip~

' is ir-
relevant to all present observation. Putting it another way,
with initial conditions of order Planck our model predicts
that the Universe has been expanded something like
2X 10' e foldings and the observable part of the Universe
will be the same for many future generations.

The scales which cross the horizon at
Hh, & Hb = 1/(12V2mGe} have perturbations bigger
than one today. From Eq. (5.20),

Hg & 10 lp)

If H & Hq that simply means that one has at scales
much larger than the present horizon fluctuations which
cannot be treated in linear theory. Of course, H can as
well be less than Hs—it is bounded below only by
Hh, (ko). The requirement that the perturbations are small
at the initial horizon crossing so that the use of perturba-
tion theory is justified leads to only a very weak constraint
on e—well within our other bounds.

Interestingly, all these numbers tell us that there is one
characteristic mass scale present in the theory as
Hh&(ko) e 10 Ip~ . Perturbations in an in-
flationary model with a massive scalar inflaton have been
considered by Halliwell and Hawking, 2~ using the full
wave-function formalism. They found that compatability
with observation restricts this mass to be less than
10' GeV. As we have seen, the scalar curvature does
obey an equation for a massive scalar field of mass
—1/v 6e. So we see that despite the unusual self-
couplings present in the eR theory, the physical analogy
works remarkably well.

Finally, from Eqs. (4.13) and (5.8) the neat result fol-
lows that the contribution to the microwave anisotropy of
the scalar fluctuations overpowers that from gravitational
waves by a factor 18e[Hh, (ko)] —45. This is the reason
that the bound on e is much tighter from considering sca-
lar perturbations.

This is the usual equation which is used to set a limit on
the cosmological constant A in terms of the presently ob-
served Ho (the Hubble parameter), oo (density parameter),
and qo (deceleration parameter). If we assume A = 0 we
thus obtain a cosmological limit on e:

a&10' /p] . (6.3)

Similarly one can consider a limit on e by asserting that
eR is small in all horizon-exterior curvatures encountered
presently in our Universe. We may use for R typically
M/r and go to the gravitational radius of a black hole.
Then eR ««1 requires only

'2

~««1077 l 2 (6.4)
0

This, of course, is a bit of a swindle because a black hole
is also a solution of eR gravity' so that R = 0 and e
will have no effect. We conclude, though, that
e = 10"Ip~ in terms of any presently encounterable cur-
vature is very small.

We have not as yet addressed the question of the origin
of the e term. Basically, there are three ways that one
might imagine it arising. First, it may be that the full
fourth-order theory should be postulated as fundamental.
Such a form is naturally suggested if one thinks about
gravity as the gauge theory of the Poincare group.
Furthermore, the eR terms in the field equations violate
the strong energy condition so that the initial singularity
might be avoided. ' It has also been shown that such a
theory is renormalizable. And the long-standing objec-
tion that it is nonunitary might not be true. Second, it
may be a remnant from some more fundamental theory.
For instance, in superstring theory the Lagrangian of the
point-particle limit of the ten-dimensional full string
theory contains the following terms:2

I.=R+ +b Ra+1
3

(6.5)

where V6 is the compactified volume of the six "other"
dimensions and P is the vacuum expectation value of a
scalar field known as the dilaton. We see that this might
directly give us an eR behavior even classically in the I.a-
grangian with a completely determined e. However, the
highly preferred values for a and b are a = —4, b = 1

and then e = 0 at the classical level and there is no R
term in superstring theory.

Nevertheless, e should also be expected to arise in a
third way —as a quantum effective action correction to
the bare theory. Here, the specific fields will contribute to
its value. Indeed, this is the approach of Starobinsky. ' As
a quantum correction term e would be given by

R""&Rp„@+aR"R~„+bR

where a and b are constants. After compactiflcation this
leads to

RR+2RH+' -RH'-'",
4mG 12 Q

(6.2b} high cutoffA
e —Gln

~low cutoff
(6.6)
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and we would again be forced to consider a higher, more
complete theory to fix e.

VII. CONCLUSION

%e thus conclude that at a classical level a cosmology
based on the 8 + eR Lagrangian generically has an in-

flationary phase with a linearly decreasing Hubble param-
eter. The total number of expansion e foldings during this

phase is —18' (if R; = 0, then t; = 0 = t ).
After the linear decaying phase H(t) bounces off zero and
the Universe goes into an oscillatory phase. The total ex-

pansion is sufficient to solve the horizon and flatness
problems if 18'~ p 75. At the classical level this is a
natural and consistent model that relies solely on a modi-
fied gravity for its dynamics. Here, the quadratic correc-
tion to the Hilbert-Einstein action would be expected to be
present somewhat independently of the specific form of
the matter Lagrangian (although a value for e must neces-
sarily come from a higher theory).

The post-inflation oscillatory phase yields a maximal
reheating temperature which is small:

—1/2

T„= 1.2X1012 GeV
1011I 2

in any case very much below any expected GUT phase
transition so that the monopole problem is avoided by the
eR -driven expansion. Standard baryogenesis still may go
through at this temperature but the details of this on the
nonstandard background will require further attention. Fi-
nally, there is a join to a Friedmann phase at a tempera-
ture

TF & 6X10 GeV
1011I 2

' —3/4

~ 1/4

when the evolution goes over to a radiation-dominated ex-
pansion.

