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Following Israel’s study of singular hypersurfaces and thin shells in general relativity, the com-
plete set of Einstein’s field equations in the presence of a bubble boundary X is reviewed for all
spherically symmetric embedding four-geometries M *. The mapping that identifies points between
the boundaries £+ and X~ is obtained explicitly when the regions M+ and M ~ are described by a
de Sitter and a Minkowski metric, respectively. In addition, the evolution of a bubble with vanish-
ing surface energy density is studied in a spatially flat Robertson-Walker space-time, for region M~
radiation dominated with a vanishing cosmological constant, and an energy equation in M * deter-
mined by the matching. It is found that this type of bubble leads to a “worm-hole” matching; that
is, an infinite extent exterior of a sphere is joined across the wall to another infinite extent exterior of
a sphere. Interior-interior matches are also possible. Under this model, solutions for a bubble fol-
lowing a Hubble law are analyzed. Numerical solutions for bubbles with constant tension are also
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obtained.

I. INTRODUCTION

In the last few years, vacuum phase transitions have
been a subject of great interest because of their notable
implications for cosmology.! The transitions are triggered
by the nucleation of true vacuum bubbles that expand
converting a false vacuum into a true vacuum as they
grow.

The problem of the growth of these bubbles, with a
complete consideration of gravitational effects, seems to
be extremely complicated. The analysis of Coleman and
De Luccia® on vacuum decay shows that gravitational ef-
fects are not negligible in the bubble’s growth. Recently,
Lake® and Berezin, Kuzmin, and Tkachev* have discussed
the evolution of a single bubble, where the bubble is ideal-
ized as a thin spherically symmetric shell. Collisions of
two bubbles have been investigated by Hawking, Moss,
and Stewart’ in a flat space-time, and by Chao® with the
inclusion of gravitational effects. However, despite its
importance, the problem of the junction conditions on
phase separation boundaries has been hardly discussed.’
In particular, there has been no study of the mapping that
identifies points in the bubble’s wall (in general, the
space-time is described by different metrics inside and
outside the shell).

In this paper we shall study a single bubble as a phase
separation wall. In order to apply Israel’s formalism of
singular hypersurfaces and thin shells,® we will assume
that the “thin wall” approximation holds through the evo-
lution of the bubble. (This assumption is not valid for
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bubbles in the new inflationary scenario.”) We begin in
Sec. II with a review of surfaces of discontinuity. Special
care is given to the continuity and discontinuity behavior
of tensorial quantities since, in general, the two disjoint
submanifolds Mt and M ~, into which the space-time is
divided by the hypersurface, have mutually independent
coordinate charts. We also recall the complete set of
equations to solve Einstein’s equations in the presence of a
hypersurface of discontinuity. Our study of a bubble will
be based on this set of equations with two main purposes:
to investigate the history of the wall and to obtain the
mapping that effects the join across the hypersurface.

In Sec. III the formalism for surfaces of discontinuity is
applied to spherically symmetric shells. The equations
that completely determine the history of the bubble wall
are obtained in a form similar to those of Lake.’ As a
first example, we investigate a vacuum bubble; that is, a
bubble that materializes in the decay of a false vacuum.
In particular, we obtain the explicit form of the mapping
that identifies points in the wall of the shell. It is found
that this mapping can be extended beyond the event hor-
izon of the de Sitter space-time in which the bubble is im-
mersed.

In Sec. IV we consider the case of a nonvacuum bubble
when the space-time is given by a spatially flat
Friedmann-Robertson-Walker (FRW) metric. We sup-
pose that the bubble has a vanishing surface energy densi-
ty, which leads to the conservation of energy and momen-
tum flux across the wall (detonation wave approximation).
In addition, there is a nonvanishing vacuum energy in
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M, and the medium in M ~ is radiation dominated with
a vanishing vacuum energy. It is found that the spatially
flat FRW space-time and vanishing surface energy density
assumptions lead to a bubble with “worm-hole” charac-
teristics. That is, the bubble joins either exterior or interi-
or regions of spheres with radius equal to that of the bub-
ble. We discuss the evolution of such a bubble in the case
that its expansion follows a Hubble law. In this case, the
demand of finite-wall tension coincides with the imposi-
tion of the weak-energy condition in M * and requires the
radius of the bubble to be finite and larger than the event
horizon in M ~ throughout its expansion. In addition, the
region Mt experiences an inflation era as we approach
the maximum radius of the bubble. Finally, we obtain nu-
merical solutions for bubbles with constant tension. We
find that depending on the worm-hole matching, on the
negative or positive tension, and on the other initial data,
the bubble after nucleation could expand forever, shrink,
or grow up to a maximum radius and then contract.

II. SURFACES OF DISCONTINUITY

Following Israel’s study of singular hypersurfaces and
thin shells in general relativity,8 we shall use the Gauss-
Codazzi formalism to obtain Einstein’s equations in the
presence of stress-energy sources confined to three-
dimensional timelike hypersurfaces (surface layers). Spe-
cial attention is paid to the continuity and discontinuity
behavior of the quantities across the hypersurface since,
besides the dynamics of the hypersurface, we will be in-
terested in the match of the two submanifolds into which
the space-time is divided. We will review the set of gen-
eral equations that solve Einstein’s equations for an arbi-
trary hypersurface, and later we will apply this set to the
spherically symmetric case.

A. Metric continuity

Let = denote a three-dimensional timelike hypersurface,
which divides space-time into two disjoint four-
dimensional submanifolds M *,M ~ with boundaries =%,
3~ and metrics g, g4, respectively (latin indices take
the range 0,1,2,3). In order to have a unique intrinsic
geometry at =, both g,;; and g, must induce the same in-
trinsic metric on X; in other words, the metric must be
continuous across the imbedded hypersurface, which
means that distances measured on £+ and 2~ must agree.

