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Anomalous Ward identities for QCD are comprehensively analyzed taking into account contribu-
tions of all known pseudoscalar mesons, including the c(1440 MeV) which is a possible glueball can-
didate. Implications for the standard resolution of the U(1) problem are examined by imposing the
important and crucial constraint of positivity for the topological susceptibility. The pure Yang-
Mills susceptibility —a quantity relevant in quenched lattice calculations —is shown to increase quite
considerably in the presence of the ~, while the total susceptibility is reduced and may even vanish.
Allowed ranges for the axial couphngs are delineated and two classes of solution emerge: one corre-
sponding to an ~ with suppressed singlet axial coupling; the other to a large g'-like coupling. It may
be possible to discriminate between these two alternatives by measurements of the branching ratio
for ~~KKm: values near 100% give suppressed couplings; values below 50%%uo unsuppressed ones.

I. INTRODUCTION

The discovery of another low-lying pseudoscalar meson,
the t(1440) (Ref. 1), provides a possible candidate for one
of the unique features of QCD: the glueball. The ob-
served properties are not in contradiction with those of a
glueball, although the apparent dominance by the so far
only observed decay mode &~EEm and its recently ob-
served strong production in m p scattering both point to
a strong qq admixture or radial excitation. Whether or
not the iota is a glueball, its already established quantum
numbers raise the important question of its role in the
resolution of the U(1) problem through the existence of
gluons, their axial anomaly, and nonzero topological
charge. %hen only the pseudoscalar nonet is invoked in
their saturation the anomalous U(3) X U(3) Ward identities
(WI's) of QCD provide a fairly successful phenomenolo-

gy, including a resolution of the U(1) problem. ' This
success is considered to be evidence for the non-Abelian,
topological aspects of the underlying theory. To repro-
duce these results from a truly fundamental calculation
poses a most stringent test for QCD. Recent lattice
Monte Carlo computations in the pure Yang-Mills sector
have successfully obtained a sufficiently large topological
susceptibility X, and overcome the difficulties of previ-
ous attempts. A full computation involving fermion
loops is now desirable to demonstrate the large cancella-
tion expected on very general grounds. The existence and
mass spectrum of glueballs also poses a difficult problem
in lattice calculations and their unambiguous experimen-
tal confirmation is even more problematic. It is therefore
of considerable help to seek further tests both for QCD
and for the phenomenological identification of glueball
candidates. Here we present an attempt to evaluate the
significance of the t(1440) for QCD by examining its role
in the saturation of the WI for the U(3) &U(3) chiral alge-
bra. Because of our ignorance of the iota couphngs and of
the spectrum of qq radial excitations we have not been
able to include the latter explicitly in the analysis; conse-
quently our analysis can only be taken as illustrative of
the effects of these higher-mass states on the U(1) prob-

lem and our topological interpretation of its resolution.
In this paper we show in detail how the iota affects the

values of topological charge (the couplings A, ) and topo-
logical susceptibility obtained in previous analyses;~ we
find marked changes are possible, with the QCD suscepti-
bility X, small, ossibly even zero, and the "no quarks"
susceptibility Xt considerably enhanced. These results
depend on the axial couplings of the iota which seem to
favor an SU(3)-singlet identification. Whether the iota s
singlet axial coupling is suppressed or not is correlated
with the width for llt~ty. Only the product of this width
with the branching ratio for tilt'. Est is currently mea-
sured' so that our conclusion depends on the latter
branching ratio: values near 100%%uo—at present more like-
ly since other modes have been sought and not yet
found —favor a suppressed coupling.

Of course our conclusions depend on assumptions and
approximations, particularly on the hope that the in-
clusion of the high-mass states does not vitiate the satura-
tion approximation. In view of these reservations we also
present a fairly comprehensive analysis of the dependence
of the results on several experimental and theoretical un-
certainties: with some provisos the conclusions are quite
stable under these variations. The main limitation of this
work is the neglect of so far unobserved qq radial excita-
tions such as an g expected at 1.7 GeV. This means that
the "iota couplings" may not represent those of the iota
itself but rather "effective" couplings of pseudoscalars
above 1.4 GeV: the suppression referred to above is prob-
ably an indication that the iota and other states in that re-
gion are radial excitations; or more speculatively, it is at
least consistent with the 1/v X suppression expected of a
glueball iota. Unfortunately we cannot distinguish be-
tween the two possibilities with our present knowledge.
Potentially significant uncertainties also lie in the extrapo-
lation to the mass shell of the soft-meson current-algebra
anomaly calculations for the two-photon widths of il, il',
and iota. %e therefore make a serious attempt to assess
these uncertainties and to avoid too much dependence on
this part of the analysis. Despite this it turns out to be
quite difficult to obtain a large ~~2y width: our "best
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bet" is g 2 keV, although a value as large as 5 keV is not
too difficult to arrange. Finally, it appears that the in-
clusion of the iota somewhat improves the overall fit to
the data on the pseudoscalar mesons compared with anal-
yses which excluded it. '

Our entire discussion is restricted to a domain of pa-
rameter space which is chosen to minimize deviations of
g and i)' couplings from SU(3) symmetry. We have been
at pains to investigate a much wider range in our compu-
tations, and this information is presented in the many
graphs in this paper. In general large deviations from
SU(3) symmetry much beyond 20% are not favored by
the sum rules for 2y decays and the data on /~ay. Al-
though it is common in the literature to assume SU(3)
symmetry for ri and ri' couplings (see all the papers in
Ref. 4 except for the last one}, it is obviously not con-
sistent with the little data that exists; but the extant data,
often expressed in terms of a small ( —10') ri —ri' mixing
angle is consistent with deviations no larger than the
20% exhibited in the kaon axial coupling. This assump-
tion is also consistent with the very sparse data on
strong-interaction couplings of ri and ri' (Ref. 11).

Several previous investigations have covered some of
these questions using similar or equivalent techniques. ' '
The first' studied the pseudoscalar mass matrix and mix-
ing with a phenomenological Lagrangian extended to in-
clude a gluebaI/ i, , but with a very different philosophy
especially regarding the input parameters, and without an
exhaustive use of U(3) X U(3) Ward identities. This makes
it difficult to give a detailed comparison with our work.
The second paper' uses basically the same framework as
we do, but fails to take account of the large Yang-Mills
topological susceptibility in saturating the anomalous
Ward identities and is therefore not self-consistent —see
Ref. 14 for a detailed account of this disagreement. One
consequence is that solutions could only be found in Ref.
13 with a branching ratio for &~EEm &30%. Here we
show that this restriction is not required; on the contrary,
although ratios as small as 30% are allowed there are also
solutions with a branching ratio as large as 100%, con-
sistent with experiment. ' One common feature of our
work and that of Refs. 12 and 13 (see also Ref. 15) is the
prediction of a small i~2y width less than 5 keV; we
show that this is perhaps not too surprising because it fol-
lows primarily from approximate SU(3) symmetry and the
sum rules for the 2y decays of ri, i1', and i. An important
new feature of this analysis (see also Ref. 14) is that we re-
strict the total topological susceptibility to be positive, a
requirement not guaranteed by the saturated Ward identi-
ties themselves and one which leads to a crucial limitation
on otherwise free parameters.

In Sec. II we present the WI's and our basic definitions
and show how to include the effect of vacuum SU(3)
breaking and the i(1440); Sec. III follows with a critical
analysis of the role of topological susceptibility in the
WI's and is illustrated by the special case of SU(3) sym-
metry in See. IV to bring out clearly the effects of the iota
and the importance of positivity restrictions. Section V
discusses the additional experimental and theoretical input
necessary for solving the %"I's. Section VI presents a new
general method for solving the WI's in the presence of the

iota based on our previous work, and is followed by Secs.
VII and VIII where some remarkably simple expressions
are given for the topological susceptibility. Finally Sec.
IX presents our detailed numerical results followed by a
concluding discussion in Sec. X. The Appendix deals
with the interesting side issue of sign ambiguities and
their resolution.

II. ANOMALOUS %PARD IDENTITIES

8"A„'(x)=qy& q+5;OGG(x),
2

2

&2 16m
(3)

While the octet become massless Goldstone bosons in
the chiral limit of vanishing quark masses, the ninth
meson (ri') which is the would-be Goldstone boson of
Uz(1) keeps a mass through the anomaly as a conse-
quence of its proportionality to the topological charge
density —nonzero in QCD. This is measured by the topo-
logical charge constant of the g' (and through mixing the
q):

(0
~

GG (0)
~

II, ) =m, A„a = ri, i)' .

