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%e have studied the three-quark system in a relativized version of the quark potential model with

chromodynamics. %'ith parameters consistent with those of an analogous study of the qq system,
we obtain a good description of the known baryons. Our model generally supports the phenornenol-

Ogy of nonrelativistic calculations: it naturally explains the apparent absence of spin-orbit interac-
tions in baryons, and leads to spectra and internal compositions for the baryons which are qualita-
tively similar to those of the usual nonrelativistic model.

I. INTRODUCTION

The baryons have historically played a central role in
the development of the theory of the strong interaction.
The low-lying baryons were crucial to the motivation for
the fractionally charged quark model' and soon after its
proposal baryon spectroscopy, static properties, and de-

cays played a major role in the development of the
quark model as a dynamical theory. Later, the attempt to
place this dynamics on a sounder footing led to the idea of
color and eventually to quantum chromodynamics
(QCD).

More recently, the quark model with chromodynamics
has provided some of the more convincing qualitative
tests of QCD in the nonperturbative regime. While the
most rigorous of these tests have been in heavy quarkonia,
it can be argued that the most impressive facet of the
"QCD-improved quark model" ' has been its ability to
explain, at least schematically, the vast body of informa-
tion available on light-quark mesons and baryons. ' '"

The most widely applied model of this type has been

the quark potential model. ' Its success can only claim to
be qualitative, despite its surprising ability to make quan-
titative predictions, because in its usual form it is not very
well founded. Among the most prominent flaws of the
usual treatment are the following.

(1) Non relati vistic quark motion. Both the light
constituent-quark masses and their momenta must be of
order A~cD-b' (where AqcD is the QCD scale parame-
ter and b the string tension), so that p/m will necessarily
be of order unity. Thus, a nonrelativistic treatment of
such motion will clearly be inaccurate. (Note, however,
that the motion is not ultrarelativistic; this is presumably
why the nonrelativistic approximation is nevertheless use-
ful. ) That p/m —1 is, of course, also found by explicit
calculations.

(2) Nonrelativistic quark dynamics. A corollary of (1) is
that a nonrelativistic expansion of the interquark potential
will also be inaccurate (though once again it may be quali-
tatively useful). In particular, the usual Breit-Fermi-type
interactions may be expected to be inaccurate in two ways:
(a) Mass factors, for example those like 1/m;mi charac-
teristic of the important color-magnetic interactions, can

become momentum dependent —indeed, for relativistic
on-shell scattering, one often finds such factors replaced
by the quark energies; (b) the radial dependencies of the
p/m~o limit can be modified by the characteristic
smearing of a relativistic quark coordinate as well as by
nonleading momentum-transfer dependence in the poten-
tials.

(3) The neglect of gluon dynamics The q. uark potential
model's wave functions refer only to the quark coordi-
nates, but in QCD the wave function of a hadronic system
must also specify the state of the glue.

(4) The neglect of scale dependence In an .interacting
field theory, the state vector of a system will always de-
pend on the ultraviolet cutoff (a mass M or a lattice spac-
ing a) of the theory. Thus, the quark-model wave func-
tion of the system should explicitly refer to this cutoff
scale. This scale dependence is analogous to the scale
dependence of deep-inelastic structure functions, and re-
lated to the distinction between current and constituent
quarks.

Given these serious flaws, it might be considered
surprising that the usual quark potential model works as
well as it does. However, the reasons for this success can
perhaps be understood: the defects just described can, we
believe, often be hidden in the choice of such effective pa-
rameters as the constituent-quark mass (which can par-
tially absorb extra quark kinetic energy), the string tension
(which can partially absorb deviations in the quark kinetic
energy with excitation as well as some of the effects of the
hidden gluonic degrees of freedoin), and a, (which can ab-
sorb some of the effects of relativistic modifications of
spin-dependent interactions). Thus the flaws of the usual
model would only become apparent if the fundamental
values of these parameters were used in the model Hamil-
tonians.

%'e believe that the baryon "spin-orbit puzzle" —the
mysterious absence of spin-orbit forces of the strength ex-
pected in the nonrelativistic limit' ' is simply an exam-
ple of a case where it has proved to be impossible to hide
the flaws of the nonrelativistic models. We will see in the
following, on the other hand, that this puzzle is naturally
explained once the Aaws of the usual treatment are
corrected.
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II. THE QUARK MODEL REEXAMINED

Two recent developments allow us to at least begin to
place the quark potential model on a firmer foundation.
The first of these developments emerges from a better
understanding of the status of the quark model within
@CD; the second comes from considering the effects
p/m —1 will have in modifying the nonrelativistic quark
model.

The flux-tube model for QCD (Ref. 13) naturally sug-
gests an interpretation of the quark model within QCD.
This interpretation not only clarifies the status of the
quark model, but also helps to rationalize its ability to
describe the low-lying hadrons without explicit reference
to the gluonic degrees of freedom. The flux-tube model is
based on a resummation of the strong-coupling lattice
Hamiltonian for QCD which leads to an interpretation of
the properties of the theory in terms of quarks and flux
tubes (which are stringlike). At short distances (i.e., smail
coupling) the flux-tube basis is not very economical, but at
large distances it suggests a simple picture of the strong
interactions in terms of weakly perturbed quantum
strings.

To appreciate the status of the quark model in this pic-
ture, consider first a set of static quark sources at the
points r„r2, . . . , re. In the presence of these sources the
glue will have a set of eigenenergies E~(ri, rz, . . . , rz}
with i =1,2, . . . . Each of these 3N-dimensional gluonic
energy surfaces thus corresponds to an adiabatic quark
potential, and we can define the quark-model limit as cor-
responding to the case where the system can be well ap-
proximated by quark motion on the lou&est adiabatic sur
face. Since, in the absence of pair creation, confinement
ensures that there will be s mass gap between Eo and Et,
in the qq and qqq systems (but not in general elsewhere), it
is clear that this limit will exist for at least the low-lying
states of heavy-quark mesons and baryons where

Dq Q p( cog p ~ether or not this approximation is ever
valid for light-quark systems will depend on detailed
properties of the adiabatic surfaces, but within the flux-
tube model for these surfaces, it has been possible to
show' that it is Uery accurate for bb and cc and accurate
enough in the light-quark sectors to be corrected perturbs-
tively. The flux-tube model thus allows us to understand
the ability of the quark model to avoid a specification of
the state of the glue: quark-model wave functions had a
"suppressed subscript" indicating that the glue was (ap-
proximately} in its (adiabatically evolving) ground state.
Of course, quark motion in the excited adiabatic surfaces
should also exist: such states correspond to as yet un-
discovered hybrid mesons and baryons.

The flux-tube model also allows us to understand the
scale dependence of hadronic state vectors. At small lat-
tice spacings (or large ultraviolet cutoff masses M) the ha-
dronic state will be very complex: in this limit the quarks
are current quarks (so that light current quark pairs will
be plentiful), elaborate flux-tube topologies [containing,
for example, branching flux-tube lines with elements in
nonfundamental representations of SU(3)j are not
suppressed, and the vacuum is full of disconnected fluc-
tuations of locahzed flux and of localized qq pairs. Thus,

while we are allowed to choose any scale we like to
describe a hadron, this description will be simplest if we
choose the largest spatial scale that is fine enough to accu-
rately describe the hadron. For a light-quark system with
a typical diameter of the order of 2 fm, this cutoff scale
will be of the order of 0.2 fm; such a coarse-grained (con-
stituent) quark will obviously have an effective mass
which includes the nearby gluonic energy, i.e.,
m -ba-A~CD-200 MeV. A heavy-quark system will
have a size typified by (m~a, )

' and so will require a
cutoff of order m(2 '. Its effective mass will thus ap-
proach its current-quark mass as m(2~ 00. (It is this lim-
it that corresponds to the usual atomic physics case ~here
scale dependence is only a weak logarithmic effect. )

The second development which allows us to proceed to
a more solid foundation for the quark model results from
some recent studies of the relativization of the quark
model. These studies are based on the observation that
with p/m & 1, relativistic effects should be parametrizable
as smooth departures from the established nonrelativistic
limit appropriate to heavy quark systems. In Ref. 15 it
was shown that typical light quark momentum wave
functions, when convoluted with exact free (relativistic)
spinor matrix elements, could preserve all of the good pre-
dictions of the quark model for dynamical matrix ele-
ments (like those responsible for baryon magnetic mo-
ments or meson magnetic dipole decays) while improving
such bad predictions as Gz/Gi and the matrix element
(0~3&~8)) where 3) is the P, I=1 meson. The
preservation of the good results of the nonrelativistic limit
in this scheme only required the assignment of a new
smaller value for the (otherwise unconstrained)
constituent-quark mass, in accord with the comments
made earlier.

On the basis of these encouraging results, Ref. 16 im-
plemented a full "relativization" of the quark model for
mesons. This program, which is the analogue of the pro-
gram described in this paper, demonstrated that with an
adjusted set of basic parameters (like the quark masses)
appropriate to the relativized quark model, and a certain
number of nonfundamental parameters (used to describe
qualitatively the expected relativistic modifications of the
interquark interactions described in the Introduction), it is
possible to produce a unified treatment of all mesons from
the lightest to the heaviest known, in which the quark
model defects discussed above are at least partially
remedied. Since the "relativistic parameters" of this pro-
gram were not derived froin first principles, the results of
Ref. 16 can only be considered as a demonstration that (1)
the desirable characteristics of the quark potential model
can survive relativization, and (2) when relativized, the
description of mesons can be unified in terms of a well-
founded model with a single set of parameters. Of course,
it remains to be shown that the relativistic modifications
which appear in that model follow from the underlying
(cutoff) field theory.