It is very important to point out that great care should
be taken whenever one speaks about continuities or
discontinuities of tensorial quantities because, in general,
mutually independent coordinate charts, x, and x,”, are
introduced in M+ and M ~. For any tensor A, with at
most a simple discontinuity at =,

[4,](P)= lim A5(Q)— lim A (R)
o—-Pt R—P~

and

[4p](P)= [ lim A43(Q)+ lim AG(R)]/2

QP+ R—P—

are the jump and mean value, respectively, where
Ptex*, P~€X”, and Q—P*,R—P~ through
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M™ M~ respectively. The above expressions will only
be meaningful and in particular, will transform correctly
in a tensorial way if there exists a mapping .#:3+* >3~
whose derivatives will in the usual way relate components
relative to the two coordinate systems in the surface X,
i.e., Pt —P~. The condition of continuity of the metric
can be stated then as [g,,] =0.

The three-metric intrinsic to the timelike hypersurface
2 is given by

hap =8ap —Nalp » 2.1

where n, is the unit normal to X directed from M~ to
M™*, n, is everywhere spacelike (n°n,= + 1), and
hy=g%h,, is a projection operator into the subspace =.
As usual, the metric g,, defines a connection on M, and
we will denote covariant differentiation with respect to
this connection by (;). In a similar way, the induced
metric h,, on = defines a connection; covariant differen-
tiation with respect to this connection will be denoted by
(.

The second fundamental form of 3 or extrinsic curva-
ture K,;, of 2 is then defined by

Kpy=ngp=Kps » (2.2)

where the sign of K, is in agreement with the convention
employed by Israel,® but opposite to the convention of
Misner, Thorne, and Wheeler.!°

In terms of the intrinsic and extrinsic curvatures of X,
the Einstein tensor has components

Gun®n®=—CR +K,,K®—K?) /2, (2.3a)
Gochgn®=K; y—K |4, (2.3b)
Goghthf =G — (Kog —hogK)*hihf— KK
+(K2+ K 4KDhyy /2—niny
+n(g 0 —ha(n*)c s (2.3¢)

where >R and 3G, are the Ricci scalar and Einstein tensor
of the three-geometry h,, of X, respectively, with K=K/
and ( )*=( ).,n° Equations (2.3a) and (2.3b) are the so-
called contracted Gauss-Codazzi equations.

B. Discontinuity behavior

Although it was assumed that the metric g,, contains
no jump discontinuity or 8-function singularity, the ex-
trinsic curvature K,, may have a singularity. Since K, is
roughly the normal derivative of the metric, 6-function
singularities in K,, correspond to discontinuities of the
metric and therefore are excluded here. However jump
discontinuities in K,,, corresponding to “ramps” in the
metric, are possible. This implies that the Einstein tensor
(2.3) (second derivatives of the metric), and so the energy-
momentum tensor 7,, on M, can have a jump discon-
tinuity and/or a 8-function singularity due to a possible
jump discontinuity of the extrinsic curvature K.

C. &-function behavior

To discover the effect of the stress-energy tensor S, of
3 on the space-time geometry, one must perform a “pill-
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box” integration of Einstein’s equations Gg,=287T,,
— Aggp across 2:

3
Sop= lim [ [Tup ~8apA/8)dn
. b3
=(1/8) lim [ ~, Gadn (2.4)

where 7 is the proper distance through 2 in the direction
of the normal n,. In the absence of & functions and jump
discontinuities in g,,, and of 8 functions in K, the Ein-
stein tensor (2.3) when integrated yields

b
}I:LmO f_zGabn"n bdn =0=8mwSn°n’ , (2.52)
i z
lim [ ", Geyn®hidn =0=8mSpynh (2.5b)
. E c d ~
lim [, Geahihifdn = — (Koo —haK)
=87S.ghlhi , (2.5¢)

where the last and only nonvanishing equation gives the
jump of the extrinsic curvature across Z; Egs. (2.5a) and
(2.5b) have the physical meaning that no momentum asso-
ciated with the surface layer flows out of =.

Attention will be restricted to perfect-fluid gravitational
sources, so that on X, the stress-energy tensor is given by

g%=ouub—r(h*®+uu®) (2.6a)
and off the hypersurface by
T =uvb+p(g®+v%?) , (2.6b)

where ©? is the four-velocity of any observer whose world
line lies within 2 and sees no energy flux in his local
frame; o and 7, are respectively, the surface-energy densi-
ty and tension measured by that observer. Similarly, v? is
the four-velocity of any observer in M who sees no energy
flux in this local frame, with u and p the energy density
and pressure measured by v°.

From Egs. (2.5a) and (2.5b) it follows that the structure
(2.6a) assumed for S,, is allowable. The remaining equa-
tions (2.5¢) are the so-called Lanczos equations, which can
be rewritten as

Koy = —8m(Sap —hapS/2) . 2.7

D. Jump behavior

Since the “pill-box” integration (2.5) ignores a simple
jump discontinuity, a jump analysis, which ignores any
delta behavior, is needed. This analysis of Einstein’s
equations (2.3) consists of taking left and right limits as
one approaches the layer =. This limit process applied in
the regions M* and M~ to the contracted Gauss-
Codazzi equations (2.3a) and (2.3b) restricts the jumps of
the gravitational quantities and subjects the extrinsic cur-
vature to eight conditions:

Gapnin’ =—3CR +K3K¥ —K2L),

t, b
Gc h,,n”i ZK:Ibi_K,ai .

The sum and difference of the corresponding pairs of
these equations give, with the help of Lanczos equations

(2.7), an equivalent set of conditions called “jump condi-
: 9.8
tions™:

S2p=—[Tpnhl1, (2.8a)
KapS®=[Tupnn®—A/87], (2.8b)
I?Zlb—l?m:sﬂ[Tbcn“hf]A, (2.8¢)

3R +(KyK®—K )= —16m[ Toyyn°n®—A/87]
— 1674 SS,, —S%/2) . (2.8d)

These jump conditions have the form of intrinsic tensor
equations and consequently do not depend on the way in
which the coordinate charts x?* and x?~ are introduced
in M* and M~. On writing these equations, it is as-
sumed that the mapping .#:2*—3~ exists in order to
guarantee that the evaluation of such tensorial quantities
can be made in some standard frame at the same point.
These equations, together with Lanczos equations,
represent the fundamental set of boundary conditions for
the gravitational field on the hypersurface =.