Only in the limit of infinitely many colors iV~ ao do the
anomaly and topological charge vanish and make the q' a
genuine U„(l) Goldstone boson. This is the solution of
the so-called U(1) problem and provides an especially
powerful test for the non-Abelian nature of QCD (Ref. 5).

This beautiful sequence of argumentation may be con-
cretely expressed in terms of the anomalous Ward identi-
ties obtained for zero momentum vacuum expectation
values of products of pairs of axial-vector current diver-
gences as well as the anomaly itself. When saturated with
the nonet of pseudoscalars and upon elimination of the
quark masses and vacuum correlation functions these
Ward identities give four sum rules:

m, Fs, ——, (4m' Fx mF„—), —

m FS,FO, ———, v 2(mx Fx m—F ), —

Quantum chromodynamics provides a concrete realiza-
tion of the assumptions of the current algebra of chiral
U(3)XU(3). Explicit symmetry breaking is supposed to
arise from the quark masses m=m„=md and m, ; spon-
taneous breaking of chiral symmetry from nonzero quark
correlation functions in the approximately SU(3)-
symmetric vacuum (uu )=(dd )&0 and (ss )&0. This
spontaneous breaking is accompanied by a nonet of
would-be Goldstone pseudoscalar bosons 11,(m, K, ri, i)')
which have nonzero matrix elements to the vacuum when
acted on by the divergence of the axial-vector currents:

(0
~

CPA
& (0)

~
11, ) =m, ~F;„ i =0, . . . , 8 .

In QCD the ninth axial-vector current and the corre-
sponding meson play a special role by virtue of the ex-
istence of the gluon anomaly:
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m, 2FO, (FO, —A, )= , (—2m» F» +m F ), (5c)

(5d}

d E„„
d8 eo

where the repeated index a is summed over q and q'.
Solutions to tllcsc cquatlolls (supplcIllcntcd with JudIclous-
ly chosen input) show that both A„and A„are nonzero
and of the order of F in the real world, and therefore
provide evidence for gluons, their anomaly, and QCD to-
pological charge. ' As they stand Eqs. (5) assume an
SU(3)-syI11IIlctrlc vacUUII1 state: (uu ) = (dd ) = (ss ). It
is well known that octet symmetry breaking in the vacu-
um (ss )& (dd ) leads to a very simple modification of (5)
in which the measured F» is silnply replaced by an "ef-
fective" F» given by

J d x I}"I}"T(0i@„(x)E„(0)iO) . (6a)

In Crewther's notation X, =((v)); and in order to con-
form with the notation now being used in the lattice com-
putations is six times smaller than the X, used in our pre-
vious work. ' This explains the awkward factors of 6
which appear frequently in this section; the natural defini-
tion would appear to be our original one' since it is the
quantity to be compared with m F [sce Eqs. (40) and
(41)]. As emphasized by Crewhter, ' (6a) is the correct
ambiguity-free definition of the squared topological densi-

ty rather than the naive quantity:

3 s
mac Fsc ——mac I'x — —1

2
[

m

(ss )
(uu) (6b)

+2 2+
Pl (uu )

(5C)

Experimentally, I'& ——1.22+0.01 in I units' while esti-
mates of vacuum symmetry breaking cover a wide
range. ' %e take as typical the value' ' X, =Z-'(0) g HZ„(0), (7a)

The latter time-ordered product of hard dimension-4
operators is not well defined because it contains 5-
function ambiguities which are removed by the definition
(6a).

In a path-integral formulation we may write

(ss ) . IIIs=0.8 with =36 .
(uu )

where

(7b)

This gives Ez-l. 1+0.5 a value we use throughout this
paper; the "error" is our own very conservative estimate
of the theoretical range of disagreement. To avoid rewrit-
ing all our expressions with additional typographical com-
plications we will use the symbol F» to stand for the octet
breaking corrected quantity F» defined by (5C).

The discovery of the l(1440) makes it necessary either
to include it in the summation on the left-hand sides of (5)
or to justify its neglect. The 1/N expansion suggests that
the couplings of a pure unmixed glueball are reduced by a
factor of order 1/~N relative to the qq mesons; and qq
radial excitations are also expected to be suppressed.
Since we are largely ignorant of the i(1440) couplings we
are forced either to abandon the use of (5) or include the
new meson without assuming that it has suppressed cou-
plings. %e may also ask whether it could play the role
previously attributed to the q, q' topological charge in
solving the Uz(1) problem without recourse to topology
or gluon anomaly. In subsequent sections we show that
the answer to this question is a fairly decisive no, and
furthermore that the iota couplings are sufficiently con-
strained to provide evidence that they are indeed
suppl essed.

III. TOPOLOGiCAL SUSCEPTIBILITY

Crucial to our discussion will be a fifth Ward identity
[Eq. (17)] for the topological susceptibility X„which mea-
sures 8 dependence in the vacuum:

and Z„(e) is the generating functional in which the in-

tegrated gluon fields have fixed winding number v. In the
Euclidean domain (7a) is obviously positive, a property
which continues into Minkowski space-time and which is
respected by WKB calculations. ' The positivity of X, is
a crucial restriction in this paper; it bears on the present
discussion because a naive saturation of either (6a) or (6b)
with mesons not only leads to a negative-definite result,
—m, 'A, ', but gives the same value for both forms (6).
Provided A, &0, these negative terms are undoubtedly
present; but obviously there must be something missing to
guarantee positivity, at least for (6a). There are several
equivalent ways to look at the extra term.

(i) Because one is dealing with operators of high dimen-
sion, any dispersion relation for I, would almost certainly
require a subtraction, 7„and lead to the general expres-
sion

6g, =67, —m, A, (8)

This is a further unknown parameter which must be
determined from positivity and the Ward identities.

(ii) Since the subtraction introduced in (8} must have
the opposite sign to the contribution of physical mesons,
it may be interpreted as the contribution of a negative-
metric ghost state—the Kogut-Susskind rnechanisrn. This
appears rather naturally in the phenomenological La-
grangian approach when the gluon operator GG is incor-
porated with the pseudoscalars in an effective low-energy

dynamics satisfying the Ward identities at each order of
perturbation theory. In this formulation it is also ap-
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parent that X, is a product of the pure gluon Yang-Mills
sector.

(iii) A possible expression for X, as a contact term has
been given by an argument due to %'itten. The idea is to
run the derivatives in (6a) through the time ordering,
picking up equal-time commutators which are evaluated
in the canonical formalism in the temporal gauge Ap=0.
The forrnal result is

However, it is not possible to identify g with i.(1440) even
if the latter were a glueball since it would certainly have a
considerable admixture of qq; so the practical identifica-
tion of X, is ambiguous even if we knew all the parame-
ters appearing in (8). In practice we can probably only
bound 7, somewhere between the two extremes where
there is no glueball component at all and where i(1440) is
a pure glueball:

g' '
6x, = g (0~ T.B'(o) ~0)+(g'),

8

(15)6X, —m, A, (6X, &6X, .

where 8 is the gluon color-magnetic field. If we assume
saturation is permitted in (6a}but not in (6b) then we may
identify

lim I d x e''i'"8"8"T(0
~

&„(x)&„(0)
~
0) =0

q —+0
(16)

g' '
6X,'= (0( Trs'~0) .

8m
(10)

This leads to

The Ward identity leading to a determination of X, and
X, may be obtained from the vanishing of the following
gauge-invariant T product in the absence of massless
pseudoscalar singlets:

The difficulty with this argument is that the intermediate
steps are not justified because they involve unregularized
quantities although it may well be that ambiguities actual-
ly cancel in the final expression (9). It does at least indi-
cate how the subtraction in (8) may arise.

(iv) The final argument is a modified version of one
given originally by Witten, and starts with a pure Yang-
Mills version of QCD in the absence of quarks having a
vacuum with 8 dependence:

T

2
8=0

YM+t
d8 no quarks

I@i( Eyag

d8 m =0 quarks
(12)

In contrast with Witten we will not assume that X, +0,
but will deduce it. Now consider QCD with at least one
zero-mass quark. This theory has a Ug(1) symmetry
which by a suitable y5 transformation on the zero-mass
quarks transforms away the 8 dependence:

. 8=0

6X, =i f d x T(0~ r)„A „(x)GG(0)
~
0),

where B&A &
is the soft qyqq part of the divergence in (2).