Gravitational waves and scalar perturbations both yield
bounds 'on the parameters of the model when we must set
them small so as not to disturb the isotropy of the mi-
crowave background. The bound from gravitational
waves is e & 10 Ip1 with no restriction on Hh, as would
occur for the standard inflationary scenario. This spec-
trum of gravitational waves is scale invariant. However,
the scalar perturbations give the much tighter bound of
e & 10"Ip1 and this in turn implies that the perturbation
scale which reenters the horizon today must cross the hor-
izoil at Hh (ko) 10 Ip~ —tllat is, at a late stage of
the extremely long linear phase. The spectrum of scalar
perturbations has only logarithmic dependence on the
scale. If one wants baryogenesis to proceed in the usual
way there is an upper bound e & 10' Ip1 . A similar
bound follows from a comparison between galaxy forma-
tion and the microwave anisotropy in models of galaxy
formation with cold dark matter. However, these con-
siderations both carry their own difficulties so that we
place somewhat less emphasis here on the upper bound.
Our condition of sufficient inflation requires that
H & 10 lp~

'—that is, we find that our model would
work for essentially all reasonable initial conditions. %'e

and

R;
a; —0.06hp,

4000lp1

' —1/2

0; —20lp,

' 1/2

40001

(and t; = t = 0). These numbers are sufficiently dis-
tant from the horizon crossing of interesting perturbations
that the wave function offers no conflict with our lower
bound on H~. We thus find the classical evolution to be
generally independent of initial conditions. The one
remaining question is whether or not there will be a long
quantum gap separating the tunneling point from the on-
set of the classical model. That is, are quantum fluctua-
tions large for an extended period during early times?
This of course must be answered by the wave function it-
self. Also, after doing this further calculation we can
determine whether the inflated portion of our present
Universe is the whole Universe or only a fluctuated bubble
part of it as in Linde s chaotic inflation picture. We note
now only that the initial parameters preferred above indi-
cate that the tunneled universe is strongly quantum.

The model we are considering has a lot in common
with the Starobinsky model. ' %'hile our work was carried
on, papers by Starobinsky, Kofman, Linde, and Staro-
binsky, ' and Vilenkin appeared from which we also
learned about earlier work. All of these papers treat the
Starobinsky model in considerable detail so that we would
like to comment here about similarities and differences
between cosmologies based on Eq. (1.2) and the Starobin-
sky model and also to discuss our results in relation to
this other work.

Starobinsky considers a model in which the one-loop
quantum corrections to the matter stress-energy tensor of
a conformally coupled scalar field are used as source
terms for the Einstein equations. At the Lagrangian level
this introduces a new parameter, 0&, and a new term to
Eq. (1.2), (1/Hs )R ln(R /p), where p is some renormali-
zation scale. The important point is that Hz is completely
fixed by the number of degrees of freedom which give
quantum corrections: for example, H& —0.7Ip1

' for
minimal SU5. There is an exact de Sitter solution in this

thus conclude that the eR model satisfies all require-
ments for a realistic inflationary model as long as e is
large enough.

To investigate the very early phase we have attempted a
preliminary wave-function calculation by solving the
%'heeler-DeWitt equation to WKS approximation subject
to a tunneling boundary condition in the manner of Vilen-
kin. We thus obtain peak values for the wave function
assuming a closed (a. = + 1) universe of (a ) —0.056lpi,
(R ) 3800/pi, and (H ) —18lp~

' independent of e
(the details of that calculation will be reported in subse-
quent work). We interpret these as typical of the tunnel-
ing values for the Universe into the Lorentzian/classically
allowed regime. Also, the peak is not very strong so that
these numbers end up only as bounds. That is, we might
say

8; & 4000/p1
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case with H~ being the initial Hubble parameter. This
solution is shown to be unstable' -offering an exit from
the infiationary phase. Vilenkin has shown by a wave-
function calculation that there will be sufficient inflation
in the de Sitter phase. For an initial 0; not bigger than
Hs, H(t) will decrease in time. When H(t) ~~ Hs the
decrease will be linear with time and the subsequent evo-
lution should be the same as m the prese~t 8 model. In
comparison to the Starobinsky model, our work shows
that the initial de Sitter phase is not necessary. %e have
shown that a generic solution of the field equations will
have sufficient inflation based solely on the R term. We
have analyzed the reheating in the oscillation phase, show-

ing that it is characterized by two different temperatures.
The reheating temperature, T„ is much higher than the
temperature, TF, when the Friedmann phase begins. We
have analyzed the metric perturbations both in the confor-
mal picture and using the direct approach. The results ob-
tained essentially agree with those obtained in the Staro-
binsky model. '~ These results indicate that the part of
the expansion which is relevant for present observation
happens at H(t) ~ 10 lp~

' and cannot be due to the de
Sitter phase of the Starobinsky inodel. Finally we note
that as the two models have very different early stage evo-

lution the wave function calculation yields very different
initial parameters.
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