Equation (2.8a) expresses the energy-momentum bal-
ance of matter in the hypersurface; in other words, it de-
scribes how the gravitational field in the neighborhood of
3 may transfer energy and momentum to the matter in
the hypersurface. The influence of the surface distribu-
tion of matter S,, and of the mean values of T,,n°n® and
T,.n®h¢ on the intrinsic curvature 3R and the mean ex-
trinsic curvature K,, of the hypersurface X is expressed
by the jump conditions (2.8¢) and (2.8d).

Finally, Eq. (2.8b) and Lanczos equations (2.7) can be
rewritten, by means of the definition (2.2), as

[(n9St,1 = —[Taon®n®—A/87]" (2.92)

and

[n°St,] =8m(S®S,, —S5/2) , (2.9b)

respectively. These equations express the normal force
acting on the respective sides of an element of the hyper-
surface = as a consequence of the self-interaction in the
element [see (2.9b)] and of the energy momentum
transferred from the media on M * to = [see (2.9a)].

E. The general equations

What has been done up to this point is to use Israel’s
formalism to write the set of equations, Lanczos equations
(2.7) and jump conditions (2.8), equivalent to Einstein’s
equations in the vicinity of a hypersurface of discontinui-
ty. In addition to these equations, one also has to include
Einstein’s field equations and contracted Bianchi identi-
ties off the hypersurface with a suitable description of
matter on 2 and M* (2.6). Continuity of the metric g,
across the hypersurface = completes the set of general
equations to solve Einstein’s equations in a manifold M
containing a surface of discontinuity.

As expected from other situations, this set of equations
as stated above cannot completely determine a solution.
Equations of state must be provided for the fluid in M*
and 2. However, for the case that will be analyzed in Sec.



2916

IV, the assumption that both M* are spatially flat FRW
space-times does not allow for provision of arbitrary equa-
tions of state in both M+ and M~ at the same time be-
cause the system of equations with this symmetry be-
comes overdetermined. Consequently, one equation of
state is not given and will be obtained by the matching.

Summarizing, the following set forms the general equa-
tions to solve Einstein’s equations in the presence of a hy-
persurface of discontinuity: (1) Einstein’s equations and
contracted Bianchi identities off =; (2) Lanczos equations
(2.7); (3) jump conditions (2.8); (4) continuity of the metric
8ab across =; (5) description of matter on = and M * (2.6);
(6) equations of state.

Our analysis based on these equations has two main ob-
jectives: We will investigate the history of the hypersur-
face =, and we will find the mapping .#:2+ 3~ that
effects the matching across T for the case of thin spheri-
cal shells.

III. THIN SPHERICAL SHELLS

Until now nothing has been said about the
hypersurface’s symmetry. In this section we shall apply
the formalism of the previous section to spherically sym-
metric surfaces of discontinuity, and we shall study thin
shells (bubbles) immersed in Schwarzschild de Sitter
space-times. In particular, vacuum bubbles that nucleate
in phase transitions in the very early Universe are studied
under the assumption that they possess a domain-wall
structure. The mapping .#:2* -3 is found explicitly
in terms of the coordinates in the Lemaitre-Robertson
frame, which allow us to extend beyond the de Sitter event
horizon.

A. Bubbles

Because of the symmetry, the metric in the region
M™*(M ™) outside (inside) the bubble’s wall £ can be
represented by a nonstatic spherically symmetric perfect-
fluid solution of Einstein’s field equations. In a comoving
frame of reference, the line element may be written as!!

ds?| = —exp(2v)dt? +exp(20)dri + Y2dQ? | . , (3.1

where v=v(r,t), A=A(r,t), Y=Y(r,1), dQ=d6*+sin%0
Xd¢?, and v3=(e~",0,0,0) is the four-velocity of an ele-
ment of the medium.

The symmetry of the problem also allows us to choose
the coordinates 8 and ¢ continuous across X, but in gen-
eral, the time and radial coordinates are not continuous on
the wall. In fact, two conditions on these coordinates can
be obtained if we impose the continuity of the metric,
which tells us that distances measured on £+ and =~
must agree.

Let [ be the proper time along timelike streamlines
(6,6 =const) of an observer whose world line lies within =
and r*|;+=R* be the coordinate radius of the bubble,

then comparison of timelike lines (¢,6=const) on £* and
27 yields
[ —f2exp[2v(R,1)]+R %exp[2A(R,1)]] =0,  (3.2a)

and the identification of two-spheres (R *,z¥ =const) on
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>+ and 2~ leads to

[Y(R,1)] =0, (3.2b)

where ( )'=( ).,u°=d/dl is the proper-time derivative.
Condition (3.2b) has the physical interpretation that ob-
servers in M ™ and M~ must measure the same value for
the physical radius of the bubble.

The tangent vector to any point in the bubble wall is
given by

ul=x%=({R,0,0)] ., (3.3a)

and the normalization condition u; u 4 = —1 yields

— £ 2exp[2v(R,1)]+R 2exp[2A(R,1)] | s =—1, (3.3b)
which preempts Eq. (3.2a).
The unit length spatial normal ». is found to be, from
niu® =0,

nF=e(—R,1,0,00exp(v+A)] + , (3.30)

where e= + 1 if the radii of the two-dimensional spheres
are growing in the direction of the outgoing normal and
€= —1 in the opposite case.

The metric (3.1), the tangent vector u% (3.3a), and the
normal n;° (3.3c) allow us to rewrite the Lanczos equa-
tions (2.7) as

[n,4°] = —4w(2r—0) , (3.4a)
K8=—4ro , (3.4b)
and the jump conditions (2.8) as
O+20—7)Y/Y =[T4nu®l, (3.5a)
[ngi®) o+27K §= —[T,yn°n®—A/87)", (3.5b)
[RY) —(n, ) Y1/Y = —4n Topnu®], (3.5¢)
3R 2R YR §+2(nu 9]
=—16m[Tpnn®—A/87] —8m%c(oc—47), (3.5d)

where
K=l Y,,Re}‘”"%— Y pte* ") /Y,
Nl _e(R +AR +1 2V,Rez“’_)"+1ét'k,, e/t ,

where () ,=3/3tand () g =9/3R.