Saturation of the right-hand side then gives

6g, =ma Fo Aa —ma Aa

=m, (Fp, A, ) —,
'—(2m' F—x. +m F )

from which we deduce, using (8),

67, =ma F0,Aa

=m, Fpg , (2m' Fx——+m F ) .

(18a)

(19a)

(19b)

In both cases the second form follows from using Eq. (5c).
Finally we note that although the form (18}is not obvi-

ously guaranteed to be positive because it depends on the
sign of (Fp, —A, ), nevertheless it is when only rl and i)'
contribute by virtue of the Ward identities (5) [see Sec.
VII, Eq. (40)]. However there is no longer the case when
a third meson such as the i,(1440) is included, and this sets
bounds on the magnitude of (Fp, —A, ) which we can ex-
ploit.

Since in general this will have the form

X, =X, +(qq meson contributions) (13)
IU. THE SU(3)-SYMMETRIC CASE

and since by our previous arguments the meson contribu-
tions are negative definite, they must exactly cancel X,
in the m ~0 limit; assuniing they are nonzero in this lim-
it then shows that X, +0. We gave the argument in this
form because it precisely mimics the way we solve the
WI's: first by solving (5), thereby showing that the meson
contributions to X, are indeed nonzero (i.e., A, &0), hence
computing X, from a further WI (18) to be discussed
shortly and finally obtaining X, from its defining Eq. (8).

There is yet another subtlety we must consider because
it affects the interpretation of our final results: the rela-
tion between 7, and J', is in general nontrivial since we
expect at least one pseudoscalar glueball "g" even in the
pure Yang-Mills theory, and this physical state would
contribute negatively:

Before attempting to study solutions to the Ward iden-
tities in detail it is useful first to examine a simple—
possibly hypothetical —situation where iota is taken as a
pure flavor-singlet glueball (i, =g) and the axial couplings
are SU(3) symmetric:

F8 =Fp„O=Fss, Fp„F——s„F=Fx—2—Fps .—— (20)

The I/N expansion suggests that Fps -0 ( I/i/X )Fw

,'F for SU(3); we —use this value for illustration only
and keep F0 explicit in all the equations. The saturated
Ward identities (5) lead in F units to

(21b)

6g =6+ —m A, —mg g (14) and
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m m—s Fox(Fog —As)

(1—A„)
(21d)

6X, =m„A„(1—A„)+ms Fos(Fps As)—

The first three equations are an obvious consequence of
SU(3) symmetry; the last expresses the U„(1) problem
and its solution succinctly, at least when the glueball is
absent: the dynamical enhancement of the ri' mass over
that of the pion is achieved by a topological charge con-
stant A „=0(F ) to give a small denominator. How does
the presence of the glueball term change this picture'? A
large glueball mass mg -1.4 GeV &&m is a consequence
of both lattice and bag calculations. Since these are
pure Yang-Mills flavor-symmetric models, this is prob-
ably the appropriate scale of glueball mass to use in (21d).
It would appear therefore, that a nonzero A„ is no longer
required: the large ri' mass could result from the glueball
mass term in the numerator of (21d) proUided As is large
enough to change the sign of this term. Thus, to obtain
an enhanced ri' mass, say m„= —,'ms with the choice

A& ——0 would require Ag-F; the enhancement now
comes entirely from the glueball mass scale, but still re-
quires topological charge; in the case of the glueball in or-
der to reverse the sign of its contribution in (21d}. Clearly
there are intermediate possibilities with A„and Ag both
nonvanishing. The opposite extreme with a small denom-
inator providing an enhancement of the pion mass re-
quires a suppression of the glueball term:
cog p F& Fog In all cases w e observe the essential role
played by the topological charge: at least one of A„and
As must be present. The fact that only the last mentioned
scenario —As-Fos —is possible now follows from the re-
quirement that the topological susceptibility X, be posi-
tive:

mg ——m is now a very nearly horizontal one at Ag
——Fog.

This is the opposite extreme to the physical solution, al-
lowing Az to have a value anywhere between 0 and 2, but
with Ag-Fog throughout this range. Thus we see that
nowhere is it possible to have both As and A „zero (un-
less, of course, Fos ——0): whatever the mechanism for gen-
erating the q' mass we are driven to nontrivial topological
effects.

All the ingredients of this discussion will feature impor-
tantly in the sequel with the additional complication of
SU(3)-symmetry breaking and the consequent quite im-

0.5

=mv (1 —A„} Av — +
Og

2
m~ Ag

Fo,

(22)

"YF

where the first line follows from (18a); the second from
substituting (21d) to eliminate the glueball mass. In the
chiral limit m =0 the last term is absent and the
boundaries of positive X, are two intersecting straight
lines enclosing the allowed single-hatched region

22&&Av &F in Fig. 1(a). Since the last term is not
negligible —we are not in the full chiral limit m„=0—in
fact the boundaries are nonintersecting curves asymptotic
to the chiral limit lines and separated at their nearest
point As =Fos by 2m /mv ', this is the single-hatched re-
gion in Fig. 1(b). Lines of constant m„given by (21d) in-
tersect thi. s region over a very limited range of Ag and A&
[As=Fos+0. 1F, A„=(1+0.2)F ] which clearly favors
the mechanism of dynamical enhancement of the q' mass
with a suppression of the glueball contribution in (21d)
through the near equality of As and Fo. For fixed
m, mg the region of positive X, increases as m& is re-
duced until at m„=mg this region is bounded by the A&
axis and a straight line crossing the axis at Az ——1 and
passing through the point A„=2, Ag=FQ ., the line

0.5

).5 Aq~
F~

FIG. 1. (a) Regions of positive topological susceptibility with
SU(3) symmetry for a pure singlet glueball iota (~ =g) are shown
single hatched; the chiral limit is shown double hatched. A line
of fixed glueball mass is shown to illustrate the narrow allowed
range of couplings. (b) Same as (a), but in the chiral limit
m ~0.
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portant effects of mixing between the three pseudoscalar
states. Note especially that the mechanism driving Ag to-
ward Io does not depend on the fact that mg ~~m„but
only on m ~&mg and m&.

V. SUPPLEMENTING THE %'ARD IDENTITIES

the absence of the i, :
1/2

I (H, ~2y)
~a &em

= ga;(F ')A„. , (26b)

To solve the Ward identities (5) in the general case we

extend a method developed in our earlier investigations.
Since there are only four equations (5a)—(5d), but nine un-

measured quantities (Fs„FO„A,;a =ri, i?', i) it is not Pos-
sible to find a unique solution. Several independent addi-
tional conditions may be imposed to narrow down the
choice.

(1) Gluon operator dominance of the radiative decays
q ~H y(II =Yi,Y/, i) provide two coiistlaiilts:

1/2 ' 2

I (y-~ y) p, '
(23a)

1($~1?y) p„,' m„A„
1/2 ' '2

I (y~q'y) P, ma

I (P~iy) p„,~ mv A,

The first ratio is quite well determined, with '

(24a)

(23b)

The second is only known through the product of branch-

ing ratios:

B(/~ay )B(i ~ICEm )=(4.2+ 1.2)10

If we take the branching ratio for i,~ICEnto lie betwe. en

30 and 100% we obtain a probably realistic range:

exp& 1 ~ 68+0.36 100%
0.92+0.20 30% . (24b)

8"A„'= gm, F(,@„ i =8,0. . (25)

Since the anomaly gives the amplitude (at q =0) for the
current divergence to two-photon transition, it only re-
quires the solution of (25) for the fields to obtain an esti-
mate of the H, ~2y transition; but this is only possible in

All experiments so f~ peeormed point to a large
B(&~I(+1r) so we have concentrated mainly on solutions
in that region; but smaller ratios down to 20 or 30% are
not yet safely excluded by experiments although the
failure so far to see any other channels would be some-

thing of a mystery if B(i~KEm) does turn out to be so
small. For comparison however we also discuss solutions
with small KEn branching ratios in the results Sec. IX
where we show that the distinction between the two re-

gimes amounts to either suppressed or unsuppressed iota
singlet coupling.