It also remains to demonstrate that the same program
will succeed in describing baryon spectroscopy, thereby
unifying mesons and baryons as it unifies the different
meson families. The demonstration of this remarkable
fact is the main subject of this paper.
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III. THREE QUARKS IN A RELATIVIZED
QUARK MODEL WITH CHROMODYNAMICS

Our model for the three-quark system is the immediate
and essentially unique generalization of the model of Ref.
16 from qq to qqq. We nevertheless briefly describe it
again here for completeness. Our program is to solve the
rest-frame equation

0 ie)=E ie)
in the qqq sector of Fock space where

(2)

in which

a, = g (~, '+m, ')'" (3)

and V is a relativized three-quark momentum-dependent
potential. The momentum dependence of V will arise
both from on-shell relativistic modifications and from in-

tegrating out higher components of Fock space. In the
nonrelati Uistic limit

Vconf+ Voge i

p/m -+0

where V„„tconsists of the three-body- adiabatic potential

V„„„sgenerated by the quantum ground state of the 1'
string configuration (see Fig. 1) and a spin-orbit term aris-
ing from the adiabatic potential via Thomas precession,
and where V,g, is the usual Breit-Fermi interaction in-
cluding a Coulomb term, hyperflne interactions, and the
spin-orbit interactions. More explicitly, in this limit

and where the spin-dependent interaction is

Vsd = Vhyp+ Vso

with the hyperfine interaction

as
Vh)i

~ 3%ii rnJ
S; Sj5 (rj)

FIG. 1. The gauge-invariant string configurations and the
relative coordinates p and A, .

V~ V„+V,d,
where the spin-independent interaction is

l+
. .3rij
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l J

—S; S
ij
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Vc-) g VJ'" = X—
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3rij

consisting of the Fermi contact term ac 5 (r,j) and a ten-
sor term, and the spin-orbit interaction

Vso Vso(cm) + Vso(TP)

with a color-magnetic piece

as
V-). )

i&j iJ

riJ Xpi Si

m

«ij XPj SJ

nfl .
J

rij XPJ'Si rij Xpi Sj
mi

and a Thomas-precession piece

1 ~Vs) rig &&ps Si'

; (j 2rj&clr(j m;

iJ PJ J
P?l .

J

(12)

which includes the effects of the full spin-independent po-
tential. In these formulas m;, p;, and S; are the mass,
momentum, and spin of the ith quark in the baryon
center-of-momentum frame, and the quantities r;1 = r; —rj
are the relative positions of the (ij) pair of quarks. Note

that we have shown explicitly here only the leading term
of each tensor type which appears in an expansion in
p/m; the reason for this will appear momentarily.

Of course, as already stressed, this pim ~0 limit is not
applicable to systems containing a ligIlt quark; it is given
here mainly for orientation, while the actual momentum-
dependent potentials used in our calculations are discussed
below. In Appendix A we list these potentials; here we
will illustrate the modifications we make to this limit by
explicit reference to the contact term of the hyperfine in-
teraction. As already mentioned, there are two kinds of
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ycont
lJ

hyp 2S J p2 y Coul
EJ

37tlJPlJ.

1/2+ eh

(13)

where V,J
"' is VJ'"' of Eq. (7) smeared over a distribu-

tion

..3O gJ' —cr. -~(r —r')~
p" (r—r') = e

3/2
(14)

of the interquark coordinate. We relegate the details of
this procedure to Appendix A, but it is clear that the
(m/8) factors, the importance of which is governed by

eh„~, will modify both the P and Q dependence of the in-

teraction, while the smearing with p;i will modify its
shape in r;J directly. Clearly this method of relativizing
the quark model is very crude, but since @/m=1 is not
too far from the nonrelativistic regime, we can expect it to
correctly parametrize the main characteristics of these rel-
ativistic effects.

To complete the definition of the model, we describe
our treatment of a, . With N~ quark flavors with masses
much less than Q, in lowest-order QCD

a, (Q') = (15)
(33—2' »n(Q'/AqeD')

Since A&eD-200 MeV, a, (Q ) is small for Q & 1 GeV,
but as Q~At)cD, this perturbative formula diverges, sig-
naling the onset of confinement. Since we are working in
this soft regime, we cannot avoid this divergence, and so
we assume that a, (Q ) saturates at some critical value
a,' '"" as Q ~0. We parametrize this behavior in the
convenient form

k IRx g P/4
(Q2) g &

rk

k=1
(16)

relativistic effects to be considered: (1) the strength of the
interactions can depend on the energy of the interacting
quarks [the interaction of a quark can depend on
P= —,(p+p') where p and p' are its initial and final mo-

menta] and (2) the spatial shape of the interaction poten-
tials can change [the interaction can depend on Q=p —p'
in ways that modify the Fourier transforms in Q
represented by the r dependences of Eqs. (5)—(12); these
shapes will also be modified by the required ultraviolet
cutoff of the theory]. We parametrize these two kinds of
effects in terms of two mechanisms by taking, for exam-
ple,

a,{q )

0.S

0.6

I

I

I
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I

I
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i
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FIG. 2. The leading-order formula (15) for the effective cou-
pling constant with

Amoco
——200 MeV and our fit

a(Qi)=0 25e l +0.15e ~ ' +020e ~ ' (Q~ in GeV )

2ak &k

a, (r)=g J e "dx
k

TABLE I. The parameters of the relativized quark potential
model. Note that we ignore isospin violation.

This work Ref. 16

2 (m„+m~) (MeV)

m, (MeV)

m, (MeV)

mb (MeV)

b (GeV2)
critical
S

A~0 (MeV)

C (MeV)

C~ (MeV)

~, (Gev)

220

1628

4977

0.15

Not applicable

—615
1.80

Same

Same

Same

Same

0.18

Same

Same

—,(-253)= -340
Not applicable

Same

and because it is easily convoluted with the relativistic
smearing (14). Once again details can be found in Appen-
dix A.

Not only is our basic model identical to that of the
analogous study of qq spectroscopy in Ref. 16, but we
have also insisted that all of our parameters be close to
those deterrnint!d by that study. The only really new pa-
rameter of our model is an overall constant in the three-
quark string potential (see Appendix A) relative to the qq
string potential. This constant is associated with vacuum
modifications which are not at the moment calculable.
Our parameters are listed in Table I where they are com-
pared to those of meson spectroscopy. The effects of the
small modifications we were allowed to make in the

ill SX
critical

Ak =(X~
k=1

(17)

is a free parameter, but where the remaining parameters
are constrained to follow the behavior (15); the resulting
fit with k,„=3 is shown in Fig. 2. The form (16) is
convenient because it is easily transformed into

1

T +~cotit

1

2 +&tens
1

2 +&so(u)
1

2 +~so(s)
1

2 +~Coul

1.55

2
—0. 168

~
—0. 168

1

2

—, +0.30
1

Same

Same

—, + 0.025

—, + 0.055

2 + 0.055

Same
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meson parameters are discussed in more detail in Sec. V

below. Suffice it to say that, with exactly the meson pa-
rameters of Ref. 16, we obtained already a remarkable
description of the baryons. As examples, we mention

5—%=300 MeV showing that the p-m and 5-S splittings

appear to have the same origin, X—A=80 MeV showing
that the physics of the ratio of K'-K to p-m. also appears
to operate in the baryons, and X' —, —5=440 MeV

showing that this splitting and the A2-p splitting appear
to have the same dynamical origin.

IV. METHODS

While the formulas of Sec. III are a straightforward

generalization of those of mesons, the methods one must

use to solve for the baryons are naturally more involved.

Although most of the details of our methods will be

relegated to Appendix 8, in this section we outline our

procedure.
Even for mesons it is impossible to solve for the eigen-

functions and eigenenergies of the Hamiltonian (with its
relativistic kinetic energies, momentum-dependent poten-
tials, tensor and spin-orbit mixings, etc.) directly: one
must resort to the use of variational methods. As was

done with the mesons, ' we take as trial wave functions an
expansion of the true wave functions in a large harmonic-
oscillator basis. [In practice the most convenient method
of doing this is to diagonalize the Hamiltonian in a large
harmonic-oscillator-based space as a function of a single
variational parameter (see below). ] This basis has the
overwhelming advantage over other choices that its con-
version to momentum space—essential for the evaluation
of our many momentum-dependent operators —can be
done analytically.

One of the main new difficulties with the three-body
problem is that it is nontrivial to actually construct all of
the allowed states with given quantum numbers out of the
available flavor, spin, and orbital wave functions: there
are three flavors, three spins, and two relative coordinates,
and this much richer structure must now be combined in

a way which is consistent with the Pauli principle. To
construct the set of possible wave functions for u, d, and
s quarks, for example, one would normally construct to-
tally antisymmetric states as products of the antisym-
metric color-singlet wave function C„and totally sym-

metric wave functions obtained as direct products of S&

irreducible representations 4 in flavor, X in spin, and P in

space. In doing so one is choosing to work in an SU(6)
basis, which can be convenient even though SU(6) is bro-
ken. At first sight, one would think that at least for the

SU(2)fi,„,„part of SU(6) such symmetrized wave functions
would be essential. However, this is not true and for tech-
nical reasons which will become apparent we found it very
convenient to explicitly carry out only a subset of the an-

TABLE II. The baryon flavor wave functions 4.

ddt
ddQ

(ud —du)s
1

2

(ud +du)s1

2

QQC

(ud —du)c
1

2
1 4'ud+du)c
2

ddc

1
Iud —du)b

2

iud +du)b1

2

~3/2, 3/2 = 1111), etc. ,
S

+1P2, in = (
I

t & t ) —
I

& 1» ), etc.