Equation (3.5a) shows clearly the energy-momentum
balance in the bubble’s wall; this equation, together with
the equation of motion, determines completely the history
of the bubble. The Lanczos equation (3.4b) yields directly
the equation of motion for the shell

Y2=(Y7/2M?+(M /2Y)? % , (3.6)

where M =47Y%0 and n=(Y ge *)?—(Y e #)%. Lake
showed® that this equation of motion can be derived
without the explicit form of the stress-energy momentum
Sgp On 2.
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B. Vacuum bubbles

With the introduction of the “inflationary scenario” of
early cosmology, proposed by Guth,! there have been re-
cently several investigations of bubbles in vacuum phase
transitions,»”12!3 where these bubbles are immersed in a
de Sitter geometry.

The interest in vacuum bubbles began with the work of
Coleman,'* and later Coleman and De Lucia.’ They
showed that it is possible for a classical field theory to
have two stable homogeneous ground states, only one of
which is an absolute energy minimum. In the quantum
version of the theory, the ground state of higher energy is
a false vacuum, rendered unstable by barrier penetration.

The decay of false vacuum is initiated by the materiali-
zation of a bubble of true vacuum, with vacuum energy
A~ /8w, within the false vacuum of energy A™/8m,
(AT >A7). In order to apply the formalism developed by
Israel to these bubbles, one has necessarily to assume the
thin-wall approximation; Coleman'* showed that this ap-
proximation is only valid if the potential difference be-
tween the real and false vacuum is much smaller than the
potential barrier between them, which is the case in the
“old inflationary scenario.” ' There are, however, a num-
ber of cases where this approximation turns out to be a
crude one; in particular, it is inapplicable to the “new in-
flationary scenario.”’

Assuming that the thin-wall approximation is valid, we
find the equations (earlier obtained by Berezin, Kuzmin,
and Tkachev*) that determine the history of a bubble im-
mersed in a Schwarzschild de Sitter space-time. In partic-
ular we obtain, for bubbles with vanishing Schwarzschild
parameter and domain-wall structure (vacuum bubbles),
the mapping .#:3% 3" that effects the matching in the
bubble wall £ of the two submanifolds M ™ (exterior),
M ~ (interior). We start with a de Sitter metric written in
the static frame; this frame suffers a coordinate singulari-
ty at the de Sitter event horizon; therefore, we will eventu-
ally give a coordinate transformation to the Lemaitre-
Robertson frame which allows an analytical continuation
of the mapping .# beyond that event horizon.

Because of the symmetry and vacuum nature of the
problem, the metric is in the exterior region M ™
Schwarzschild de Sitter and in the interior region M ~ de
Sitter, i.e.,

ds?| o= —f(r)dt*+ f~Nrdri+r2dQ?| ., (3.7

where fT(r )=1-2m/r_ —A*r ?/3 and f~(r_)
=1—A_r_?/3, with m the Schwarzschild parameter.

In writing the jump conditions (3.5), we showed expli-
citly the cosmological term; consequently, the energy-
conservation equation (3.5a) with 7,5 =0 (vacuum decay)
takes the form

6+2(0c—7)Y/Y =0. (3.8)

From this equation, it is clear that as the bubble ex-
pands there is no vacuum energy transferred to the sur-
face energy of the bubble from M?* regions since
[Agan°u®] =0. The liberated vacuum energy is com-
pletely transformed into kinetic energy of the shell. Sub-
stitution of the metric (3.7) into the equation of motion

(3.6) yields
R2=(R/Ry)’*—1+[1+A/48(70)*]m /R
+(m /4waF?)?, (3.9)
where
R =30 )[(A /47 + 6702 —(ATA™)/167] !
and
m=—AR>/6+470R*R*+1—A"R*/3)/>—87%’R"> .

Equation (3.9) shows that the kinetic energy of the wall
increases as it expands from its minimum radius Ry. No
distinction is made in the bubble’s radius R * since in the
chosen coordinates the continuity of the metric (3.2b)
yields Y=R* =R 7; i.e., the coordinate and physical ra-
dius of the bubble are the same.

Given the equation of state for the wall, the history of
the bubble is completely determined by Eqgs. (3.8) and
(3.9). The remaining equations, Lanczos equation (3.4a),
and jump conditions (3.5b)—(3.5d) either hold identically
or can be derived from (3.8) and (3.9).

It has been shown'’ that the phase separation for vacu-
um phase transitions has a domain-wall structure; surface
energy density o equals its tension 7. Then from the
energy-conservation equation (3.8) the surface energy den-
sity, and consequently its tension, must be constant. Even
with this simplification, to our knowledge there are no
analytical general solutions to the equation of motion
(3.9). However, since in the process of vacuum decay the
bubble appears spontaneously as a new vacuum bubble
created during the phase transition, it should not affect
the geometry outside 2; i.e., the Schwarzschild parameter
m must vanish. It follows then from (3.9) that

R2=(R/Ry’*—1,

which is the case of vacuum bubbles expanding according
to the de Sitter law

R(I)=Rcosh(I/Ry) . (3.10)

We identify the nucleation time of the bubble as the
time 5" (¢5 ) when R achieves its minimum, R =R,; the
proper time in the bubble is set to zero at that instant. As
we said before, we are not only interested in the history of
the bubble’s wall =, but also in the mapping #:2t >3~
that effects the matching across the hypersurface. We
will restrict ourselves, for the sake of simplicity, to bub-
bles in which the true vacuum energy A~ /8w vanishes;
i.e., the space-time M~ in the interior of the bubble is
Minkowski. This could be the case of bubbles in the old
inflationary universe scenario.

With the help of the normalization condition (3.3b), the
equation of the coordinate radius (3.10), can be rewritten
as

R?—(1—H?Ry>)H *tanh![H (t T —1§)]=R,>  (3.11a)
in M * (de Sitter), and
R2—(t——t5 )*=R,? (3.11b)

in M~ (Minkowski), where At=3H? and R,
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=0(2mo?+ At /247) ! is the initial radius of the bubble.