(2) PCAC (partial conservation of axial-vector cou-
pling) estimates using the electromagnetic triangle anoma-

ly for two-photon decay. These begin with the PCAC re-
lation between the interpolating physica/ fields 4&, for the
pseudoscalars H, (=1?,1?',I. ) and the axial divergences via
the mixing matrix I' of axial decay constants:

where as ——1/1/3, ao ——2&2/1/3 are the color and fiavor
factors in the ferrnion triangle diagram for the anomaly.
This inversion is clearly only possible when F is a square
nonsingular matrix which applies when the iota is neglect-
ed; but in our case F is not a square matrix and has no in-
verse: the two Eqs. (25) for i=0,8 cannot be uniquely
solved for the three interpolating fields. Instead the same
considerations involving the triangle anomaly lead to two
sum rules:

a ='g, 'g il,

F;,r, =a;, i =8,0, (27)

where (26a) serves as a definition of the r, ; two are known
from experiment ' provided these decay amplitudes are
slowly varying between q =0 and q =m, (we choose rv
positive by conuention see th—e Appendix):

r'„""=0.78+0.06F„' for I „=0.32+0.05 keV,

~

rz" '
~

=1.37+0.26F ' for I v
——5.3+1.6 keV .

(28)

The iota decay is of course not yet measured, but theoreti-
cal estimates' ' span the range 0—20 keV corresponding
to r, -0 to 1.5F ', experimental upper limits are around
10 keV (Ref. 21), implying r„& 1F~ '. We certainly have
some reservations about taking such estimates too literally
since large extrapolations from q =0 to m, are involved
in (26) and (27); nevertheless these do provide useful cri-
teria for limiting the range of parameters. However it
should be emphasized that our method of solving the WI's
in Sec. VI is specifically designed to separate out this part
of the analysis so that some results, such as the important
topological susceptibility I, are independent of this poten-
tial weak link.

(3) Positivity of the spectral functions (8"A&B"A'„)
and X, : the former is automatically achieved by solving
the Ward identities (5); but the latter is obtained from (18)
as an output, and as we saw in Sec. IV positivity is not au-
tomatic and provides a strong restriction on the parame-
ters Fo, and A, of the heavy iota. This is a crucial as-
sumption.

(4) Finally there are expectations based on the sym-
metries of QCD: from color SU(iV=3) and the I/N ex-

pansion it is likely that glueball couplings Fo (=Fo,'?) are
suppressed by 1/v N relative to qq meson couplings be-
cause the glueball only couples to the currents via quark
loops. A suppressed coupling as low as I'o, —

2
I' would

be consistent with a glueball ~, but is also characteristic of
a qq radial excitation and therefore not an unambiguous
signal for a glueball; an unsuppressed coupling Fo, -E
would probably indicate an ordinary qq meson. These are
criteria for interpreting our final output solutions; but as
input we make use of the well-known experimental success
of flavor-SU(3) symmetry to demand that pseudoscalar 1?
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and i)' couplings be "nearly" SU(3) symmetric in the sense
discussed in the Introduction. Finally, we assume all am-
plitudes and couplings which are nonzero in the SU(3)
limit have the same sign as r&, other choices either violate
SU(3) symmetry too much or give numerically the same
solutions with different signs. This is not entirely a ques-
tion of sign conventions, but may at least to some extent,
be subjected to experimental test. A discussion appears in
the Appendix.

VI. SOLVING THE ANOMALOUS %PARD IDENTITIES

Our procedure for solving the saturated Ward identities
is to take five parameters as input: these are
Av'/Av =0.8, wlllch is llsually flot varied, tile parameter
Xor defined in Eq. (34), which measures the overall
strength of the singlet axial couplings to rl and rl', and the
iota couplings FS„Fp„and A, . For each choice we then
obtain a unique solution of the four Eqs. (5). The solution
is only accepted if SU(3) violation in the g and r)' axial
couplings is smaller than 20% and the output widths for
rl(rl') ~2y are broadly acceptable.

The simplest method for solving the Ward identities is
first to follow an extension of the technique used in Ref. 5

where the Ward identities (5) are written in an invariant
form in the physical three-dimensional g rl' i spac-e:

(1—X,„')'"
0

Xs,

(32a)

The remaining equations are then immediately solved in
terms of a single unknown constant XOT and modulo a
second arbitrary sign which is again chosen positive:

needed only subsequently to identify the physical axes.
Since the iota couplings are being taken as input, the third
component and the iota axes are assumed known and
fixed: the only ambiguity remaining is rotations in the ri-
g' plane about the iota axis. Suppose there is a convenient
set of axes x-y in the g-q' plane where it is simple to solve
the Ward identities (29). It then only requires one addi-
tional physical input, such as Rvzv, to find the matrix
Q($) which rotates the x-y axes by angle P to the physical
axes and hence to obtain the physical couplings and topo-
logical charges by the same rotation of the vectors.

The most convenient set of axes [Fig. 2(a)] is one where
z =i and the unit vector Xs lies in the x-i, plane; (29a) im-
mediately gives this vector uniquely modulo a single un-
known sign which we choose positive:

Xs ——1,
Xs Xp=u

Xp —Xp Y=1,
X8 Y=O .

(29a)

(29b)

(29c)

(29d)

The three-dimensional vectors have components defined
by

(30b)

(30c)

as=[ ,
'

(4mk F» m—F )]—
=0.22+0.02(rn F )

ao—= [ —,'(2m»'F»'+alii 'F„')]-'"
=0.31+0.03(m F~)

(31a)

(31b)

Z&c

(b)

z

3
(rn» F» —m F) ao——as—0.93+0.08 P)-

x

with F» ——(1.1+0.5)F„and F =(93.0+0 2) Me&.
crucial step now is to observe that the Ward identities (29)
are invariant under rotations in the g-q'-~ plane. This re-
quires extra input to find the physical components (30),
but has the advantage that (29) may be solved in any con-
venient coordinate system; the extra physical input is

FIG. 2. (a) Coordinate systems in g-q'-c, space. (b) Coordi-
nate systems in q-g'-c space in the absence of mixing with the
iota.
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which is the appropriate condition accompanying Eq.
(35). In both cases the rotation matrix is

Xo,
cosp —sing 0

Q(P ) = sing cosg 0
0 0 1

(37)

—bX8, F,

[Xp —1 —I'x (Xpi Xsi—~b ) ]
(X 2 a2)i j2 (32c)

and

a =b (a —Xp,xs„)

b =—(1—X„')-'".

(33a)

(33b)

The parameter Xpz represents the length of the projection
of Xp ollto the 21-2)' Plane and is still unknown; given Xp,
its value fixes the length of Xp.

Xo ——Xor +Xo,2 2 2

This plays the role previously taken by Xp when the iota
was neglected and a role taken by a [see Fig. 2(b)]:

1

X8 0 ~ X0 2 2 ]. /2(Xp —a )

0
(Xp' —1)

(X 2 2)1/2

(35)

It will be shown subsequently that the parameter Xoz is
essentially fixed by the 2y decays and approximate SU(3)
symmetry to be around 2(m F„}

The question of the two undetermined signs together
with the unknown signs of relevant decay amplitudes is
discussed in the Appendix where we show how they
feature in the solutions: there are only two sets of numer-
ically distinct solutions; one is approximately SU(3) sym-
metric and is the one chosen here; the other violates SU(3)
badly. %e also show how, at least in principle, experi-
ments can distinguish between some of the different
choices that still remain.

Finally we come to the rotation Q($) to the physical
21-21'-i axes which is given in terms of the g-decay param-
eter defined in Eqs. (23):

rF„—Fy
tang =

F„+re
where

m&A& m&
R~g~ .

m&A& m&

In the absence of the iota, or when it does not mix into the
octet (Fs, =0) we regain the simple result

VII. TOPOLOGICAL SUSCEPTIBILITY EVALUATED

The topological susceptibility defined by Eq. (6) is obvi-
ously flavor independent and therefore invariant under ro-
tations in the g-g'-~ plane; consequently it is independent
of the rotation angle P and may be computed from the
solution (32) of the Ward identities without any further
input. Using the WI (17), its saturation (18), and the defi-
nitions (30) we obtain

6x, = 2(Xp Y—Y )
&o

(38a)

2(Xp —1 —Y ),
cxo

(38b)

where the last line follows from the WI (29c). This is a
quadratic form in I; which is plotted in Fig. 3. A com-
pact expression may be written in terms of the two vari-
ables

y, = F,—Xo, +O;Xs, ,

xpi =(Xpi —axsi)/(1 —Xs, ),
and the small quantity of order ( m /ms ):

9(m F ) (2m' Fg m~ F~ )—
(4m' F~ mF )(2m' F~ +—m F )

[(X,' —x,„'—1)5—2y„x„5—y„'(X,' —a')]
A', =

2 2 2 2
. (40)

ap (Xp —xp, —a )

where the rows and columns are labeled in the order
2),g', i, and x,y, i, respectively (see Fig. 2).