(19)

(20)

(21)

(We have shown only the top state of a JM multiplet; our
other wave functions follow the Condon-Shortley conven-
tion. } Notice that these spin wave functions are also ei-
ther symmetric or antisymmetric under interchange of the
first two quarks.

Finally, for our spatial wave functions ql we took func-
tions with definite total L=lz+li made from a Clebsch-
Gordan sum of harmonic-oscillator wave functions in the
two relative coordinates

1p=— (ri —r2}v2 (22)

1
(r, +r2 —2r, )v6 (23)

of the three-body problem (see Fig. 1):

tisymmetrizations that would be required by the full S3
group. The flavor wave functions 4 that we used, which
are a generalization of the "uds basis" of Ref. 10, are
given in Table II (see Ref. 17). Note that these wave func-
tions are all either symmetric or antisymmetric under in-
terchange of quarks one and two. The total spin of the
three spin- —,

'
particles can be either —,

' or —', so that as a
complete set of spin wave functions X we can choose

3 1 2 2~2 1 +1/2
O'L~„ i „ i =a QC(lpli„mM —m;LM).4' i (ap) e i' L (ap)Y' (Q )

t?l
PP P P

(24)
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where the I.„+ (x) are the associated Laguerre polyno-
mials

/n +I + —,
' )

L &+i/z(x) y ( 1)m
m=0

(half-integral factorials are defined by the I function),
and the normalization coefficient M„i is defined by

minimum is separately an upper bound for each energy
eigenvalue, i.e., that we may minimize each eigenvalue in-
dependently as a function of a. (Of course, if we wish to
have a set of approximate wave functions we will have to
settle for a single value of a, but we can do better than
this for spectroscopy. )

Our problem is now reduced to one of calculating the
matrix elements

(28)

We then expanded the wave function in states of the form

~
a& =C„e g C(I.SM, tW M„JM—)

There are two important details which we have to explore
before explaining the calculation of the various terms in
H. The first is that most of the terms in the Hamiltonian
are of the form g, H(J(r,z ), and so we have to integrate
functions of riz, rii, and rzi, where

r»=v 2p, (29)

~ +LML n I n~l~+SM —ML r„= (pz+v 3p Z+3zz)'",I

2
(30)

The states (27) are taken to be explicitly antisymmetric
only under interchange of quarks one and two; they are
the generalization of the uds basis of Ref. 10. In a given
sector, we expanded in a restricted set of such states. For
exam~le, the proton, with flavor wave function uud and
I = —, , must have a spin-space wave function which is

symmetric under exchange of quarks 1 and 2. Moreover,
the sum over the ~a& is restricted to wave functions
which have J= —,

'
and l~+ li even for positive parity.

The penalty for avoiding the use of the S3 symmetry
group will now be apparent. The most general state con-
sistent with the Pauli principle for the two identical
quarks in uud, is too general: uud can also be a b, +.
%hile this sounds like an intolerable situation, in practice
the penalty is slight. Isospin symmetry guarantees that
the eigenstates of the Hamiltonian will be isospin eigen-
states (barring accidental degeneracies) so that diagonali-
zation of the Hamiltonian in a (large) set of Pauli-allowed
uud states automatically leads to a separation of the
eigenstates into two noncommunicating blocks of I = —,

'

and —,
' states. For any who might doubt that the slight in-

convenience of identifying these blocks and the modest in-

crease in computer time required to carry out the diago-
nalization are worth tolerating, we suggest the exercise of
trying to construct the uud states with I = —,

'
using the

available harmonic-oscillator states up to Slice.
Our program is therefore to calculate the energy eigen-

states of the Hamiltonian (2) in the basis of harmonic-
oscillator wave functions (27), subject to the restrictions
noted above. This ls accomplished by forn1lng a matrix of
the Harniltonian operator and diagonalizing this matrix.
The harmonic-oscillator wave functions have only the pa-
rameter a [see Eq. (24)]„and in principle if we expand in
an infinitely large basis set, our results would be indepen-
dent of this parameter. With a truncated set, there exists
an a for which the ground-state energy is minimized, one
for which the first-excited-state energy is minimized, etc.
The Hylleraas-Undheim theorem' states that each

(p —v 3p A, +3k, )
2

(31)

Since the wave function (27) is always antisymmetric
under exchange of quarks 1 and 2, we know that

&a
I &131&&=

& a
1
823 I

13&

so that

(32)

(33)

Calculation of the Hiz(riz) matrix elements is straightfor-
ward since r» ——v Zp. To perform the r» integration we
make a change of variables to

(34)

1
(r, +ri —2rz), (35)

which is the transformation

p- ~+
2 2

(36)

(37)

Then in this basis, which we will denote by
~

a'&, the cal-
culation of the Hi3 part of the Hamiltonian becomes
identical to that of the HI2 part in the usual basis. %e
can therefore specialize our discussion to techniques for
calculating matrix elements of the H &z terms.

The second problem we have to deal with is the
momentum-dependent factors in the Hamiltonian which
are combined with spatially dependent potentials. These
are dealt with by inserting complete sets (or, rather, prac-
tically complete sets: see below) of harmonic-oscillator
wave functions between the two types of operators:
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Pl )P?T2
Vi2(ri2)

2

- ~/2+~
f77 )Pl2

z V~2 ~i2
2

(38)

and then evaluating the momentum expectation values in
the Fourier transform basis, and the potential expectation
values in the usual basis. One of the advantages of the
harmonic-oscillator basis is that the wave functions are
form invariant (up to a phase) under Fourier transforma-
tion:

~

uud —, (5) & =Czuud g C(l —,M —, —M; —, —, )
M

&& q'iMoioi&i/2, i/2 —M ~

~

uud —, (6) & =C„uud g C(2—', M—, —M; —,
'

—,
'

)

M

+ +2M02M3/2, 1/2 —M I (46)

Further details of these calculations and the resulting ma-

trix elements are given in Appendix B.
It remains to describe our method of extracting the

masses of the various states from the eigenvalues of the
Hamiltonian matrix diagonalized in finite wave-function
sets. A given wave-function set I ~

a& )~ is taken to in-

clude all wave functions (subject to the conditions out-
lined above) up to a given harmonic oscillator
N =2(n~+nz)+I&+12, which we label N,„. N, „ is
then increased from the minimum required to describe the
state of interest, until the energy eigenvalues appear to be
approaching a large-N, „ limit. Our predictions for the
baryon energies are determined by plotting the energy
eigenvalue of a state against the inverse of the number of
oscillator levels included in its expansion (with the "com-
plete" sets always the largest possible), and then making a
linear extrapolation to an infinite number of levels. Let us
illustrate this with an example.

The proton, with J = —,
'

and with fiavor wave func-
tion uud, has one harmonic-oscillator wave function at
N=O, which we may denote

~

uud —,
' (1)&, which is of

the form [see Eq. (27)]

~

uud
&

(1)&=Cguud'pooaaoPi/2, i/2 . (41)

parity rules out all N= 1 wave functions, and at N=2
there are six wave functions which have tlie correct spin-
parity and (12) exchange symmetry. (Two linear com-
binations of these six have their spin-space wave functions
completely symmetric under the permutation group 53,
and so represent 5's not N's. ) The six N=2 wave func-
tions are

+
I
»dT (2) & =C~uud'Pooi~i/2, i/2

(3)&
=C~ uud q'00001(A1/2, 1/2

+

1 +1»dT (4) & =C~uud+000iol+i/2, 1/2

(42)

(43)

(44)

where

q„i (a;r)=a'" ~„,(ar)'&, (fI)L„"'"(«)e

~

uud —,
' (7) & =Czuud g C(2 —', M —, —M; —, —, )I

+ q 2M0002~3/2, i/2 M-S

Similarly, there are 15 wave functions (either N or b, )

with the correct properties at N =4, 28 at N= 6 and 45 at
N=8. Or equivalently we need 1, 7, 22, 50, or 95 wave
functions to expand the wave function (or the complete
sets) up to N=O, N&2, N(4, N(6, or N(8. To ex-
tract an energy for the first eigenvalue, representing the
proton energy, we find the minimum with respect to a of
the lowest eigenvalue of the Hamiltonian matrix calculat-
ed in the basis with largest N „.We then diagonalize
smaller and smaller submatrices of this largest matrix,
which correspond to N &6, N &4, N &2, and ¹=0ex-
pansions of the state but always an N & 8 expansion of the
"complete" sets of wave functions inserted between the
space and momentum-space operators. The minimum
with respect to a of the lowest eigenvalue of each of these
matrices is then plotted against the inverse of the number
of oscillator levels included in the expansion of this state,
and a linear regression analysis used to extrapolate to in-
finite N and estimate the error in this extrapolated
value; the regression includes weights which increase
linearly with the number of levels included. In some
cases, including that of the proton, the point with only
one level (and in this case only one state) in the expansion
of the eigenstate is discarded, since removing this point
decreases the X per degree of freedom.