Although the above expressions give directly the map-
ping .#, they involve two related nondesirable points.
First, Eq. (3.11a) is able to describe the evolution of the
bubble only for radius R smaller than the de Sitter event
horizon H ~!, and, second, the time coordinate ¢ is not
cosmic time; both problems arise from choosing to start
with coordinates in the static frame for the metric (3.7),
which describe the space-time for values of the coordinate
r smaller than the event horizon (3/A%)!/2, We then go
to the Lemaitre-Robertson frame where the de Sitter
metric appears spatially flat:

ds?| = —dT*+eT(dp*+p%dQ?) . (3.12)

In these coordinates, Eq. (3.11a) reads
F22HT _(1—H?Ry*)H ~*tanh?*{H(T —T,)
—+In[(1—H?*F?%*T) /(1—H?Ry*) ]} =R,?,

where p | s=F is the coordinate radius of the bubble, and
T, is the cosmic time when the bubble was nucleated; the
physical radius of the bubble is given now by Fe//’. A
straightforward calculation, using the continuity condi-
tions (3.2) on the above equation, leads to the explicit
form of the mapping .# as

H(T —To)=In[1+H(t~—t5)/(1—H?Ry*)'"?],
(3.13a)

for T+t ~, time coordinate mapping, and
F=Re "T[14+ H(R?—R )2 /(1—H*R )21,
(3.13b)

For Fi— R, coordinate radius mapping. Implicit in these
equations is the assumption that the initial radius of the
bubble R, is smaller than H ~'.

Even though we started from expressions (3.11), which
suffer from the coordinate singularity at H ~! (Fig. 1), the
mapping (3.13) has been written in coordinates which are
free of such singularity, and, therefore, it is possible
analytically to continue these solutions to regions where
the coordinate radius of the bubble is larger than the event
horizon of the de Sitter space-time. That is, the history of
the bubble [ R (I), ! the proper time] is unaffected by the
defect of the ¢t coordinate in the neighborhood of the
horizon.

Since the expansion of the bubble is already described
by Eq. (3.10), the main interest of Egs. (3.13) for .# is ex-
plicitly to see how the time and radial coordinate are iden-
tified in the bubble wall. In this case we see that the join-
ing of M+ with M~ is possible for any value of the bub-
ble radius; however, as we shall see in Sec. IV, it is not al-
ways possible in other situations to carry out this pro-
cedure.

Finally, in order to have a schematic picture of the
bubble’s growth viewed from M, we will rewrite the
equation of the coordinate radius (3.11a) in terms of the
coordinates (v,w,Xx,y,z), where the de Sitter metric takes
the five-dimensional Minkowski form ds?=—dv?
+ dw2+dx2+dy2+d22; in these coordinates, the de

SURFACES OF
CONSTANT ¢

SURFACES OF
CONSTANT t’

V=W

(b)

SURFACES OF
CONSTANT T

SURFACES OF
CONSTANT t’

EVENT HORIZON

FIG. 1. de Sitter space-time represented by a hyperboloid im-
bedded in a three-dimensional flat space. Two dimensions have
been suppressed since r’=x24y?+z? where r|z=R is the
coordinate radius of the bubble. Then, in the hyperboloid
w?+r?—v?=H"? only r>0 has physical meaning. The de
Sitter event horizon is given by the intersection of the plane
r =H ™" with the plane v =w. (a) Coordinates (t,r,6,¢) for the
metric (3.7) cover the right and left regions on the surface of the
hyperboloid that lie between the planes v =w and v =—uw; i.e,
they do not describe the region beyond the event horizon. (b)
Coordinates (T,p,6,¢) in (3.12) cover the surface above the
plane w = —v. Finally, coordinates (¢',X,6,¢), in which the
metric  takes the form  ds?=—dt'*+H *cosh’(Ht')
X (dX?+sin®X d Q?), cover the whole hyperboloid.
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Sitter space-time is visualized as the hyperboloid
—v 4w+ x +y2+z2=H~? (Ref. 16). Choosing
ty =Ty =0, Eq. (3.11a) now becomes

R2—wy (v /w)*=R,?, (3.14)
where  x24pi42%|s=r*|s=R? vo=0,  and
wo=H ~Y(1—H?R,y?)!/2. Substitution of this equation
into the hyperboloid where the bubble lies,
(w?—v?)H?=1—H?R?, yields

R2—p?=R,? (3.15a)
and

w=H"'1—H?Ry»)"?=const . (3.15b)

That is, the radius of the bubble has a hyperbolic
growth (3.15a) on the plane defined by (3.15b), see Fig. 2.
In particular, if one considers the limit case of a bubble
nucleated with a vanishing radius, the trajectory on the
plane w =H ~! is a straight line R =v.

Finally, we mention that Aurilia, Denardo, Legovini,
and Spalluccci!” have also suggested that the process of
vacuum bubbles in the cosmological phase transitions
could be interpreted in terms of a vacuum energy density
analogous to that of the hadronic phase in the physics of
strong interactions. Their approach to bubble dynamics is
based on a general theory of relativistic extended objects;
in particular, the radial equation (3.9) is obtained from an
action functional that involves a three-index potential
which mediates the interaction between the hypersurface
elements along the world tube of a bubble. Recently, a
more detailed study of evolution of bubbles in a vacuum
has been completed by Lake and Wevrick.'® Their work
involves an extensive analysis of spherical bubbles in a
vacuum under the assumption that the intrinsic surface
tension and energy density are proportional.

R_

FIG. 2. Growth of the bubble on the de Sitter hyperboloid
R24w?—p?=H"2 In the chosen coordinates only positive
values of R are allowed. To avoid confusion, the surface of the
hyperboloid has been suppressed; only the planes of the event
horizon w =v and of the bubble radius w =H ~'(1—H2R?)'?
were drawn.

IV. BUBBLES IN FRW SPACE-TIME

In the problem of phase separation boundaries, besides
the common picture of a shell separating two phases with
pure vacuum equations of state as we considered in Sec.
III, there are several studies without a full inclusion of
gravitational effects,'>!>!° which suggest the rise of bub-
bles in phase transitions in the early Universe could have
been similar to the process of motion of spherical detona-
tion waves. That is, contrary to the case of vacuum bub-
bles studied in Sec. II B, as the bubble expands the the en-
tire energy of the metastable vacuum is transformed into
the energy of the internal medium. Consequently, the en-
ergy and momentum are conserved across the bubble’s
wall, which leads to a vanishing surface density density
but, in general, to a nonvanishing tension. The work
against tension determines the kinetic energy of the
bubble’s wall (and thus the rate of vacuum energy
transformed into energy of the internal medium).