Thus, for each choice of XpT and of the iota couplings
F„,Fp„A„ there is a unique set of vectors given by the
Eqs. (32). Imposition of the conditions (36) related to
$~21(ri')y decays then fixes the rotation Q(p) to physical
(r)2)'i) axes. Next the criteria discussed in Sec. V are used
to fix or at least narrow down the range of the four so far
arbitrarily chosen parameters: the "measured" decay
P~iy, Eqs. (24a) and (24b); positivity of the topological
susceptibility which, as we noted in Sec. II constrains the
size of (Fp, A, } and, —as we shall see shortly, provides a
particularly powerful restriction on A, ; and finally, near
SU(3) symmetry. We now proceed to discuss our solu-
tions, starting from the general case and imposing in turn
each set of restrictions from the most powerful down to
the least, finally ending up with a restricted range of pa-
rameters which are used to delimit the expected width for
~~2y. %'e begin with the most important constraint:
positivity of topological susceptibility.
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1.5
Foi -0
F@=0

Fo, .Q 5
I

FN = -Oe2 0 +0.1 + 0-22

F„*1.0

Fat 0

1.5 UPPER VALUES OF A I———LOWER VAlUES OF A I

1.0

= "eg
F0'g'

0.5
Q.5-

1.0
p

FIG. 3. R. 3. Regions of positive topological susceptibility for
X = 1.9. Th e units in this and all subsequent figures use
m =1, F~=1.

-05

The small value of 5 is responsible for the narrow range of
y,—or of (Fp, —A, )—for which X, is positive. With the
exception of the regt'on Fa & +0.2 [which is excluded by
approximate SU(3) symmetry, see Fig. 9, and i)'~2y, see

ig. 18] we find the permitted range for the topological
susceptibility:

FIG. ~.G. 5. Variation of axial-vector couplings with topological
susceptibility for XOT——1.9, Fo, ——0.5, F8, ———0.2. The solid and
dashed curves correspond to the two values of A, obtained from
the appropriate curve in Fig. 3.

or

0&6', &1.36(m F )' (41) is also virtually independent of all the other rl, g', and i
couplings —again a consequence of the small size of 5:

0 & X, & (79 MeV)4 .

Figure 4 summarizes this tight correlation between I'
and A for our favored choice of octet coupling,

0

een

s, ———0.2; Fig. 5 shows that approximate SU(3) symme-
try favors the region X, =0 corresponding to the largest
allowed value for A, . A further interesting property of
the topological susceptibility is evident in Fig. 3: the
maximum point is independent of the octet couplings. It

(Xo —1)

ap2 (Xp2 —a')

2
1—

(X,' —a')

= —, m F)
2m' Fg —m~ F~

=1.38(m F )

(42a)

(42b)

(42c)

(42d)

10

.9

To obtain the approximation (42c} we discarded the
second term in the large parentheses of (42b} which is typ-
ically of order 5%. This is the case because the physically
interesting region corresponds to:

0 .1 .2 .3 .4 .5 .6 .7 -8 .9 1 0
Foi

FIG. 4. Allowed ranges of Fo, and A, corresponding to posi-
tive susceptibility lie in the narrow regio bet

' il1on ween pa11s OI 11nes.
Two values of I'0, are shown for the choice XOT ——1.9.

=S.6

This is plotted in Fig. 6 with the iota coupling dependence

o &Xo„* ——m ~ ao Fo„-m ~ a I'9g' q' 0 2 ply

which makes the denominator in the correction term safe-
ly large.

Thus, not only do we conclude that 7, is small, but that
it is largely independent of the uncertain properties of the
pseudoscalars. This is not the case for the "subtraction"
X„although it is still independent of the flavor rotation
angle P. From Eq. (19b),

(Xp —1)
f (43)

o;o
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250

130

110

100 - 230
2 &2)1/2

Xog

(45b}

80

6X1'2
[m& F&)

" 210
(

)o)~/4

(vev)
" 200

0

XoT —1 —Logy
2

XQT —a2 2 (45c)

40

10 1.5 RQ 2.5 SQ 3.5
X01

- 190

180

170

160

150

120

100
0

Note the similarity to the iota-less solution (35): Xor
plays the role of Xo, and there is a correction term in the
second component of (45c) which is small because posi-
tivity of topological charge requires yg to be small. More-
over, the rotation angle P is now given by (36c) rather
than the more complicated (36a).

The topological susceptibility is now greatly simplified
and may be cast into the form

FIG, 6. The subtraction topological susceptibility g, ( -g, )

according to Eq. (44).
6X, i 2 [(XoT —1)5—2Xogyg5

&o'(Xor' —a')

—(Xo' —a')yg'] (46)

made explicit. Comparison with Eq. (42a) leads to the re-
lation

6g0 6g a(Xo —a )
(44)

VIII. A SIMPLE CASE:
NO OCTET MIXING IN THE IOTA

Before proceeding to a more detailed analysis based on
the restrictions discovered in the previous section, it is
useful first to study a simplified model system where the
iota is a pure SU(3) singlet. To avoid any confusion with
previous and subsequent sections and to emphasize that
this section may serve as a paradigm for the unmixed
glueball we denote the iota as g: this stands for the ap-
proximation Fs, ——0.

%ith I 8,
—=I sg ——0 the solutions are as depicted in Fig.

2(b), with the simple form obtained directly from Eqs.
(32):

which shows clearly the large enhancement effect of order
30.

To summarize, positivity of X, restricts both the range
of (Fo,—A, } [Eq. (42) and Fig. 4] and of X, itself [Eq.
(41) and Fig. 3]. Since the topological susceptibility is fla-
vor independent and has such a restricted range of varia-
tion it is most convenient to choose X, as an input param-
eter; approximate SU(3) symmetry favors X, =O, corre-
sponding to the largest permissible value for A, [Fig. 5
and Eq. (40)]. Thus given X„XoT, Fo„and Fs, we may
obtain the topological charge A, by solving Eq. (40).
These are taken as our input parameters.

which is positive in the range between the two roots:

2
' ]/2

5 1 (Xor —1}
Ag Fog 1

2 2
+

(Xo —& } ~omg (Xo —a )

(47)

where a term of 0(5 ) has been dropped in the square
root. This shows clearly the role of the small quantity 5
defined in Eq. (39) in restricting the range of ( Ag —Fog).

The procedure we adopt for obtaining numerical solu-
tions starts with a choice of five input parameters: these
are 3„/A„=O. S as given by Eq. (23); the parameter XoT
measuring the overall singlet coupling strength of i) and
q'; the topological susceptibility 6g, which only spans a
narrow possible range given in Eq. (41); and finally, the
two iota couplings Fo„F&„Equation (40), depicted in Fig.
3, then immediately gives two values for the third iota
coupling A„and Eqs. (32) provide solutions to the Ward
identities (29), although at this stage only in the special
x-y-i coordinate system. The information on the ratio
2„ /A„obtained from the g radiative decays is now used
to rotate the coupling vectors to the physical g-q'-a axes
via Eqs. (36) and (37). This completes the solution which
is now subjected to three tests.

Test (1). Deviations from SU(3) symmetry are mini-
mized. This is most important in fixing a value for XQT
as sho~n in Fig. 7: Fo„and Fo„are not only strongly
dependent on XQT but serve to bracket the region around
XQT-1.9+0.1 rather convincingly. In passing we note
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XoT R„,,
/

1.8 '

100'W SO&

2.0

1.5
50X

„20%

0.5

1.0

0.5
0 .1 .2 .3 .4 .5 6 .7 .8 .9 1 0

~ot

Fo,

FIG. 12. Same as Fig. 10, but with F8, ———0. 10 correspond-
ing to small branching ratios for &~EEm.

FIG. 10. Variation of R„q, [defined by Eq. (24a)j with Fo,
for Fs, ———0.2, X0T——1.9= —0.1, and two values of the topolog-
ical susceptibility. For g, =0 the value if 3, chosen is the larg-
est, corresponding to the least SU(3) breaking (see Fig. 5); for
g, '" there is a unique value for A, .

Fo,-0.5F leads via positivity to a suppressed A, =I'o,
[Eq. (47)] and hence an enhanced R„&, Eq. (24a)]. The
current experimental position is that only the ~~KKm
channel has so far been seen but these are difficult ex-
periments and there are also theoretical arguments which
suggest that this may not be the dominant channel. We
therefore consider it useful to contrast the above analysis
with one where we take 8(t~EKm)to lie as . low as
20—30%. According to Eq. (24a) this requires an in-
crease in A, and therefore [Eq. (47)] in Fo, , but we have

already noted in Fig. 8 that values of Fo„&0.8 lead to
unacceptable symmetry breaking in Fo„, and so this
should be considered an upper limit. Figures 12 and 13
show that there is no difficulty in obtaining 20—30%
branching ratios albeit with somewhat greater symmetry
breaking in Fo because larger values of Fo, are required.

