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Demibootstrap approach to hadron-spectrum dynamics

Louis A. P. Balazs
Physics Department, Purdue Uniuersity, West Lafayette, Indiana 47907

(Received 17 March 1986)

A "demibootstrap" approach is proposed in which long-range "open'* hadronic-channel correc-
tions to a primordial short-range valence-quark (or parton) model are calculated nonperturbatively
and self-consistently, These open channels are found to provide most of the dynamics generating
the leading Regge-trajectory hadron spectrum and lead to good agreement with experiment. Some
of our methods may perhaps be applicable in implementing the compactification of superstrings.

In most practical mass-spectrum calculations based on
quantum chromodynamics (QCD), the force between
valence quarks (q), diquarks (qq), or gluons (G) is as-
sumed, in first approximation, to arise from a stable nar-
row rotating flux tube (or string) formed by the nonper-
turbative exchange of gluons; this becomes approximately
spherical for ground states and can presumably be approx-
imated by a bag model. The effect of qq creation
(annihilation) —leading to the fragmentation (reformation)
of the flux tube —is neglected. This is the attitude adopt-
ed in the quenched lattice approach and in the 1/X„~„
expansion, for example, where such qq effects are sup-
posed to come in only as higher-order corrections; it leads
to a universal string tension and Regge slope, at least for
higher angular momentum.

In practice, however, explicit Skyrmion-model' and
quenched q-loop lattice calculations seem to give con-
sistently larger S-p mass ratios and smaller 5-S mass
differences than are warranted by experiment, and there is
an increasing accumulation of evidence that the effect of
qq creation is anything but negligible. In particular, the
controlling expansion parameter in a realistic 1/S„~„ex-
pansion turns out to be, not 1/X„„, itself, but rather,
En„,„/N„b„which is effectively of order unity in the
real world. Moreover, interquark flux tubes are known to
fission quite readily in jet-formation experiments, typical
hadronic couplings are known to be quite large experi-
mentally, and the inclusion of hadronic channels is known
to lead to important mass shifts in explicit hadron-mass
calculations; all of these are a consequence of qq creation,
which also turns out to be quite important in recent expli-
cit field-theory model estimates.

The dynamical effect of qq creation seems to be partic-
ularly important at moderately long-range interquark
"confinement" region distances. In deep-inelastic 1epton-
hadron scattering, for example, "sea" quarks, which arise
from qq creation, give a major contribution for smaller
momentum fractions (or Feynman-x values) within
hadrons —precisely the x region which corresponds to
smaller energies and hence larger distances within the
hadron rest frame. Calculations which ignore qq creation
also have problems with chiral symmetry, and in account-
ing for the smallness of the pion mass. The phenomeno-
logical "chiral bag" or "cloudy bag" way of overcoming
such difficulties has been to assume a peripheral cloud of
rnesons around a core of valence quarks. But this is

clearly reconcilable with QCD only if we assume that the
"hadronization" arising from qq creation is a non-
negligible part of "confinement" dynamics.

We have therefore embarked on a program in which
such hadronization is assumed to play an important non-
perturbative role from the beginning. In effect, we use a
bootstraplike approach of the type proposed originally by
Gell-Mann, in which we try to generate a self-consistent S
matrix, but with high-momentum (short-range) boundary
conditions (taken, e.g. , from QCD) imposed on the
theory.

We start from Fig. 1, or any other short-range valence-
quark or parton theory. This gives a zeroth-order hadron-
ic spectrum (Ho) which could itself be calculated, in prin-
ciple, by using quenched lattice methods {from "funda-
mental" QCD parameters) or some variant of the bag
model (from more phenomenological parameters). In this
respect our approach resembles the 1/X„i,„expansion or
the hadronic Skyrme and static strong-coupling models, '
as well as various more phenomenological perturbative or
semiperturbative hadron-loop mass-correction schemes.
However, it differs from these in that it uses truly nonper-
turbative 5-matrix methods to build up the hadron-
channel contributions arising from the addition of (planar)
quark loops to Fig. 1. Such graphs lead to the generalized
hadronic ladder sums of Fig. 2 (Ref. 8), where the H
"ladders" within Figs. 2(b), 2(c), . . . should themselves
have the form of the entire sum of Fig. 2, which leads to
output Regge trajectories a(t =m ) interpolating physical
hadron (H) masses m. Nonplanar graphs can be treated
as corrections.