A generalization of this model including gravitational
effects, which to some extent admits analytical solution, is
to analyze a bubble immersed in a spatially flat
Friedmann-Robertson-Walker (FRW) space-time. In par-
ticular we shall consider models which are FRW on both
sides of the shell. Also, it will be assumed that the medi-
um in M~ is a radiation field with A~/87=0. The
medium in M* has a nonvanishing vacuum energy
A* /8 in addition to a matter content, whose equation of
state will be determined by the matching.

First, the general equations discussed in Sec. IIE are
rewritten explicitly in terms of the metric in M*. It is
found that if we give only the parameters of M ~, the sys-
tem is underdetermined, so additional assumptions must
be made. It will then be shown that the bubble here con-
sidered only admits a junction at the bubble, with M+
and M~ spatially flat FRW submanifolds, in a worm-
hole fashion. That is, the submanifolds M+ and M ~ are
the infinite-extent exteriors of a sphere; matching of the
interiors (anti-worm holes) is also possible. Finally, the
evolution of such a “bubble” is obtained in the particular
cases when the wall 2 follows a Hubble law and when the
tension in the shell is constant.

The metric in M* can be written as

ds?| s =—dt* +aX1)dr’+r:dQ?) | ., 4.1)

and the induced metric on the surface of the bubble is
ds?|s=—dI’+ Y(1)dQ? where Y=aR | . is the radius
of the bubble and | s =R its coordinate radius.

The general equations (Sec. I1 E) that describe the prob-
lem can now be written in terms of the coordinates (4.1).
First, since M+ and M~ are FRW space-time manifolds,
the contracted Bianchi identities and Einstein’s equations
off the wall X yield

p=—3p+pla,a’ (4.2a)
and
30’,2=(87w+A)a2 s (4.2b)

respectively. However, we will pose the expansion and the
fluid parameters in only one of the two regions because
the matching will determine the parameters of the other
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submanifold. Complete specification of both M * and
M ~ overdetermines the system of equations. This case
differs from the previous one in Sec. III, where a complete
description of M and M~ was given and the only pa-
rameters that remained to be found were those of the
shell.

The continuity condition of the metric (3.2b), which
says that observers in M+ and M~ must measure the
same radius for the bubble, can be restated as

Y=a R =a*RT. (4.3a)
The normalization condition (3.3b) evaluated in =% and

3~ gives another two equations:

(1—H2Y)i=—HYY+B(Y2 +1—H?*Y)'?|,, (4.3b)

where B=* 1 takes care of the two possible solutions for ¢
in (3.3b).

It can be shown that for M* and M~ FRW space-
times, Lanczos equation (3.4a) is not independent of
(3.4b). Substitution of (4.2b) into the square of (3.4b)
yields

H, *=H_*=H?, (4.42)

where H=a ,a~'. We shall assume that H*=H ™ >0.
The negative case can be obtained by reversal of the direc-
tion of time on both sides of the wall. Also from Lanczos
equation (3.4b), one gets a condition that will fix the to-
pology of the matching. See the discussion after Eq.
(4.6b) below. The condition is that

etBt=e"p", (4.4b)

where the sign = +1 is defined in (4.3b) and e*=+1 is
the undetermined sign of the normal n° in (3.3¢).

Finally, since the region M ~ will be completely charac-
terized, only one of the four jump conditions (3.5) is need-
ed. For this particular case, (3.5a) and (3.5b) turn out not
to be independent. Both equations lead to

—27(1—H2YY) /Y =&l(p +p)i] , 4.5)

which expresses the flux of momentum transferred to the
shell.

By assumption the medium M ~ is a radiation fluid
without vacuum energy density, p~=u~/3, 8mu=/3
=(Q2t7)"2 and a_%=2A4t";i.e., the region M ~ has been
completely characterized. We will then proceed to find
solutions for the unknowns in £ (R4,t+,7) and in M *
(p4,14,a,). However, we still must specify one extra
condition since the system of equations to this point is un-
determined, eight unknowns and seven equations [(4.2a),
(4.2b), (4.3a), (4.3b™), (4.3b7), (4.4a), and (4.5)].

Before the additional condition is introduced, we will
analyze the junction conditions for the matching of mani-
folds M+ and M~ on the bubble wall 2. First, from the
substitution of the continuity of the Hubble constant
(4.4a) into Einstein’s equation (4.2b). We obtain that the

total energy density is continuous across 2, i.e.,
ut+AY/8r=p"; (4.6a)

in addition, the equation of conservation of energy (4.2a)
yields

e, e,
n n*
(a) nee. >0 ne €,<0

(b) n. e <0 n'e €> 0

FIG. 3. The matching .#:3%—3~ for different values of €
Eq. (4.8). When €= —2, anti-worm-hole, the joining is between
the interior regions (a), and when €= + 2, worm hole, the exte-
rior regions are identified (b).

(w+p)it| =(u+ph|_ . (4.6b)

The weak-energy condition applied to the latter expression
constrains f to be either positive or negative on both sides
of the wall.

These two equations show that the flux of energy and
momentum are continuous at the wall, which reflects the
detonation wave approximation. On the other hand, from
(4.3b) we have that the difference in structure of ¢ + and
t~ is given by the sign of B. However, the choice
Bt =B is not allowed because this would imply from
Lanczos equation (4.4b) that €=0, and consequently from
the jump condition (4.5) 7 would have to vanish. In such
a situation there is complete contintuity, and the wall does
not in fact exist. Therefore, we choose 8437, and then
from (4.4b) we arrive to the junction condition that €=0
(et =—€7). Substitution of this condition in the right-
hand side of Eq. (4.5) shows that the tension in the
bubble’s wall depends on [e(p +u)f], which can be inter-
preted as the work done on the shell when the matching
has a worm-hole topology.