The masses of the excited states of the proton (and the
states) are represented by the six next-highest eigen-

values of this Hamiltonian matrix, and of course do not
appear until the wave function is expanded up to N &2.
Following the process above we may then estimate the
X,„=oo limit of these eigenvalues, with of course a
slightly larger error since there will be fewer points in the
extrapolation plots for a given N,„. In practice the cal-
culations were carried out up to %&8 for the J = —,

'

system (for all flavors), and up to N(6 for the other
positive-parity states with J from —, to
All negative-parity states ( J from —,

' to —", ) were ex-
panded up to X &7. This meant that for the states with
J of —', , —,', and —, we have only two levels included
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in the expansion at A'=A, „. %ith these high J states
we expect that the convergence should be quite rapid since
the wave function is large weH away from the origin, and
the parts of the Hamiltonian with rapid curvature are all
concentrated around the region p=O or A, =o. This turns
out to be the case, with the energy eigenvalues dropping
only slightly between bases with one and two oscillator
levels included. In these cases, rather than put a straight
line through these two points (which would be rather ar-
tificial), we take the splittings (at %=6 or 7) between
these states and their nearest like-parity neighbor with
three points in its extrapolation, and assume that they
remain the same at X,„=ce.

%e will discuss the actual errors associated with these
methods in Sec. VI below where we discuss our results.

V. RESULTS AND GENERAL COMMENTS

for e+e or qq: upper bounds on the ground-state ener-
gies are (using for simplicity a pure Coulomb potential

a/r for e—+e, a pure linear potential br for qq, and
nonrelativistic kinematics in both cases)

1 /2 1/2
4 ap

CX

' 1/2

EP(P)= +-3p 4 b 4
2mq ir P m

'1/2 4 ~3
3 O,'~P

In both cases by taking P~oo one finds that Eo is un-
bounded from below. On the other hand, when the hyper-
fine interaction is smeared so that

One of the main purposes of this work was to check
whether the good results of the usual nonrelativistic
model of baryons' " could be both retained and ex-
plained in a consistent relativistic framework. We have
found that they can be: relativizing the quark model leads
naturally (with an appropriate adjustment of such param-
eters as the quark masses) to a picture of baryon structure
that is very similar to the nonrelativistic model of Ref. 10.
At the same time, it explains one of the most unattractive
features of that model: the enhancement of hyperfine ef-
fects relative to spin-orbit effects' ' emerges automati-
cally. The origin of this enhancement is threefold. One is
simply that e„„,g e„,and another is that there are cancel-
lations between V ~, ~

and V ~rp~, but the main effect is
a consequence of the fact that, with its attractive 5 func-
tion, the hyperfine interaction produces effects which are
much stronger than those one would obtain from lowest-
order perturbation theory in Vh„~. The physics of this
important enhancement is sufficiently simple that it war-
rants explanation; we proceed by contrasting the hyperfine
interaction in the light hadrons with that in the ground
state of positronium. In either case if the 5 function of
the hyperfine interaction is left unsmeared the hyperfine
splitting will be infinite. To see this consider a
harmonic-oscillator variational wave function

a3/2
e p2r /2—

3/4

3

6 (r)~ e

the P appearing in the third terms above is replaced by
P o /(P +o. ) so that a true minimum occurs in each
Eo at a finite value of I3. Since in the e+e system a is
very small and o -m, &~P-m, a, one can easily check
that the minimum of Eo ' occurs at a value that to an
excellent approximation is shifted from its unperturbed
value by the usual result of lowest-order perturbation
theory. In the light-quark system, on the other hand, a,
is not small and o -P-rnid -A&CD, so that the minimum
is found at a value of P far from its unperturbed value,
and the resulting EP lies considerably below the value one
would calculate from lowest-order perturbation theory.
This means that a smaller value of a, (consistent with the
small spin-orbit splittings seen in the light hadrons) can
produce the large hyperfine splittings which are required
in, e.g., p-m and b,-X

A second principal objective of this work was to test
whether the description of both mesons and baryons could
be unified in a single consistent framework. We have
found that the relativized quark model of this work and
Ref. 16 accomplishes this unification: as we have already
mentioned, when we use without any change the meson-
based parameters of Ref. 16 in our calculations, we obtain
excellent results for all of the main features of baryon
spectroscopy. Thus we find that the b;E splitting has a
common origin to the p-ir splitting (the hyperfine interac-
tion), the N'(1520) —,

' -X(940)—,
'

splitting has a common
origin to the A2-p splitting (an orbital excitation in the
Coulomb plus linear potential), the X-A splitting has a
common origin to the (E' —K)/(p —ir) ratio (the mass
dependence of hyperfine splittings), the A —', -X—,

' spht-
ting has a common origin to the (f' —Ai)/(P —p) ratio
(the mass dependence of orbital excitation energies), etc.

Table I introduced earlier shows the parameters that we
actually used for baryon spectroscopy. After making the
above observations using the parameters of Ref. 16
without change, we searched in parameter space for better
solutions. As can be seen from Table I, we found that the
meson-based parameters were optimal with the exception
of the string tension and three of the e parameters. It
turns out that these three e parameters (unlike the others)
were not very tightly constrained by meson physics. The
reason for this is simple: in baryons tensor and spin-orbit
forces can cause mixing between states like 6 Ds ,

' and—
6 Ds ,

' which are de—generate in the absence of spin-
dependent effects (so that very large mixing angles can re-
sult from modest perturbations) while in mesons such
mixings are almost always small since the relevant states
are split by orbital excitation energy. It has, indeed, been
verified' that the use of our e's in meson spectroscopy
leave the good results of Ref. 16 essentially unaltered. It
is, furthermore, more natural to have our result e„„,=e„„,
since these two terms arise from the same term in the
reduction of one-gluon exchange (see Appendix A). On
the other hand, the small decrease which we found useful
in the string tension b (our high spin states were becoming
increasingly too massive) is not readily accommodated by
meson spectroscopy. We assume that this small differ-
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appears as a result of the neglect of non-
adiabatic glue effects (or possibly mixing with higher
Fock-space components) which can of course differ in
mesons and baryons.

The spectroscopic results of our calculation are given in
Tables III—XI and Figs. 3—14. In the tables we list all of
the low-lying states predicted by the model; it will be not-
ed that usually many more states are predicted than have
been observed. In the usual nonrelativistic model there
appears to be a good reason for this: analysis of the
predicted strong-coupling amplitudes of the states of that
model show an essentially one-to-one correspondence be-
tween states predicted to couple to their formation chan-
nels (mX for X's and b's and KX for X's and A' s) and
those observed. ' To carry out a simple check of whether
our calculation maintained these desirable features
(without performing our own comprehensive decay
analysis) we truncated our Hamiltonian matrices at the
%=2 oscillator band to correspond to the calculations of
Refs. 10 and 21. We then recalculated the hadronic cou-
plings of our states to discover (using the criteria of Ref.
21) which of the many predicted states belonging to the
X=O, 1, and 2 bands ought to have been seen. (In most
cases the compositions were very similar to those of the
usual nonrelativistic model of Ref. 10). These are the
states shown in the figures as solid bars along with boxes
representing the observed states, and indicated in the
tables by an arrow, Clearly the observed correspondence
is excellent (although there are some remaining problems).
%e will expand upon this comparison in the next section.

VI. A DETAILED COMPARISON BET%EEN
THEORY AND EXPERIMENT

While studying Tables III—XI and Figs. 3—14 is suffi-
cient to reach an appreciation of the general success of
this model, a more detailed discussion is required to com-
plete its comparison to experiment. In this section we will
present such a discussion organized around the specific
sectors of baryon spectroscopy displayed in those tables
and figures. Spectroscopy on its own is a blunt tool, and
one of the main purposes of our detailed discussion will be
to point out the extent to which the predicted internal
compositions of our model's states are in accord with
measured strong and electromagnetic decay amplitudes.
In doing this we will be using the analysis of Ref. 21 in
the way described in Sec. V.

A. The ground-state baryons of SU(3)~

State, J

TABLE III. The ground-state baryons.

Predicted mass Experiment

(MeV)

+
2

+
2

] +A—
2

+X—
2

+3+
2

1+
Iaaf 2

3 +

0—
2

1115

1370

1305

1505

1635

1232

1116

1193

1318

1533

1672

It seems to us that those who are willing to accept that the
b,-X splitting is due to color hyperfine interactions, but
who nevertheless wish to accord the p-m splitting special
status, are now left in an inconsistent position: these cal-
culations indicate that splittings in "nonchiral" systems
like 5-X and in "chiral" systems like p-m have the same
origin in terms of constituent quarks, even though they
appear to be quite different in the current-quark basis.
From Fig. 3 it appears that a slightly heavier s quark
would improve our spectrum. While this is true in this
case [a 5% increase in m, would, e.g. , correctly give the
mass of the Q(1672)], we have found that such an increase
would produce a deterioration of our excited-state spectra.
Indeed, as previously mentioned, the Ref. 16 value for m,
seems to be globally optimal.

%'e next note that our calculations continue to support
the original observation that the X-A splitting is a hy-
perftne interaction effect: we get (X—A)u,„~——75+15
MeV vs (X—A), pt-80 MeV. (The theoretical error on
the N~,„~co extrapolation of this mass difference is
smaller than on either mass separately. ) We also find
X' —X= 180+15 MeV (vs 190 MeV) and:-'—:-=200+15MeV (vs 215 MeV). Thus, as in the usu-
al nonrelativistic model, ' " the spectroscopy of the
ground-state baryons is well described.