Test (3). A tighter limitation on the acceptable range
of Fo, and Fs, requires a use of the more problematic 2y
decay constraints. This is why we chose to solve the WI's
without imposing the two sum rules (27) at the beginning.
One difficulty stems from the fact that the PCAC predic-
tions are derived for the off-mass-shell point q =0-
giving a "width" I """'=I (0) which needs to be extrapo-
lated to the quite distant mass shell point q2=m, to pro-
vide a comparison with the measurements, I'"~'=I (m, ).
In studying the sum rules (27) we chose to view the least

2.5 2op ~

2.0 1+5-
Spk

1.5
30Ã

io-
I 0.5

F8t

—.05 —.20
k

—t5

FIG. 11. Variation of 8„~, with F8, for F0, ——0.5,
X0T——1.9+0.1. See Fig. 10 for further explanations.

FIG. 13. Same as Fig. 11 but with F0, ——0.8 corresponding to
small branching ratios for f.~ESCA.
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problematic q width as input and the ', ~ wid
m so ving tile two Ililear Eqs. (27):

o s. ) &—g(Fs„I'o. +—o„+s,)(&st, —(z F ) —r
(51a)

ao+sv &—sFo~ )+&v(+sv+os —+ov+s„)
D

(51b)

where the determinant is

(5lc)D—=I'SgI'0 —I'~I'8 .

We then kept in mind that the coa t e corresponding widths I'""'
c ange y considerably more than the uot

mental errors in extrapolatin to th . i-
ex rapolation might

form
i er, per aps somewhat optimistically, a

I& -2y(~~ )

{keV)

10

I ( g') I (0) 1-'~

I (rn ) I'(0) 1+
M

(52)

15.the or
l~ 2y

- I, 2y (0)rl'

(kev)

I „z (0)-0 32+ ' keV—0.06

I'„zr(0)-5.3+z keV .
(53)

f~ 2y(m~)

(kev)

r(-„*) r(0)["(y)']

M. 1.0 GeV
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FIG. 20. Correlation between output 2y amp/itudes for
I'8, ———0.20, X0T——1.9, and +,=0 (corresponding to A, =0.44).
The numbers marked on each curve are values of Fo,. Experi-
mental upper hmits for the iota width (Ref. 21) indicated by the
hatched and plain horizontal lines correspond to the likely range
of branching ratios for i~KZn-, the lowest to 100%. Note that
only posi. tive values of r„are compatible, but either sign of r, is
allowed.
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FIG. 21. Variation of g'~2y output width with F8, for solu-
tions possessing small ~~EXn branching ratios (compare Fig.
18); for F0, =0.8, Xoy = 1.9, and pg =0 (corresponding to
A, =0.44). Note the rapid variations caused by nearby zeros in
numerator and denominators in Eq. (51).

our presentation of the solution. with suppressed singlet
coupling Fo, . its main distinguishing feature is a large ra-
tio F„~, corresponding to an amplitude for /~ay a good
deal smaller than one might expmt for a glueball. Such a
large ratio seems to be favored by the data which points to
a nearly 100% branching ratio for i~EEL

There is one other small window in parameter space
where acceptable solutions may occur, and this corre-
sponds to small branching ratios,

40

30

(keV)

8 (i +EEm )=20%, —

and larger singlet couplings:

Fo,-(0.8—0.9)F

(54a)

(54b)

20

This is the region of parameter space considered above
and depicted in Figs. l2 and 13. Unfortunately Figs. 21
and 22 together show that to obtain acceptable output 2y
widths we need to choose iota couplings rather precisely
in order to exploit the sensitivity exhibited in these fig-
ures. This puts the couplings so near the point D=O that
we are now able to choose an alternative approach to solv-
ing the 2y sum rules (27): we simply take the lesson from
Figs. 21 and 22 that in the parameter range relevant to
solutions hav1ng sHlall 4 ~KKK bx'anch1ng 1at10 the two

10-

.24

/

-.20
t

-J5 -.io
D=O

—.05
's

FIG. 22. Same as Fig. 21 but for ~~2y. The hatched region
is excluded by the experimental upper bounds (Ref. 10) inter-
preted very conservatively as in the largest bound in Fig. 20.
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2y sum rules (27) are no longer independent. This occurs
when D=O, whereupon Eq. (51c) gives a unique relation
between the iota couplings:

&„,„(i~v)

Fs~
Fo, .

Fo~
(55) 0.40-

For consistency of the octet and singlet sum rules in (27)
we then obtain a condition which gives the q~2y ampli-
tude uniquely in terms of the couplings obtained from
solving the %I:

(56)i 3(Fo~I's~ +s—qFo~ )

The remaining sum rule then follows:

Fo F~ (~~ —2~ 2~s„)
r& +r,

+o~ ~&(Fo~I's„Fs„I'~—)

SU(3i
—+ 2 =1.64. (57)

limit

The method of solution is now a simple modification of
that used before: the usual input parameters are chosen
but now one, F8„ is varied until the condition D=O, Eq.
(55), is satisfied. The result is plotted in Fig. 23 where we
see that F8, spans only a narrow range about F8, ———O. I2.
Supplied with the resulting solution to the WI we have all
the couplings to evaluate Eqs. (56) and (57) which are de-
picted in Figs. 24 and 25. Clearly an acceptable fit to all
the experimental restrictions is possible provided a small
c~I(Km branching ratio less than 50% is considered vi-
able. It seems only possible to achieve a large enough
branching ratio by either violating SU(3) symmetry badly
(for the ri and r}' couplings) or by going toward the previ-
ously discussed solution with suppressed singlet iota cou-
pling Fo~.

0.35-

0.3P-

0.25-

0.5 0.6 0.7 O.S 0.9 V)
Fat

FIG. 24. Width for g~2y as given by the condition D=O.
Values of Fz, now uniquely determine Fs, which varies by no
more than 5% from the value I'8, ———0.12 over the range of F0,
depicted here —see Fig. 23. We have taken X0T——1.9 and g„

"8

-0.1 25

-0.120.-

—0.115*-

-0 110--
0.4 Oh 0.6 0.7 G8 0.9 1.0

F
Qg

FIG. 23. Values of F8, satisfying the condition D=O in Eq.
(55). Input parameter values are X0q ——1.9 and +, =0 (corre-
sponding to A, =0.44).

FIG. 25. Correlation between 2y amplitudes for the case
D=O for three choices of E0, . The corresponding q width may
be read off from Fig. 24 and we have taken X0T——1.9, +,=0
( A, =0.44). The experimentally excluded region is again shown
as in Fig. 20. Note that only positive values of r„are compati-
ble, but either sign of r, is allowed —compare Fig. 20. The r„
intercept agrees well with the SU(3) limit in Eq. (57).
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X. DISCUSSION AND CONCLUSIONS

We have shown that the combined restrictions of maxi-
mal SU(3) symmetry and positive topological susceptibili-
ty make it possible to narrow down the range of
phenomenologically viable solutions to only two: the one
corresponds to a suppressed singlet iota coupling perhaps
indicative of either a qq radial excitation or a glueball; the
other to a more conventional singlet indicative of a qq
meson like the il'. The former gives a large ratio R„z,
unlikely for a glueball i, but which is favored by the ex-
perimental dominance of the a~KEir channel; the latter
to a much smaller value requiring a branching ratio con-
siderably smaller than is currently favored by experi-
ments. It is important to note that the singling out of a
small region of parameter space was achieved virtually in-
dependently of the 2 y decay restrictions: these were used
more as a consistency check and it is quite encouraging
that such viable values actually emerge in Figs. 20 and 25.
It is of course possible to weaken our SU(3)-symmetry re-
strictions and obtain viable solutions between the two dis-
cussed here thereby making the distinction between possi-
ble solutions less clear-cut. But we could only accomplish
this by allowing for a smaller ratio R„&, corresponding to
a small i,~ÃICm branching ratio not favored by current
experiments. The size of this branching ratio is therefore
important both here and in other discussions of the
iota ' and we await further experimental clarification
with some interest.