To see how the junction condition €™ = —e™~ dictates a
constraint on the matching, let us recall that e=+1 was
introduced because the normal n. is determined up to a
sign, i.e.,

n,=e(Rae,+ia " 'e,) |+ . 4.7

We also specified that the normal n, is directed from
M~ to M*. Therefore,

ne |+=€ea”'| . (4.8)



34 INFLATION AND BUBBLES IN GENERAL RELATIVITY 2921

could be positive or negative depending on the identifica-
tion made between M+ and M~. Since a~'>0 and
from Eq. (4.6b) ¢ * are either both positive or both nega-
tive, the condition €e* = —e~ implies that the radial com-
ponent of the normal changes sign across the bubble’s wall
3, and this can only be achieved if the matching of M+
and M~ is made in a worm-hole fashion. That is, let us
consider the problem as purely the identification of two
disjoint manifolds M* and let M ¥ be either the interior
or exterior to a two-sphere =% of radius Y; the bubble will
then join either the exterior of =% with the exterior of =~
(worm-hole matching) or the interior of £* with the inte-
rior of 27 (anti-worm-hole matching), see Fig. 3. The
latter case implies a new topology; closed universes are
connected by a shell that acts as a worm hole.

We shall now obtain a complete solution to the un-
knowns (p*,a*,ut, R*, t*, and o) by providing an ad-
ditional condition to the system of Egs. (4.3a), (4.3b%),
(4.4a)—(4.6b). We will present two cases: The first allows
analytical discussion; the second will be treated numeri-
cally.

We will first assume that the expansion of the bubble is
governed by a Hubble law Y=H Y, which, together with
the normalization condition (4.3b), leads to

fe=(B—Y%/(1-Y")| .. 4.9)
For simplicity we will assume that the bubble is comov-
ing with the radiation fluid in M ~, i.e.,, B~ = + 1. This
implies that the coordinate radius of the bubble R ~ is
constant and that the physical radius of the bubble grows
as Y?=2Bt~, where 1~ is cosmic time in M~ and also
proper time for an observer comoving with the bubble,
t~=[/+ const. The constant B will be determined later
on.
Substitution of Y?=2Bt~ into Egs. (4.9) and (4.3a)
yields

dtt/dt—=(B+2t7)/(B-2t7) (4.10a)

and

dR*/dt—=—-2R*/(B—-2t7), (4.10b)

respectively. These equations can be directly integrated to
give

tt=BIn[B/(B—2t7)]—t~ (4.11a)

and

Rt=+DB-2t7), (4.11b)

where we have chosen the integration constant in (4.11a)
such that 1" =7~ =0 is the time when the bubble was nu-
cleated. D is a positive constant of integration determined
by the initial data; from the condition |dR*/dt*| <1
we obtain that D <+ (Fig. 4. The case D =~ implies
that the bubble is nucleated with a coordinate radius velo-
city equal to the speed of light.

The choice of the sign in Eq. (4.11b) will be positive if
B > 2t~ and negative otherwise. We shall see that the
latter case is unphysical because it implies a violation of
the weak-energy condition. Consequently, from (4.11),
B > 2t~ restricts the bubble’s growth to a maximum ra-
dius Y =B in a finite cosmic (also proper) time t ~=B/2,

DB

FIG. 4. The coordinate radius of the bubble viewed from
M*. For the case €= + 2 the region M* is r* >R+, and for
€= —2 the space-time M ™ is the closed manifold r+* <R ™*. Be-
cause of the condition B >2t~, the sign in Eq. (4.11b) is posi-
tive; the coordinate radius shrinks.

but in an infinite cosmic time ¢*. The Egs. (4.11a) and
(4.11b) give directly the mapping .#:2+ >3~

The condition B > 2t~ also implies that throughout its
evolution the radius of the bubble, Y?=2B:", is larger
than the event horizon distance H ~'=2¢~ in M ~. How-
ever, as the bubble grows to its maximum radius, Eq.
(4.11b) shows that the coordinate radius R * and the velo-
city dR " /dt ™ vanish; in other words, due to the great ex-
pansion in M %, the mouth of the worm hole, viewed by a
comoving observer with the fluid in M ¥, disappears as
2t "+ B. Also from (4.11b), the expansion factor in M+
is given by

a*t?=2Bt~(B—2t~)"?/D?, (4.12a)
which can be rewritten for 2t 7+ B as
a *=a_%*"/®/DR-), (4.12b)

and clearly a * >>a ~ for that limit.
The tension in the bubble is found from (4.5) to be

r=&B[4m(2Bt ~)X(B —2t7)]"'. (4.13)

Again, as the bubble expands, the magnitude of the ten-
sion in the wall Z increases. Recalling that B > 2t ~, the
tension will be positive if €= + 2, which is the case of a
worm-hole matching, or negative if €= —2, anti-worm-
hole matching (Fig. 3). Importantly, the tension tends to
infinity as 2¢ ~}— B, so this model fails in that limit.

The difference between the pressures in M+ and M ~ is
obtained from Eq. (4.6b):

pri4+p)=p_+p_)NB—=2t7)/(B+2t7). (4.14)

It is clear from this equation that B > 2t~ required above
so the wall tension remains finite guarantees the weak-
energy condition. Furthermore, as 2¢ "+ B, the space-
time M T enters a de Sitter (inflation) regime since, from
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TABLE 1. Schematic behavior of the physical radius of the
bubble as a function of proper time Y (/) and the coordinate ra-
dius as a function of cosmic time R ~(¢~). For HoY,> 1, the
cases (= + 1, 7/€<0) and (B~ = —1, 7/€ <0) were not con-
sidered because they correspond to proper-time reversal of cases
B and A, respectively. Similar for HyY, <1, cases (B~= + 1,
7/€>0) and (B~=—1, 7/€>0) are equivalent to proper-time
reversal of cases D and C, respectively.

INITIAL PHYSICAL |COORDINATE
CASE| B =%ti| T/€ |CONDITIONS| RADIUS RADIUS
H(O), Y(0) Y(}%) R7(t)
A +1 >0 HY > | / \
B - >0 HY > | / /_
c | +1 | <o | HY <1 /\ \
D | -1 | <« | HY<I / /

(4.12b) and (4.14), at ~exp(t*/B) and Pt ~—pu*. Us-
ing the continuity of the total energy density (4.6a), it fol-
lows that

(pt—po)—p =—[2t"m(B+2t7)]7'<0. (4.15)

The pressure in M * is greater than in M ~; however, due
to the special characteristic of the matching, the evolution
of the bubble is governed mainly by the tension in the
bubble wall.