%e have not yet begun a detailed analysis of such static
properties as the magnetic moments, Gz/Gv, charge ra-

The masses of the orbital ground-state baryons made of
u, d, and s quarks are given in Table III and Fig. 3. The
error in our extrapolation to X,„=~ is about 20 MeV
for these states, which is roughly represented by the width
of the solid bars. %e have already mentioned several
features of these results, but we will nevertheless reem-
phasize here that the 5-X splitting is a prediction based
on the meson parameters of Ref. 16. This remarkable fact
provides further evidence that, while the pion may some-
times be most economically viewed as the (almost) Gold-
stone boson of broken chiral symmetry, it may also use-
fully be viewed as the hyperfine partner of the p meson.

1800

i600

FIG. 3. The ground-state baryons.
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TABLE IV. The negative-parity S=O excited baryons. (a) States in the A'=1 band. 4'b} Predictions
for other states below 2200 MeV.

State„J
Predicted mass Experiment

(MeV)

1

2

2

1460~

1535~
1555~

1495~

1625~
1620

1630~

1520—1560

1620—1680

1600—1650

1510—1530

1670—1730

1630—1740

1660—1690

N g 1

2

g 1

2

3
2

3
2

N 5
2

5
2

N 7
2

1945,2030,2070,2145,2195

2035,2140

1960,2055,2095,2165,2180

2080,2145

2080,2095,2180

2155,2165

2090

dii, etc., of these states. However, it seems likely that
such an analysis will support the general picture of Ref.
15. For example, it was found there that relativistic
corrections reduced Gz/Gz from the bad nonrelativistic
value of —,

' to near its observed value. Another observa-
tion made in Ref. 15 was that the charge radius of a rela-
tivistic system was larger than the rms radius of its wave
function by terms of order 1/rnq. We expect that, as was
found for mesons in Ref. 16, such terms account for what
would otherwise be a discrepancy between the measured
charge radii and the spatial extent of our quark-model
wave functions. (This discrepancy is even greater in rela-
tivized models than it was in nonrelativistic quark
models. )

experimental indications) instead of the degeneracy of the
usual nonrelativistic model. '0'2

C. The S = —1 negative-parity baryons

The masses of the negative-parity A's and X's below
2300 MeV are given in Table V; Fig. 5 displays those
states of the %= 1 band which are predicted to couple sig-
nificantly to KN~(X, A*) +EN, Xrr, Anr, shif—ted by the
same 50 MeV as in Fig. 4.

The pattern here is sti11 similar to the nonrelativistic
model, but there has been one significant deterioration in
the quality of the results. This deterioration can be traced
to the fact that our model produces a smaller orbital split-

B. The S=O negative-parity baryons of the %=1 band

The masses of the $=0 negative-parity baryons below
2200 MeV are given in Table IV. Our model predicts the
center of gravity of the %= 1 band of such states to be
about 50 MeV too low. %e display in Fig. 4 our predic-
tions for these states shifted upward by this modest
discrepancy in order to show clearly that the pattern of
splittings in this band is well predicted. The quality of
these mass predictions as well as of the predicted strong
couplings of these states is once again comparable to that
of the nonrelativistic model of Ref. 10 (for which the
center of gravity is essentially a free parameter). There is,
however, one improvement here which is significant: we
find that b' —', —6' —,

' =70 MeV (in agreement with the

1700

a
E

****
*1k'

1 4k*a 1

***
1

i a*** ]

N'—
2

d.~ 3
2

FIG. 4. The negative-parity S=O excited baryons of the
%=1 band: boxes show the experimental regions in which the
resonances lie, bars show the predictions of the model for states
that should be coupled, with bM= + 50 MeV.
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TABLE V. The negative-parity S = —1 excited baryons. (a) States in the %=1 band. (b) Predic-

tions for other states below 2300 MeV.

State, J
Predicted mass

(MeV)

Experiment

(Mev) Status

A y I

2

X—y 3
2

A g 5
2

y 5

2

1550

1615~
1675~
1630~
1675+—

1695

1545~

1645~
1770

1655+—

1750~
1755

1775~

1755~

1400—1410

1660—1680

1720—1850

1610—1635

1730—1800

1520

1685—1695

1665—1685

1900—1950

1810—1830

1770—1780

(b)

A y 1

2x-y 1

2

A—3
2

3
2

A—y 5
2

X—y 5
2

7
2

yQ 7
2

2015,2095,2160,2195,2235,2280

2110,2155,2165,2205,2260,2275

2030,2110,2185,2230,2290

2120,2185,2200,2215,2265,2290

2180,2225,2240,2295

2205,2250,2270,2280

2150,2230

1900

Cl

E

***

[ **

po
2

A'—
2

QO
2

FIG. 5. The negative-parity 5 = —1 excited baryons of the
X= 1 band: legend as in Fig. 4.

ting between L& ——1 and L~ ——1 states than the nonrela-
tivistic model of Ref. 10. The most prominent effect of
this difference is that the lowest A' —,

'
state, which was

already some 80 MeV too high in the nonrelativistic
model of Ref. 10, is predicted to be nearly 150 MeV too
high in our model. (Alternatively, one can note that it is
still predicted to be nearly degenerate with the lowest
A' —,

'
state, ' ' while experimentally these states are split

by over 100 MeV. } While this discrepancy must be con-
sidered very serious, its damage to the basic credibility of
our model is, in our view, considerably tempered by the
fact that the predicted internal compositions of all of
these states [including the lowest A' —, associated with
the A(1405}] lead to quite good results for their decay am-
plitudes. Thus, in particular, the A(1405} appears to be a
dominantly X~+ state as predicted. Our belief is there-
fore that the poorly predicted mass of this state does not
point to a fundamental flaw in our model, but rather to
the fact that effects outside of the scope of the Inodel can
occasionally be significant. In this case we believe that
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the simplification we have made that is most likely faulty
is our restriction to the qqq sector of Fock space. Indeed,
the decay amplitude calculations just mentioned indicate
that the lowest A —, state has an unusually large cou-

pling to the EX channel, with respect to which it is an S-
wave resonance. This coupling would naturally shift the
predicted qqq state toward or even below EN threshold,
which is where it is observed. At its observed mass the
A(1405) can decay only into Xm, Ay, and Xy; one way to
test whether it can be interpreted as a mass-shifted version
of our uds state is to check, in addition to the known Xrl.

amplitude, the two radiative decay amplitudes against
those expected for our state. Taken together these three
measurements should be able to discriminate between the
uds interpretation and alternatives like the old proposal
that the A(1405) is a EN bound state.

1900
E

~ 1

2

I
'

1 *4%4

I+ 3 + 3+ 5+N'- 5'- ¹—
2 2 2 2

Q+ 7+ g +
g1 NO

2 2 2

D. The S=O positive-parity baryons

The masses of the S=O positive-parity baryons below
2200 MeV are given in Table VI, from which one can see

FK)l. 6. The positive-parity S=O excited baryons of the
%=2 band: legend as in Fig. 4 but with b3f = —40 MeV.

State, J

(a)

Predicted mass

{MeV)

Experiment

(MeV) Status

} +
2

X 2

1770~
1880

1975

1835

1875~
1795~
1870

1910
1950
2030

1795~
1915+—

1985

1770+—

1980
1995+—

1910~

1400—1480

1680—1740

1850—1950

1690—1800

1520—1690

1860—2060

1670—1690

1880—2030

1890—1920

TABLE VI. The positive-parity S=O excited baryons. (a}
States in the %=2 band. (b) Predictions for other states belo~
2200 MeV.

that our model predicts the position of the center of gravi-

ty of the N=2 band of such states to be about 40 MeV
too high. %e have subtracted this modest overall error
from our predictions for the N=2 band states to display
the spectrum of Fig. 6. Recall that only states predicted
to couple to mN (see Sec. V) are shown here; the remark-
able success of the model is, we believe, quite evident from
this picture. (For example, of the five N* —, states

predicted by the model, only the one which is observed is
predicted to couple to nN, etc )In t.his case the predic-
tions of the relativized model are actually of higher quali-

ty than those of the usual nonrelativistic model. One ex-

ample is that our lowest N* —,
' state is predicted to cou-

ple to Nn. more strongly than the next lowest; this is a re-
versal of the older predictions ' which leads to results in

better agreement with experiment. As another example
we mention that the F to I' ratio in the b,n decays of the

(1905) is now much greater than unity, bringing it

into even better accord with experiment than the nonrela-
tivistic model. ' ' ' Nevertheless, though there are some
improvements, it remains true that the character of the
spectrum as well as the composition of the states is very
similar to the predictions of the usual nonrelativistic
model.

Incidentally, on the basis of our calculations, we would
conclude that the N* —,

' (1440) (the Roper resonance) is

not particularly problematical. Of course our whole
N=2 band appears about 40 MeV high, but if this is tak-
en into consideration one sees that this state fits rather
well into the pattern of Fig. 6.