Since sea quarks appear to be important primarily at
longer distances, as we have seen, we will assume that the
vertical lines ( W) of Fig. 2 are dominated by H contribu-
tions for low-mass m ~ m, {peripheral) exchanges and by
the Ho of Fig. 1 for high-mass m pm, (short-range) ex-
changes. Regge-resonance duality permits us to replace
the latter by horizontal Ho Regge (ao) lines, so that Fig.

FIG. 1. Planar amplitude without internal q loops.
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FIG. 2. Hadron-line version of Fig. l with internal q loops.

AJ(t)= WJ(t)/[1 BJ(t)/W/(t)—], (3)

where W and B are the contributions of Figs. 2(a) and
2(b). The optimum m, would then be the highest value
which avoids double counting between Figs. 3(b) and 2(b)
(and thus also between quark and hadron degrees of free-
dom).

Equation (3) is exact if we have a factorizable model
I

2(a) reduces to Fig. 3. By contrast, Ref. 3 would in effect
simply drop Fig. 3(b) and make crude one-particle approx-
imations for the Ho exchange of Fig. 3(c) and the H
ladders of Figs. 2(b), 2(c), . . . . It is doubtful whether
such a few-channel approximation is adequate for what is

basically an infinite-channel problem, however. On the
other hand, it was Fig. 3(c) which was dropped in Ref. 8.
While Fig. 3(c) is indeed a small contribution, as we shall

see, both Figs. 3(b) and 3(c) will be retained in what fol-
lows.

We will formally associate a coupling parameter I}}with
each of the W exchanges of Fig. 2 and take the Mellin-
transform projection

AJ(t) =f ds v J '3 (s, t) (1)

of the s-channel absorptive part 3 (s, t) ( = ImT for t &0),
where s, t, u are the usual Mandelstam variables and v is
the usual crossing-symmetry variable (s —u) /2, or

v=s+ —t —gm.1 2

2

with m; equal to the masses of the external lines
i =1,2, 3,4. If we take the [l,l] Pade approximant of the
resulting expansion in P, we obtain

with, e.g. , the projected Figs. 2(b), 2(c), etc. , giving
8'~kj 8'&, 8'Jk~8'~kJ. R J., etc., where k is related to a loop
integral. This kind of structure arises quite naturally, at
least approximately, from the factorizable Regge-
exchange diagrams 3(c} and 2(d) combined with average
duality, which relates the latter to the contribution of Fig.
3(b). It then also gives

B/(t)/W/(t) =[1+IJ(t)/LJ(t)]A/(t)/L/(t),

where I is given by Fig. 3(c), whereas L and A are given

by Figs. 2(a) and 2(b), but with the contribution of Fig.
3(c) to the vertical W lines set equal to zero.

Suppose we assume that the vertical-line exchange of
Fig. 3(b) can be approximated by a single (average) mass
m„so its contribution to W(s, t) is

L (s, t) = I (t)5(s —m, ),
where I {t) is typically proportional to a polynomial in t
Assuming leading-Regge dominance, Fig. 3(c) gives

I(s, t)=po(t)v ' 9(s —m, ),
where ao(t) and po(t) can be extracted from quenched-
lattice calculations.

If we drop the contribution IJ of Fig. 3(c) in Eq. (4), a
vanishing of the denominator of Eq. (3) for the resulting
first-approximation amplitude AJ(t) leads to a j-plane
Regge pole at j =al(t) with residue pl(t). The amplitude

is, of course, intrinsically non-crossing-symmetric.
Since it only involves long-range (low-s) "soft" dynamics
without any high-mass scale, however, semilocal duality
between the a exchange in Eq. (5) or Fig. 3(b) and the al
Regge behavior b l v ' of A, is expected to be more valid
than any similar relation for A itself, which also has a
high-mass scale coming from Fig. 3(c). We therefore have
the finite-energy sum rule (FESR):

s L st — gatv' 49v v =0, (7)

with S =max(Sl+S2, S3+S4) and an s midway be-
tween [a] and its first Regge recurrence. Equations (3),
(5), and (7) then give

/(al+ I —S~ ) = f dy y
' lnyG {y) f, dyy

a,tt)
4' = Im 8 NI}},'-s)+II '

5(S-n}'}
(H} (
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FIG. 3. Low-mass m =+s gm, (peripheral) and high-mass
m =v $ & Pl (s}loft-range) contrlblltlolls 'to Flg. 2(a).

where y=v/v„y =v/v„G =v, A{s,t)/I (t), and (v, vk)
are Eq. (2) at s =(s,mk ); we took A=0 for s ~ s to avoid
I.-A double counting.