We present now our final example. Instead of consider-
ing a bubble expanding by a Hubble law, we will change
the additional assumption to be that the tension on the
bubble’s wall is constant. From Eq. (4.6b) and
p~=p" /3, we find that the right-hand side of the jump
condition (4.5) is given by

[(p+p)) =4 ~pu=/3=H%~/2n=—H/4r,  (4.16)
which allows rewriting Eq. (4.5) as
H=38rr(1—H?Y?)/(EY) . 4.17

On the other hand, the normalization condition (4.3b)
leads to a differential equation for Y as

+B~ {[4nT(1—H2Y?) /HYEP—H?|\/?
(4.18)

where B~ ==*1. Here € again determines the topology of
the matching, €= + 2 for a worm hole and €= —2 for an
anti-worm-hole. We do not known of any analytical solu-
tion to the above system of Egs. (4.17) and (4.18); howev-
er, before we give some numerical solutions, qualitative
information can be extracted from the conditions for real
solutions,

H*<{2r(1—H?*Y?)/Y}?, (4.192)
and for the bubble radius to exhibit a maximum,

Y<H™! (4.19b)
and

B~ /€<0. (4.19¢)

The first condition (4.19a) is equivalent to requiring the
surface of the bubble to be a timelike hypersurface of
discontinuity. Condition (4.19b) implies that a bubble
which expands and then shrinks, will always have a radius
smaller than the horizon distance H ~! in M ~. Equation
(4.19¢) says that the existence of such a recollapsing bub-
ble will depend on the topology of the matching, the
choice of the sign 87, and the positive or negative nature
of the tension.

The schematic behavior of the bubble radius Y as func-
tion of proper time for an observer comoving with the
bubble and the coordinate radius R ~ in terms of cosmic
time ¢~ in M~ is shown in Table I. Numerical solutions
to the physical radius Y (/) and the coordinate radius
R~(t7) of the bubble were obtained for the cases
represented in Table I when 7=+€/2 and Hy=1 (Fig. 5).
It was found that the lifetime of a bubble that glues two
spatially flat FRW space-times is finite in cases A and B
due to the condition for real solutions (4.19a). In case C
the same restriction was present but in this case as a
consequence of the condition Y >0. That is, at some
point it is impossible to continue considering the tension
on the surface of the bubble constant.

In addition to the case of bubbles in the vacuum (re-
viewed in the previous section) and the case of bubbles
with vanishing surface energy density presented in this
section, there have been several applications in cosmology
of nonzero surface mass bubbles. One application was
made (Maeda, Sato, Sasaki, and Kodama®®) in the study
of a model for late stages of the phase transition where re-
gions of a false vacuum are surrounded by bubbles of a
true vacuum. In this model an infinite number of bubbles
are nucleated simultaneously on a sphere, and they grow
with walls expanding isotropically at the speed of light
forming a spherical shell-like region which could give rise
to creation of worm holes or black holes. Another appli-
cation of bubbles with nonzero surface mass is in the
development of voids. Lake and Pim?' have studied the
evolution of spherical vacuum and radiation-filled voids
in a spatially flat Robertson-Walker background. Similar-
ly, Sato?? has analyzed a model of voids which consists of
a spherical thin dust shell that propagates sweeping the
ambient matter and its motion is decelerated as the shell
mass increases.
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FIG. 5. Numerical solutions of Eqs. (4.17) and (4.18) for Y (/) and R ~(¢ ™), with 7= +&/2 and H(0)=1 as the unit of length. The
solutions correspond to each of the cases in Table L.
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FIG. 5. (Continued).

V. CONCLUSIONS

For some particular cases we have analyzed the evolu-
tion and junction conditions of bubbles in general relativi-
ty with the inclusion of gravitational effects. Our initial
motivation was to study the matching of the interior with
the exterior space-time of a bubble in the old inflationary
scenario since for such bubbles the thin wall approxima-
tion is valid, which allows the use of Israel’s formalism
for thin shells.

We made a review of Israel’s formalism in Sec. II by
obtaining the equations that solve Einstein’s field equa-
tions for singular hypersurfaces of arbitrary shape. In
Sec. III we introduced spherical symmetry and proceeded
to find the equation of motion for a bubble immersed in a
de Sitter space-time, which would be the case of a bubble
in the original inflationary scenario. Results previously
obtained by Lake® and Berezin, Kuzmin, and Tkachev*
were derived and used to get the mapping #:2 >3~
that effects the matching. Lemaitre-Robertson coordi-
nates were required to have a complete description even
beyond the event horizon of the de Sitter space-time.

In Sec. IV we deviated from our original motivation
and analyzed a bubble immersed in a nonvacuum space-
time although we still considered vacuum energy contri-
butions. It was found that the assumptions of spatially
flat FRW space-time in M and vanishing energy density
in the bubble’s wall force a “worm-hole” matching of M+
with M ~. In the particular case when this bubble ex-
pands following a Hubble law and the medium in M~ is
massless radiation p ~=p~ /3, the bubble grows up to a
maximum radius. For that limit, the magnitude of the
tension in the wall becomes infinite, M * experiences in-

flation, and the coordinate radius of the bubble and its
velocity vanish in M ™.

Finally, we dropped the condition of a Hubble law ex-
pansion of the bubble and assumed instead that the ten-
sion in the shell is constant. We found that there exist
three different types of solutions for this case, which de-
pend on the topology of the matching and whether the
tension is positive or negative. Numerical solutions were
obtained which show that the bubble either expands, con-
tracts, or grows up to a maximum radius and then
shrinks.

Of course, the price that we paid to obtain analytical
solutions for the bubbles herein considered is that these
bubbles are not adequate for inflation cosmologies since,
on the one hand, the thin wall approximation is not valid
for the new inflation scenario and, on the other hand, the
special topology of the matching would now allow these
bubbles to solve the problems for which the old inflation-
ary universe scenario was introduced. Nonetheless, we
have found several new interesting topologies for solutions
to the Einstein equations, and these analytical models are
extremely valuable because they are so amenable to
analytical treatment; particularly interesting is the possi-
bility for the existence of worm-hole bubbles that match
spatially flat FRW regions with different equations of
state.
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