1970—2020

1910—1960

E- The S = —1 positive-parity baryons

The predicted masses of the 5= —1 positive-parity
baryons below 2300 MeV are given in Table VII, while the
spectrum of states in the N=2 band which couple (shifted
as for their S=O counterparts) is given in Fig. 7. These
predictions are also similar to the nonrelativistic Inodel of
Ref. 10, but once again the quality is slightly improved.
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State, J

(a)

Predicted mass

(MeV)

Experiment

(MeV) Status

TABLE VII. The positive-parity S = —1 excited baryons.

(a) States in the %=2 band. (b) Predictions for other states
below 2200 MeV.

2100-

~0

E

- I***I

4g **
I l

1830~
t

1910~
]

2010
2105

2120

172(4—

1915~)
1970~

)

2005

2030

2105

1900~

1960

1995

2050

2080

2120
2160

1920

1970

2010~
2030
2045

2085

2115
2155

1890~
2035+—

2115
2115
2180

1955~

2030~)
2095~
2110
2130
2120—

2060~

2125

2195,2270

1560—1700

1750—1850

1630—1690

1830—1985

1850—1910

2070—2140

1815—1825

2090—2140

1900—1935

2010—2110

1
h

2

I +
gO

2

3+ 3+ 5+
h — K'- h'—

2 2 2

5+

2

p+ 7+h' — Z'-
2 2

FIG. 7. The positive-parity S = —1 excited baryons of the
%=2 band: legend as in Fig. 6.

One example is our prediction of two strongly coupled
A' —, states as observed (instead of one ').5 +

FIG. 8. The = baryons up to %=2: we have applied
AM = + 50 MeV to the negative-parity excited states and
AM = —40 MeV to the positive-parity excited states. Note that
the =(1820) is reported to have spin- z but its parity is unknown.
Since it fits naturally into the spectrum if we assign a negative
parity, weassume it has J =

2

F. S = —2 and —3 baryons

Our predictions for = baryons below 2400 MeV and for
0 baryons below 2500 MeV are given in Table VIII, and
the spectrum of states in the N=O, 1, and 2 bands is given
in Figs. 8 and 9. In these cases there is no formation
channel, so we show all states up to N=2 in the figures
(using the same shifts as for their S=O and —1 counter-
parts). There is little experimental information available
at the moment, so these results are for the most part pre-
dictions. (Note that the actual predictions of the model
are given in the tables, but we consider our best predic-
tions for the location of the states up to %=2 to be those
given in the figures, where we have corrected for the
known errors of the model in predicting the center of
gravity of the bands. )
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FIG. 9. The 0 baryons up to %=2: legend. as in Fig. 8.

G. Other baryons made of u, d, and s quarks

In Table IX and Fig. 10 we show the lowest-lying states
of S=O baryons with J from —,

' to —", . Since these

(Regge-trajectory-type) sequences of states correspond to
systems with increasingly large separations, these results

support our qqq confinement mechanism. A similarly
successful plot exists for high spin mesons based on Ref.
16.

The experimental states shown in Figs. 3—10 in fact
nearly exhaust the known well-established baryon reso-

nances. There are, however, a few other well-established
states. Most fit well into our model. However, one, the

with mass 1930+30 MeV, has an interesting and
controversial history. It appears to be considerably too
low in mass to belong to the %=3 band, and on this basis
it was suggested that it might be a hybrid baryon (i.e., a
gluonic excitation). Later, it was noted that in the usu-
al nonrelativistic treatment the [56,1 ] SU(6) supermul-
tiplet to which this state is naturally assigned automatical-
ly splits off from the %=3 band to become the lowest ly-
ing supermultiplet of the X=3 band (much as the
[56,0+] to which the controversial X—,

' (1440) belongs

splits off from the %=2 band to become the lowest lying
SU(6) supermultiplet of N =2—see Sec. VID). It was
then accordingly argued that this was probably an ordi-
nary [56,1 ] state. Our calculation does little to resolve
this controversy: we predict this state to be at 2030 MeV,
rather far above its observed mass. On the other hand, we
know that while our model is good at predicting the pat-
tern of a spectrum, it can easily miss predicting the abso-
lute mass of a state by 50 MeV, and sometimes miss by
more.

Our tentative conclusion is that there is no compelling
evidence for the existence of any baryon which does not
fit into our model. We do not, therefore, hold out much
hope for models of hybrid baryons which predict many
new states in the 1.5—2.0-GeV region. A corollary is
that we expect that it will be very difficult in the near fu-

State, J'
TABLE VIII. The " and 0 baryons below 2400 and 2500 MeV, respectively.

Predicted masses 4,'MeV)

3+
2

1

2

1305

1810 2225 22S5 2300 2320 2380
3

7
leal

g I +
leal

3 +
lace

~y 5+
2

+
2

1840

2045 2165

2350

2115

2385

2130

2165

2230

2150 2230 2345

2210 2230 2275

2305 2330 2340 2385

A—
2

0—
2

0—3
2

Q—i' 5
2

n*—'
2

2

gy 5+
2

0 2

22SO
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TABLE IX. The S=O baryons versus spin-parity.

State, JP
Predicted mass Experiment

(MeV)

1 +
2

+
2

x' —'
2

+
2

2

l l +
2

N I

2

Xg 3
2

g 5
2

N y 11
2

2800

2400

2000

960

1230

1630

2090

2205

2255

2305

2355

2215

2600
)

2670

2700

2770

939

1670—1690

1910—1960

2150—2300

2380—2450

1520—1560

1510—1530

1660—1690

2120—2230

2130—2270

ISING
~Nil,

2800

2600

A~+ Ag+ A f+ A)+ Ay- h]-

FIG. 11. The A, baryons up to %=2: legend as in Fig. 8.

ture to identify hybrid baryons: they do not have exotic
quantum numbers like some hybrid mesons do, and if
indeed they are to be found only above 2 GeV (as predict-
ed by some models' and indicated by the above observa-
tions) then it will be extremely difficult to disentangle
them from the very rich structure of ordinary baryons ex-
pected in this Inass range.

H. Charmed baryons

Table X shows our predictions for the charmed baryons
below 3300 MeV, and Figs, 11 and 12 show our states in
the X=O, 1, and 2 bands. There are two predictions here
which can be compared to experiment at the moment.
One is the prediction of the absolute mass of the A, —,

' to
within 20 MeV based on a charmed-quark mass taken
from meson spectroscopy. We would argue that this is a
nontrivial accomplishment of the model (recall that
various authors have used charm-quark masses ranging
from 1.2 to 1.9 GeV). We also predict that

= 175+15 MeV, which compares favorably
to the experimental result of 166+1 MeV. Our other pre-
dictions must await further data. (As with the S=—2
and —3 baryons, while our model predicts the masses

3400

7+ 9 Il+ I — 8-h-
¹

— h'- ¹-h' — g — Pr' g' g pg g'
2 2 2 2 2 2 2 2

FIG. 10. The S=O baryons plotted against spin-parity:
boxes show the experimental regions in which the lowest energy
resonances lie, bars show the states predicted by the model for
each spin-parity.

2400

K, ~+ K, g+ Z, g+ Z, g+ K,g- E,g-

FIG. 12. The X, baryons up to %=2: legend as in Fig. S.
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State, J
1+A-

C

TABLE X. The A, and X, baryons.

Predicted masses (MeV)

3035 3255

3255

3290

A g S
C

A, —„7
+

C

A C 2

2

2

3125

3130

3035

3015

3145

3170 3185

3190 3200

3230

3220

1+X—
C

3 +
C 2

X—e 1

2

x 3
C

yg S

2

C

+
C 2

3 +
C

~e 5+
C

~g7+

2815

3290

2890

3065

3090

2805

3005

3060

3080

3230

2840

2865

3280

3185

3130

3185

3195 3250

3175 3185

3140 3200

3210 3260

3290

3200

shown in the tables, we consider our best predictions for
the locations of states up to %=2 to be those shown in
the figures which have allowed for the known errors in
the model's prediction of the center of gravity of the vari-
ous bands. )

I. b-fIavorcd baryons

Our predictions for the b-flavored baryons below 6600
MeV are given in Table XI, and Figs. 13 and 14 show our

states in the N=O, l„and 2 bands. We expect our abso-
lute prediction of the mass of the As —, and Xs —, to be

1 + 1 +

good to about 50 MeV. Note that our predicted A~ —, is
consistent with the state claimed at 5425+75 MeV.

J. Other heavy baryons

Our methods of solution are not well suited to baryons
of the type csu (Ref. 30). We hope to be able to report on

hs~+ he)+ hs f+ hfdf+ hag hing hag

bsoo

L I

gag+ g a+ g ~+ Q&z+ g&g- Qza-

FIG. 13. The Ab baryons up to %=2: legend as in Fig. 8. FIG. 14. The Xb baryons up to %=2: legend as in Fig. 8.
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State, J
TABLE XI. The Ab and Xb baryons.

Predicted masses (Me&)

1+
AbT

Ab 2

Ab q

Ab ~

Ab qg]+
Ab 2

A b

Ag g+
b

A*2b 2

~g 9+
b

5585

5912

5920

6205

6360

6045

6145

6165

6445

6580

6100

6185

6360

6280

6305

6425

6580

6165

6190
6520

6330

6355

6440

6260

6265

6565

6355

6425

6510

6470

6510

6375

6470

6510

6500

6525

6480

6515

6525

6520

+
Xb2

3+
Xb 2

Xb 2

Xb ~

Xb ~

Xb 2

+
bT

3 +
bT

+
b 2

+
br

5795

5805

6070

6070

6090

6525

6540

6200

6250

6325

6340

6070

6085

6460

6525

6290

6320

6335

6535

6170

6180

6510

6300

6330

6420

6440

6445

6535

6400

6415

6510

6465

6435

6545

6510

6510

6590

6525

6575

6505

6590

6570

6520

such baryons, as well as "doubly and triply heavy"
baryons in the future.