In the case of planar graphs such as Fig. 2(b}, it is well
known that the familiar two-Reggeon j-plane cut does not

appear on the physical sheet, and that there is, instead, a
sharp falloff in s (or y) for large s (Ref. 8). We therefore
expect a peaking of y G(y) with an appropriate al-
independent k. We can therefore expand

»y =»yi+yl (y —yl) —.yl (y —yi} + ' ' '

within Eq. (8), with an al-independent peak position

y =y ) and k such that g] ——0, where

g. =f dy G(y}y (10)
X

%'e will assume that the dynamics requires y& Iand hence
the corresponding sl ) to take on the lowest value capable
of giving a solution for al fmm Eq. (8), which then gives
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a, (t) =S —1+ — 1—,y l gl /go . (11)1 1 -2
lny e (lny )

This minilnum yl (=y }, which is also the only one giv-

ing a unique a], corresponds to the highest s-channel pro-
duction multiplicity of the W of Fig. 2 when we expand
Eq. (3) in powers of 8 /8'~ and take its inverse Mellin
transform to obtain A (s, t) (Refs. 8 and 9). In a string
picture this would be equivalent to maximizing the break-

ing of the string as it is stretched. Since the energy of an
unbroken string rises rapidly with length, such maximal
breaking corresponds to a minimization of the energy in

the s channel.
If we assume that y G(y) is proportional to a univer-

sal function U(u) of u =(y —yl)/(y, —y), then

In dealing with the short-range contributions IJ of Fig.
3(c) in Eq. (4), we need a model for the t dependence of Po
and ao in Eq. (6). Eventually this would arise from some
fundamental short-range theory, such as a quenched-
lattice calculation. Since an adequate and reliable theory
of this type does not as yet exist, we shall, instead, follow
the kind of arguments sometimes made in connection
with the I/E„~,„expansion, and assume that Fig. 1 gives
an amplitude To satisfying a dual resonance (string)
model. This would require a linear ao(t), and should lead
to approximate semilocal Pj"SR duality:

$0f 'ds[ I( )tS( s—mo ) —Po(t)v 8(v)]v =0, (12)

where I 0(t) is proportional to a polynomial in t of the
same order as I (t) and arises from the lowest s-channel
exchange (of mass mo) of Fig. 1. Physically, ao is then

universal, as we have seen.
Equation (3) now has a Regge pole at j=a arising from

the vanishing of its denominator when 8~= W~ with

IJ+0. If we combine this with Eq. (12) and our first-
approxirnation IJ ——0 results, we obtain the correction

—&0—'
1 &o+ 1 —~~ &o &o

e lny ao —a &o
a( t) —a, (t}=

(13)

For v, &0, we can now expand Eqs. (11) and (13) in
powers of v, to get

a(t) =2a 'v, +5 +c +pl v, '+p2v, (14)

Equations (13) and (ll) give branch points at v, =O,
—(s —s, ), —(so —s, ), and —(s, —s, ), where s, =m, . In
Ref. 8 it was argued that such singularities are spurious
and that Eqs. (13) and (11) break down in the regions
where they occur. Away from these regions, however,
a(t) can be well approximated by the large —v, form (14)
with p; =0.

The results (13) and (14) apply to an infinite number of
processes with the same a. For example, we should have
the same output a& both in pp~pp and p'p' —+pp, where
p" is any Regge recurrence of p. Now the linear —a(t)
form (14) with p; =0 continues to apply in a region of in-

validity of Eqs. (13) and (11) for a given process, provided
this corresponds to a region of validity for any of the oth-
er processes where Eq. (14) with p; =0 is a good approxi-
mation. From this it turns out that we can use Eq. (14)
with p; =0 for any t (Ref. 8).