Further interest resides in a better upper bound to or
even a direct measurement of the i~2y width. All the
indications of this analysis are that this width is
small, ' ' and a confirmation of this would greatly
enhance our faith in the usefulness of the PCAC-anomaly
sum rules (27) upon which these predictions are based.
The reason why these sum rules need an iota width less
than 10 keV is not hard to see: with SU(3) symmetry for
the q and q' couplings the sum rules are near saturation
with their contributions alone; and with iota couplings in
the range of our two classes of solution the maximum
value for the amplitude r, is of order 1F ' leading to a
width of order 9.5 keV. An inspection of Figs. 20 and 25
shows that the actual range of parameter values favored
by our analysis tends to enhance this tendency in the
direction of even lower values if the il and i)' widths are
to come out right: thus if we are optimistic about the
complications of large extrapolations to the mass shell we
see a strong tendency toward a width of at most 5 keV
with a most favored value of approximately 2 keV for
both types of solution. One reason for optimism regard-
ing estimates or the 2y widths is that they have been cal-
culated in terms of the rl width via sum rules rather than
absolutely and these may have a much wider range of va-

lidity than just q =0.
Another interesting point concerns the signs of the 2y

amplitudes discussed at length in the Appendix: both the
solutions unambiguously predict that rz has the same
sign as rz, a result consistent with the Steinberger'

TABLE I. Representative solutions to the anomalous %'ard identities. Some solutions to the WI s which illustrate the two classes
of solution found. The no-c solution (Ref. 5) is shown for comparison. Solutions I and II correspond to "suppressed" iota singlet cou-

pling Fo„' solution I is our favored one with the best compromise between the various requirements imposed in Sec. IX, and with

B(~~KKm-) near 100%. SU(3) symmetry favors g, =0; solution II shows the effect on solution I when the latter is increased to its

maximum value. Note particularly the large SU(3} breaking in Fo„. Solutions III, IV, and V correspond to unsuppressed

Fo, ——0.7—1.0 and consequently small 8 (a~KKn ); in all three solutions D= 0 [see Eqs. (55)—(57)].

Fs~
Fs,

Fo„
+o
Aq
Aq.

6g,
6go

Aq g„

Rqg,
8 (i~KEm)

I „2~ (keV)
I „2~ (keV)
r, „OeV)

0.97
—0.35

0.38
1.18

1.01
0.91

1.35
57.5
0.9

0.49
3.1

1.01
—0.13
—0.20

0.14
0.91
0.50
0.87
0.70
0.44
0

55.2
0.8

1.59
(90%)

0.36
6.1

1.1

1.01
—0.13
—0.22

0.33
0.90
0.65
0.99
0.79
0.51
1.36

73.6
0.8

1.57
(87%)

0.32
5.7
0.2

1.08
—0.16
—0.12

0.11
0.91
0.70
0.83
0.66
0.68
0

80.8
0.8

0.98
(34%)

0.32
5.5
1.3

IV

1.10
—0.14
—0.12

0.11
0.91
0.80
0.84
0.67
0.78
0

96.7
0.8

0.29
5.5
1.1

1.11
—0.10
—0.11

0.12
0.91
1.00
0.86
0.69
0.97
0

135.1

0.8

0.71
(18%)

0.24
5.5
0.7

Experimental value

0.8+0. 1

(1.68a0.36)[8(i~KKir)]'~'

0.32+0.05
5.3+1.6

«10 (keV)
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baryon triangle and one which in principle may be sub-
jected to experimental test in q' photoproduction. There
are further tests of solution signs but these are almost cer-
tainly beyond the bounds of any foreseeable experiments.
It is also surprising that there remains only a twofold sign
ambiguity in our solutions as a result of the analysis in the
Appendix: these correspond to the signs given for the
solutions presented explicitly here (solutions 1A of the
Appendix) and numerically identical solutions with re-
versed signs for all the iota couplings (solution 18 of the

Appendix).
The figures presented in this paper are meant to serve

as both a convenient summary of the results and a realis-
tic indication of the sensitivity and mutual interdepen-
dence of the relevant parameters of the r?-r?'-~ system. We
conclude with Table I which shows a selection of typical
parameter values and compare these with ones obtained in
a similar analysis neglecting the iota. %'e regard this in-
vestigation mainly as a preliminary to a better-controlled
and more fundamental approach to the nonperturbative
consequences of QCD and hope to have provided a point
of comparison for these calculations of the future. The
limitations of our model to only one higher state, the
~(1440), means that our conclusions probably refer to the
collective effects of important states above 1.4 GeV rather
than to the i alone. In particular, we have shown that the
~(1440) and so far unobserved qq radial excitations must
play a role'in elucidating the pseudoscalars and the QCD
vacuum. This "effective" i seems to possess a suppressed
axial singlet coupling which, taken with a large ratio
Rz &„ points toward a radially excited state rather than a
glueball or ground state qq like the ri'. The presence of
the ~(1440) also affects the value of the total topological
susceptibility X, (Fig. 3) for which a small value seems to
be favored; indeed it appears possible to achieve X, =0. Is
this an indication of some dynamical mechanism at work
corresponding to the resolution of the strong CP-violation
problem'? There is already some evidence of small X,
coming from QCD sum rules' ' and we look forward to
the time when lattice simulations gain the sophistication
to handle fermions, topology, and gluebalis all together.
So far lattice calculations in this area work only in the
no-quark limit for which our results on X, (=X, )

should be relevant: Fig. 6 and the discussion in Sec. III
show that there may be a considerable enhancement of the
"no quarks*' topological susceptibility over that expected
from previous i-less analyses. ' Sections VII and VIII
provide some succinct formulas for the topological sus-
ceptibility which may be useful as a guide especially as
they depend on so few of the additional details required to
obtain values for the axial couplings; this point is particu-
larly noted in Sec. VII.

Finally there is the mixing problem: in principle the
axial-vector couplings should contain information about
the mixture of quarks and pure glueball in the g-g'-~
states, but we have not been able to exploit this so far. It
has not been necessary to invoke any particular mixing
model in this work and although it is clear that additional
input is required to make a comparison with the many
mixing schemes already in existence, it is not obvious
how to do this.
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APPENDIX: RESOLVING SIGN AMBIGUITIES

The bilinear form of the WI (29) means that there are
two independent sign ambiguities: one from the solution
of (29a) denoted gz ——+1; the other from (29c) denoted fp

These were chosen positive in the text but enter into the
solutions (32) in the x-y-i system as

ps lb

0

X8g

(Al)

4a
Xo= ko«

xo

(A2)

gsbXs„Y„—

Y= )pc [Xo—1 —Y'„(Xp —Xs ab)] (A3)

where

a:b(a —Xo„X—s, ),
b —= (1—X„')-'", (A5)

rF —Fy
tang= F„+rYy

where

m& m& A&
r =— R„p„-

m~ m~3~

(A7)

(A8)

The quantity r is the first point in this sequence of equa-
tions where an experimentally measured quantity appears,
and it may seem to be the appropriate observable relative
to which all signs should be referred; but since there is no
obvious way to experimentally measure the sign of r rela-
tive to other relevant quantities such as F o and the

strong interaction coupling 6 zz we prefer instead to
refer all signs to the g~2y amplitude rz which, at least
in principle, has an experimentally measurable sign (rela-
tive to G ~~). We shall discuss this point in detail at the
end of this Appendix. %'e therefore have yet two more
ambiguities: the sign of the amplitude ratio r for

c:—(Xor —a )
2 2 —1/2

Further sign ambiguities arise only at the next stage of
the solution procedure when we need to rotate from the
x-y-~ coordinate system to the physical g-q'-~ system:
here we rotate about the ~-axis by the angle P given by
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P~g'(g)y and the twofold choice P or P+m correspond-
ing to the sign reversal (sin((), cos((t)~—(sing, cos(() ) which
leaves tang unchanged. This latter sign reversal simply
changes the sign of the g and ri' components of the vec-
tors (A 1)—(A3) after rotation to the physical axes; but this
sign change may also be accomplished by the reversal be-
fore rotation of (gz, gu) —+ —(gs, g'0) and is therefore not an
independent ambiguity: we are at liberty to always choose
/P) &n/2

The final result is a set of eight apparently independent
solutions corresponding to the eightfold sign ambiguity in

gs, $0, and r. These break up into just two sets which are
numerically distinct; but the four solutions within each set
differ from each other by sign permutations: the choice
(gs, gu, r) =(+,+,+ ) denoted solution 1 in Table II and
those obtained from it by an even number of sign changes
are all numerically identical and are called type-I solu-
tions; solutions 5 with ( —,+, +) and all other odd sign
changes of solution 1 are numerically identical to each
other but differ from type I. These type I solutions are
the nearly SU(3)-symmetric ones discussed in this paper
and in Ref. 14 where only solution 1 is presented explicit-
ly; type-II solutions all violate SU(3) symmetry by inter-
changing the SU(3) roles of ri and g' (Ref. 5) and will not
be considered further.