VII. CONCLUSIONS AND FINAL COMMENTS

There is still much which remains to be done before
drawing firm conclusions regarding this model. In partic-
ular, a more thorough study of the strong couplings of
these states (preferably in either the flux-tube breaking '

or naive pair-creation models ) is required. One would

also like to study the (relativized) photodecay amplitudes,
weak-current matrix elements, charge radii, etc. , to see if
the indications of Ref. 15, that these will improve the

quark model, are borne out.
It would also be worthwhile to try to improve the

model. The most urgently required improvement would

be to show that the "relativistic ignorance parameters" o.o,

s, and the 6's are a good representation of the underlying
physics or, alternatively, to replace the cutoff and momen-
tum dependence they represent by more realistic forms.
More fundamental studies are also required to answer the
following questions: What are the effects of higher sec-
tors of Fock space like

~ q q)? How does the adiabatic
treatment of the glue implicit in the quark potential
model break down'? (One way which already seems clear
from Ref. 14 and which may be responsible for some of
the shortcomings of our model is the neglect of the contri-
bution of the glue to moments of inertia. )

Even with such questions outstanding, we believe that
the results presented here, especially when viewed in con-
junction with the meson results of Ref. 16, are very signi-
ficant. They provide powerful evidence that the naive
quark-potential model can be placed on a much firmer
footing within the context of QCD field theory. From
this perspective the quark model appears to be the approx-
imate low-energy effective theory based on cutting off
@CD field theory to produce a picture of relativistic con-
stituent quarks moving in the lowest adiabatic surfaces
(i.e., static potentials) of the gluonic fields. While all of
the aspects of this picture played a role in the work
described here (and in Ref. 16), our main contribution is,
of course, to show that the assumption of nonrelativistic
dynamics was never an essential feature of the quark
model and, indeed, that it was responsible for many of the
inconsistencies of the usual approach.

In particular, we note that when taken together with the
results of Ref. 16 on mesons, we have shown that all of
meson and baryon spectroscopy and long-distance struc-
ture can be unified in a single framework (i.e., with a sin-
gle Hamiltonian) which is consistent with our present
understanding of @CD. This picture uses the stringlike
picture of confinement, a universal value for n, (r), a
universal set of quark masses, the same one-gluon-
exchange potentials for all sectors, etc.

Of course the resulting picture is not @CD. For exam-
ple, it ignores mixing with gluonic excitations and viola-
tions of the truncations to the qq and qqq sectors of Fock
space, and it contains the relativistic ignorance parameters
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which can at best be considered rough imitations of the
true physics. For all of these reasons, the model should
not be (and is not) very accurate. Nevertheless, we believe
that in view of these present limitations the results are en-

tirely satisfactory. Our conclusion is that the mesons and
baryons can for now be considered a reasonably well un-

derstood "background" to the new physics of the gluonic
degrees of freedom of QCD. We also believe that it is
now entirely appropriate to remove the derogatory "non-
relativistie" prefix from the quark potential model.
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APPENDIX A: THE REI.ATIVIZED HAMII. TONIAN
FOR BARYONS

The Hamiltonian that we use for the baryon system is
of the form

H =Ho+ Vo, + V„„f, (Al)
where Ho is a relativistic kinetic energy term:

3

a, = g(p, '+m, ')'", (A2)

V,g, is a one-gluon-exchange potential which in the non-
relativistic limit goes to the usual Breit-Fermi interaction
of Sec. III, and V„„r consists of a string potential and a
spin-orbit term arising from this potential via Thomas
precession. In this appendix we will explain the origin of
these terms and give their precise form.

The mesonic analogues of the effective potentials we
use in (Al) and the motivation behind them has been
given in Ref. 16. It is argued there that the p/m~0
(Breit-Fermi) limit given in Eqs. (5)—(12) of the text will
be modified by several effects.

(1) For qq scattering in the center-of-mass frame one
ean define an effective potential V,ff by

X,, X, , Vrr(P, r)X, X, =—
~

d Qe' 'u(pzsz)u(p', s', )I(Q )u(pisi)u(p2s&),
(2ir)'

where Q—=p'i —pi and P—:—,
'

(p', +p, ), and where I(Q ) is
the effective exchange propagator of the interaction [e.g. ,
I(Q') =6(Q )(y")ig„„(y")2defmed in (A9) below for the
one-gluon-exchange interaction]. For on-shell qq scatter-
ing V,ff will reproduce all matrix elements exactly. %e
note, however, that the momentum dependence of the spi-
nors will introduce Q dependence [which will become r
dependence via (A3)] and P dependence (which makes
V,rr nonlocal) not seen in the p;/m;~0 limit. Since we
are interested in situations where at least some p;/m; are
of order unity, we must take the possibility of such modi-
fications seriously. Very roughly speaking, the message of
these modifications is that when p; is comparable to m;,
then there is an m+ E ambiguity in the Breit-Fermi po-
tentials. For example, the hyperfine interaction one ob-
tains from the above prescription is not that of the Breit-
Fermi interaction but rather, with

G(r)=(2m) ' Jd'Qe'~'G(Q')

but taking the Q ~0 limit of the other factors,

cutoff p, sent to infinity, the coefficients of each term in
such an expansion will vanish. Thus a constituent picture
(of hadrons or even atoms) only makes sense if the field
theory is cut off at some finite scale p. . Ideally, one
chooses p to be sufficiently large that the phenomena of
interest are not sensitive to physics of scales greater than

p, but sufficiently small that the Fock-space expansion is
rapidly converging. Finally, to obtain a Schrodinger
equation for the valence sector of Fock space, one can in-
tegrate out the higher components of Fock space, replac-
ing their effects by an effective potential. From this dis-
cussion we discover two more modifications we must in
general expect in the Breit-Fermi interaction: (a) the con-
stituent quarks are not pointlike, but rather will have a
graininess appropriate to the scale p, and (b) since the
quarks are in general off-shell, the potential which arises
from this procedure will be a modification of the one ob-
tained from (A3).

In view of these observations, following Ref. 16, we
first introduce a quark smearing function

XV„& G(ri2)X,
,X,,

which differs precisely by the replacement of the m; in (9)
by g.

(2) While one can always write the Schrodinger equa-
tion (1), in a field theory it must be interpreted with some
care. In the first place, the state

~
f) will in general be a

superposition of states from different sectors of Fock
space, and indeed in an interacting theory with ultraviolet

for the interaction of quarks i and j which parametrizes
some of the effects of the cutoff p and of the nonlocalities
and Q dependence expected for r around the quark
Compton wavelength. %e apply this smearing to all of
the two-body potentials V(r) of the nonrelativistic limit
to obtain smeared potentials V(r) according to

V~~(r)= Jd r'p;J(r r')VJ(r')—

with the Ref. 16 prescription that
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a 4@il P)l
Olj =OO +

(m;+mj)

2ml mj+5
P?ll + P)l

(A7}

where o.o and s are the parameters given in Table I.
(Baryons are not as sensitive to tr;j as mesons and a
simpler form would have sufficed for us, but we adopt
this result from Ref. 16 without any change for the sake
of universality. Note that its main features are that for
m—:m; =m j~ oo, o;j is proportional to m and for
m ~0, (T,

&
goes to a constant characteristic of the scale of

chiral-symmetry breaking. ) Note that upon Fourier
transforming (A6) we have simply

v;, (Q') =p;, (Q') &,(Q') . (AS)

G(Q )=——,a, (Q )
2

. (A9)

The second modification we make to the potentials of
the nonrelativistic 1imit is to allow them to take on expli-
cit momentum dependence. As the arguments above indi-
cate, we cannot expect to be able to read off the correct
momentum dependence from the on-shell relativistic
scattering amplitudes; however, we use these amplitudes
to motivate the form of the modifications which we as-
sume. For example, on the basis of (A4) we assume that
the fully modified hyperfine interaction has the form (13}
of the text, reproduced as Eq. (A17) below.

We would now like to complete this appendix by giving
the explicit forms of each of the potentials we use in our
calculation. Before presenting this catalog, however, we
must describe how we treat the running coupling constant
a, (Q ) which appears in the one-gluon-exchange kernel:

2cxk
G(rj)= —g erf(oker j),

k lj

where
—2 —2 —2

&kl'J =Xk +O IJ

(Al 1)

{A12)

All of the one-gluon-exchange potentials can now be ex-
pressed in terms of G(r;j). In each case, following the
mesonic case of Ref. 16, we have taken the on-shell ampli-
tude obtained from G(Q ) via (A3) as a starting point, but
allowed for the on-shell momentum dependence to be
modified. Thus we take

eloge= g Iij (A13)

that as Q'~0 we should take a, (Q') to saturate at some
value a,' "'"since the physics of the divergent behavior of
(A10) has been taken into account in the linear confining
potential. We also allow for "thresholds" by taking N~ in
(A10) to be the number of flavors with 4mf &Q while
demanding that "A&zD" in (A10) varies so that a, will be
continuous. We take the A&cD to refer explicitly to the
Nf ——2 region of Q evolution. We then parametrize this
theoretical a, (Q ) curve based on (AIO) with A~cD ——200
MeV to the more convenient form given in Eq. (16) of the
text where a,'""'"of Eq. (17) is the only free parameter
[the other parameters in (16) are being used simply to
describe the theoretical curve: see Fig. 2]. The functional
form (16) is convenient because, as we will see immediate-
ly, it is easily convoluted with the relativistic smearing
(AS), and easily integrated against our harmonic-oscillator
basis functions.