In practice we require that allowed couplings vanish
only if they are required to do so by consistency with oth-
er processes and constraints. %e also require secondary
contributions to [a] (backgrounds or other states which
shift the effective average m, away from the mass m, L of
the lowest contributing single-particle state) be as small as
possible. In other words, we simultaneously minimize
m, L and

~
m, m—,L. ~

in Eq. (14) with p;=0 for all the
dominant channel processes, with 1,2,3,4 lying on leading
Regge trajectories and [a] having the lightest quark-mass
content for a given output a(t) (Ref. 8).

In our calculations so far, we have used s —s, =1/2a'
and p] ——0 as explicit constraints on our parameters, with

pl determined from Eqs. (13) and (11). We have also ap-
proximated the last four factors of Eq. (13) by a constant;
this was found to have a relatively small effect on the
quantities of physical interest in the explicit case of ltd
scattering, with v, =vo.

By applying the above procedure to Fig. 2 with m, p and
their Regge recurrences for 1, 2, 3, 4, and a, we obtain

m =mz —I/2a~=O, a' =a~=const,

in good agreement with experiment. The results are very
similar to the ones in Ref. 8, where a was approximated
by a&, although m, and c in Eq. (14} turned out to be
somewhat different for low-S processes. We took the
mv~mm Lovelace-Veneziano dual-resonance model' re-
sult 3a&,(0)= 1 —4aom with vanishing (az —1)

daughter. This gave

o,' = 1.1547ao, m&
——O. 6495m&,

The results are not sensitive to m /m~, which we tookalp Pp &

from the quenched lattice calculations of Ref. 2 without
any quark-mass extrapolation. Finally, the effect of gz is
small in Eq. (11), thereby justifying Eq. (9), even though it
corresponds to a fairly broad y G(y) peak.

If we next apply our procedure to Fig. 2 with a, az
states for 1 and 3 and az, aa states for 2, 4, and a, we
fllld, with ag =ap =aIv

mg —1/2ap=m~ =mp + I/4ap, ag=aIv

again in good agreement with experiment and insensitive
to the values of mN and m~ (Refs. 9 and 11), which we

took from Ref. 2. Here the lowest (q) line was replaced
by a qq diquark in Fig. 1.

Our calculations show that most of the dynamics gen-
erating the leading-trajectory hadrons come from open ha-
dronic channels. This is not, of course, necessarily in con-
tradiction with primitive valence-quark models, but mere-

ly means that open hadronic channels play an important
role in generating the final "confinement" forces binding
such quarks. No a priori truncation or partial diagonali-
zation of these channels was made in our scheme.

In the case of nmscattering, w. e find that
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I o( oo ) « I ( oo ). This is consistent with the more detailed
a=a~ results of Matute, ' who found a I ( ao ) which is al-
ready consistent with experiment. Now I 0 is related to a
HHHO coupling and so cannot be compared directly with
the results of a (short-range) quenched-loop lattice calcu-
lation, for example, which can only give HOHOHO cou-
plings. By applying some of our (HH~HH) methods to
HoH~HH and HoHO~HH processes, we can relate our
HHHo couplings first to HQHHO and then to HOHcHO
couplings.

Eventually, improved calculations would entail increas-
ing values of m„with an addition to Fig. 2(a) equal to the
negative of the m &m, exchange contribution of Figs.
2(b), etc. , to avoid any double counting. The m, ~ ao lim-
it is then not, however, equivalent to dropping the quark
degrees of freedom.

In a more complete treatment of hadronic channels we

must deal explicitly with the hadron-loop integrals that
come into Fig. 2(b), for example. " This is in any case
needed for heavy-quark situations, for which Eq. (7) may
fail because of the presence of a high-mass scale, although
alternative approximations may be possible, as in the
model of Ref. 13, which gave effective logarithmic cc and
bb potentials.

Finally, some of our methods may be applicable,
perhaps in modified form, to an implementation of the
compactification of superstrings. This is also a situation
where one has different short-range (ten-dimensional)'
and long-range (four-dimensional) dynamics, and may
even provide constraints which would help to select the
correct compactification scheme.
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