The proof that sets of solutions are numerically identi-
cal is straightforward and depends on the symmetries of
the WI: in the form (29) and in the physical ri-ri'-i system
is it obvious that solutions related by the following sign
changes are numerically identical:

(XsaiXoa, Ya)~ —(XssiXp ~ Pa ) ~

(Fs„FO„A,)~ (F—s„FO„A,) (A9)

for a =g and/or ri' and/or ~ I.gnoring for the moment
changes in the iota couphngs, each of the remaining three
symmetry transformations on the g, g' couplings occurs
twice in Table II: once in transformations of solution 1;
once in that of solution 5. There is no symmetry transfor-
mation between type I and type II: they are numerically
distinct. The correspondence betwo:n transformations
(A.9) in the ri-ri'-~ system and sign changes in the x-y-~
system (implemented by sign changes of gs, gz, r) may be
read off from the solutions (Al) —(A3) after rotation (37)
by the angle P: these are listed in the fourth row of Table
II.

The question of sign permutations in the iota couplings
and the corresponding symmetries in (A9) must be seen in
the context of the particular method used here to solve the
WI's: these are taken as input parameters and a thorough
search made in both the magnitudes and signs of these
with Fo, taken positive. Other choices of signs for Fs,
and A, than those presented in this paper fail the tests
listed in Sec. IX, particularly the SU(3) test. However
there remains the symmetry (A9) corresponding to the
possibility of reversing the signs of all the iota couplings
together: the result is a doubling of the number of numer-
ically indistinguishable solutions from four to eight with
one set having (FO„Fs„,A, ) =(+,—,+ ) giving type-IA
and type-IIA solutions; the other ( —,+,—), type-IB and
type-IIB solutions.

Finally we consider the eight apparently acceptable

TABLE II. Solutions to the WI alone have sign ambiguities which correspond to freedom for arbi-
trarily choosing the signs of quantities listed in the first three rows. The row below these lists the
equivalent transformations in Eq. (A9): the first four columns are symmetry transformations of solu-

tion 1; the next four of solution 5. The "output" rows give the signs of relevant experimental ampli-
tudes calculated from type-I solutions to the %I; those in the solution 1 column are taken from the
favored solutions presented in the text. Output quantities denoted (&) are numerically different from
solution 1. Entries in square brackets are for solutions where all iota couplings undergo sign reversal
according to (A9).

Solution
Type-I solutions

2 3
Type-II solutions

6 7

Equivalent of solution 1

symmetry
transform

g and g' of solution 5 'g and

(&)
[e] [—1

(&} +
(~3 (-]
[—I [+ )

Output signs

+
(~)
foal
(&)
[el

[+l

Not related to type-I solutions

Positive by convention: all signs measured relative to r„.
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solutions: four of type IA and four of type IB. Four of
these may be eliminated because although they all corre-
spond to numerically identical couplings they give very
different and unacceptable values for the output il* and
i, ~2y widths; this is indicated in the last four rows of
Table II. That not all type-I solutions give identical out-
put is evident from Eqs. (51) which are numerically in-
variant only under sign changes of all the iota and all the
7)' couplings, either together or separately as in (A9), but
not under changes of the rl signs.

To summarize there are four acceptable solutions, nu-
merically identical but distinguished by differing sign
combinations for decay amplitudes:

(+,+
~
+, + ) solution 1A,

[+,—~ +,—] solution 1B,
(r„,r, ~Rqgq, Rq), )= (A10)

( —,+
~

—,—) solution 3A,
[—,—

~

—,+ ] solution 3B .

This brings us to the question: is there any physical
difference between the remaining four apparently equally
acceptable type-I solutions and can they be distinguished
experimentally' Surprisingly this is not an unreasonable
question because at least in principle the signs of pseudo-
scalar 2y amplitudes r, relative to strong couplings G,~~
may be measurable in pseudoscalar photoproduction at
small angles through the interference between the direct
channel (Reggeized) Born term and the cross-channel Pri-
makoff photon-exchange diagram. This possibility was
pointed out 15 years ago by Gilman who used the data
on n photoproduction off protons to show that the ob-
served constructive interference implied that r has the
opposite sign to 6 ~~', this confirmed the earlier result
obtained by Okubo based on somewhat more thcory-
dependent arguments; but it also confirms the original
Steinberger' calculation with a proton-loop which itself is
equivalent to the quark-loop anomaly calculation when
the Goldberger-Treiman relation is used. Although in
principle we may attempt to apply the same method to
the g, g', and c the experimental data is either not yet
good enough or does not even exist. Instead, the follow-
ing the success of the Steinberger prediction for the sign
and magnitude of the m —+2y amphtude we will assume
that the appropriate baryon triangle diagrams are at the
very least able to give the correct relative signs for the i)„
g', and ~~2y amplitudes. Since these amplitudes depend
on the couplings of these pseudoscalars to baryons we will
need additional assumptions —SU(3) symmetry and the
quark model —to relate the signals to each other and then
finally to the K-X coupling.

Ignoring common positive factors we have, for the
11,~2y amphtude from the baryon loop

ther m nor pmton contain s quarks) and hence we obtain
Gilman's result. For the q and q' there are several com-
plications: First there is mixing with the pure octet and
singlet:

'g ='gscOSO —'gosln0~ 'g =Y/OCOSO+ Y/Sslng ~

where the quark content of the pure SU(3) states is

1

6
(uu +dd —2ss),

1
7/0 = ( u u +dd +$$ ) .

3

(A12)

(A13)

Hence, using the mixing angle 8= —10' (Ref. 21) we ob-
tain the physical particle couplings:

Gqjv~ Gv ——~~(cos8 v2 —sin8) = 1.236„~~,

6& NN =6& Niv( v 2 cos8+ sii18) = 1.226& ~~ .
(A15)

Finally we assume SU(3) symmetry for the baryon octet-
pseudoscalar octet coupling:

1

s 3
(A16)

where a is the D/(D+F) ratio. Determinations of the
baryon octet couplings to the pseudoscalar octet" are con-
sistent with a value

o,'=0.5—0.6

from which we obtain

(A17)

G~xx-G~xx-o 5G~xv . (A18)

Since the signs are the same as each other and as the m.-X
coupling we conclude that r, rz, and r„all have the
same sign: negative relative to the ~-S coupling. Equa-
tion (A10) shows that the only solutions consistent with
this result are 1A and 1B (recall that all signs so far have
been quoted relative to rz taken positive by convention; to
obtain them relative to 6 zz requires a reversal of all
signs quoted in the text). One possible complication
which may alter our conclusion is that both the g and q'
contain strange quarks so that we probably ought to take
account of contributions to (A 1 1) from the strange
baryons X and:-. %e have examined these couplings us-
ing the same principles as above and find that the = cou-
plings are the only ones which are negative for a values
given by (A17); positive X couplings tend to work against
this making an overa11 sign change most unlikely. From
the quark contents of the pure SU(3) states we obtain

v3

Since the proton only contains u and d quarks we obtain a
simple relation between singlet and octet couplings:

(A14)

Ga88
r cc-a M8

(Al 1)

where the numerator is the pseudoscalar-baryon coupling,
the denominator the baryon mass. For the m this expres-
sion contains only the proton contribution (because nei- Using the pseudoscalar mixing angles, SU(3)-symmetric
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baryon couplings and a =0.5 we obtain
r oc —0.3, r o: —0.6

M~
' " M~

(A21)

Gq —-0.636' --- —0.76 ~~,

6~xx =1 166~,xx =0.76 ~x

G&~xx ~0.816& xx 0.56&~~ .

(A20)

Weighted with the X and:- masses as in (Al 1) we obtain
the contribution summed over N, X, and:-:

It is interesting to note that the ratio rz.rz is nearly
correct according to Eq. (28) but the overall magnitude is
about a factor 2 too small.

It is unlikely that we will ever be in a position to distin-
guish between the remaining two solutions 1A and 18
which differ in overall sign for the iota couplings; but
(A10) shows that since not all sign combinations of the
/~II, y amplitudes are represented in solutions 1A and
18 there is a specific prediction for these signs once that
of r, is known. Thus, at least in principle, there is physi-
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