We are finally in a position to present our effective po-
tentials. The one-gluon-exchange propagator (A9) is, with
the functional forms chosen, easily smeared with (A5) to
give

With N~ flavors with masses much less than Q, in
lowest order

with

eloge yCOul+ yhyP+ ~SO(P)
ij —

IJ {A14)

a, (Q') = 12m.

( 33 —2' )lil( Q /Ager) )

where

(A15)
as given earlier in Eq. (15). As Q —.A~cti this lowest-
order formula diverges, a behavior which we associate
with the onset of confinement. We accordingly assume with

Vhyp I/cont+ I/tensillj (A16)

I/cont (g )
cont t j pr2G( )(g )1/2+econtcoIIt 1 /2+ e 2Sl S ' — 1 /2+ g

1 J

Vtetts
(g )

tens

3m-ml J

3S; r,JSj r,j
l J

—S; S.
lJ

dG(rj ) d G(r& )
(g )

+et ns

rj drj lJ (A 1 g)

d6(rj ) 1/2+,
(S )

so(s)
ll

rlj drl j.
ij pi i (6 (1/2+e~(c), o 1/2+e'~„) rij +pj' j I/2+e („)

SF' l 2m&

(S.. )
so(n) (S )

so(s)1/2+g { )
rlJ XPJ

'
l
—rlj XPl Sj

lJ mm. lJ
l J

(A19)
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. .2

P; =1+tj
(p 2+~ 2)1/2( 2+ 2)1/2

(A20)

7FlI 02J
tj

( 2+ 2)1/2(~ 2+~ 2)1/2
(A21)

where p,j is the magnitude of the momentum of either of
the quarks in the ij center-of-mass frame, and the e's are
free parameters designed to allow the rough description of
a momentum dependence more general than that of the
on-shell amphtudes (A3). It should be noted that for sim-

plicity we have ignored the "second-order spin-orbit"
terms of the form

(g.p&&s, ) ~ (g pxs2)G(g')

since the first-order terms are already quite small.
Finally, we turn to the confinement potential V„„r in

(Al) which consists of a string potential and its associated
spin-orbit term from Thomas precession. In the limit of
slowly moving quarks, the string picture suggests' '

that, apart from an overall constant, there will be an adia-
batic potential corresponding to the energy of the
minimum length of the I'string configuration (see Fig. 1).
There is a simple rule for finding the position of the junc-
tion of the three strings which accomplishes this minimi-
zation: if any one of the angles in the triangle made by
connecting the quarks is greater than 120 then the junc-
tion point is on top of the quark which lies at the vertex
of that angle; otherwise the junction is at the unique point
which makes the arms of the I' shaped string at 120' to
each other. The string potential in terms of p, A, , and
cos8=(p k. )/pA, , is then

[p +& +2ipk(1 —cos 8) ' ']' ' if all angles 8jk (120',
~)2+&[3, 63~2) 120

V =Cstring Cqqq +&
& +& g 120o

j") 3 +~23, 8~ 32 & 120

(A22)

where Cqqq is an overall constant energy shift and

F12 2P ~ (A23)

r» —— (p +3k, +2@3pk, cos8)'
2

r» — (j2'+ 3k,' —2W3pk cos8) '" .
2

(A25)

Vstring= ~qqq +fb g rij + V2b (A26)

where

3

V» =b X I ri rjunction I fg rij

We have found it convenient to break V„„„gup into an
effective two-body piece and a three-body piece:

[

ground state of the baryon system. We can then treat the
two-body part of V„„„gexactly and compute the (always
small) corrections due to V» perturbatively. (Note that
this means that V„„„g is quite close to the potential

,'brtj one wou—ld obtain from the F;.Fj potential
model of confinement. )

The above result for V„„„g is analogous to the result
(A9) for V,g„' we expect it to be modified by smearing
and relativistic corrections. For the smearing we proceed
as usual using (A5) to obtain V„„g from V„„„g [we ig-
nore the effect of smearing on the small three-body terms
so that (AS) can be applied directly]. The relativistic
corrections are more problematical. Gromes has shown
that in leading order the spin-dependent terms associated
with the confining potential are identical to those arising
from scalar exchange, i.e., a pure Thomas precession. We
thus take

with f=0.5493 (see Ref. 34) chosen to minimize the size
of the expectation value of V» in the harmonic-oscillator

so($) = g tj""
i(J

(A2S)

ts)

r

1 string
(~ )

1/2+ssc~s~ rij +Pi i
(~ )1/2+ss~~1 (~ )1/2+s», 1

rij +Pj j (~ )1/2+sso1, 1

On the basis of the solutions to the at least superficially
similar example of QED in one dimension, we assume
that V„„.„g is unmodified by momentum-dependent fac-
tors. In Ref. 16 it was shown that meson phenomenology
constrains any such modifications to be very small.

APPENDIX 8: EVALUATION OF MATRIX ELEMENTS

In Sec. IV we discussed the general outline of the calcu-
lation of matrix elements. %'e also discussed techniques
for dealing with the H» and H23 matrix elements, and
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with the momentum-dependent factors in the Hamiltoni-
an. Here we show how to obtain matrix elements of the
various pieces of the Hamiltonian.

1. The Coulomb and two-body string energies

The Coulomb and two-body string energies [see (A15)
and (A26)] are terms which are scalar in space and in-

dependent of spin. If we evaluate, for example, the matrix

element &a j G(r 12)
~
p&, with

~

a & and
~
p) given by (27)

(with the same JM), we see that since G(r12) only de- then

/2 ~ ( )I —a r /2L I+1/2( (81)

pends on r12 ——v 2p, the A, integration will be zero unless
the two spatial wave functions 1II and ql~ have identical A,

oscillator wave functions, and that the p integration is
zero unless the two spatial wave functions have identical
I& values. Furthermore, since the interaction is an overall
spin and space scalar, the entire matrix element is zero
unless the spin wave functions are identical and unless the
total orbital angular momenta are equal. If we adopt the
notation

+]/2
&nI ll ~

V(~2p)~nl, lI &= I „ I ] „ I
a' I p'dpe '&'( ap)" '~L„" (v2ap)V(v2p)

I +1/2XL„(v2ap),
Pp

and we may write

&a
I
G(r12) I&&=8s.spL.LpI, I, &n„n, 8I, I, &n, ll 1«v2p) Inl, l,.& (83)

Note that S represents both the type and total spin of the spin wave function of the state Ja &. The analogous equation

holds for the matrix element of the effective two-body string potential with G replaced by V„„„s.

2. The hyperf|ne contact term

The hyperfine contact energy V', 2"'(r,2) is an example of a scalar operator which is simultaneously scalar in both
space and spin. Its expectation value breaks up into a product of a radial integral and a spin matrix element:

&al vl2 (r12)ll3& ~L Lp8I I ~ „~l„ I
~e~p a "p a p

, 3m, ~, 3
(84)

where the above holds for any In and we have suppressed the momentum dependence in (A17) for the time being. The
spin matrix elements are very simple, the only nonzero matrix elements being

(85)

I S1 ~2 l&1/Z, (86)

&~3/2, m l
S1'S2

I +3/2, m &
=

4 (87)

3. The hyperfine tensor interaction

The tensor terms [see (A18)] are evaluated with the aid of the Wigner-Eckhart theorem, which is applied twice: once
to the scalar product of the spin-tensor and spatial-tensor operators which make up this term in the Hamiltonian, and
then again to the L=2 tensor operator which is to be evaluated in a basis made up from coupling lz and 12 to give L.
First we write [again we suppress the momentum dependence in (A18) for the time being]

V'12"' ——V'(v'2p)R2(12) S2(12),

R2(12)=
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v3
- S)+52+

—~3(S)+S2,+S»Sp+ )

v3
S) S2

(810)

and where from (A18)

2Qk
V'(~2p) = g„ 3m, m;

I

«(~2okt2p) 4~ aki2' -2a, »'p'

2~2p 3 K 4CTk ~2 p
(811)

Then ~e apply the %igner-Eckhart theorem to the tensor product V ~'2"' to obtain

&a I
V)'2"'I P& =( —1) PfY(LaLPSaSP,'2J)+2La+1+2Sa+1

X &L.~p. lp n~.4.II V'(~2p)R2{12)IILpnpplpsn~p4s&&S. IIS2(12)IISp& .

The theorem is applied again to the spatial reduced matrix element

(812)

L +l —2 —l~

La"p lp n& l~ IIV'(~2P)R2(I»IILPnp lp nP l& &=( —1) s W(lp lp LaLP', 21& )

x&np lp IIV { 2p)Re{12)llnp lp &6...„&~, I„pa pa
(813)

The spin and space reduced matrix elements appearing in (812) and (813), respectively, are

(
& )I/2 () (

5
)
1/2

& Sa IIS2(12)IISp& = (814)

where the ijth entry in the matrix corresponds to &X; I ISz(12) I IXJ &, with X~ ——X3/2, Xz ——Xf/z, and X3 ——X&/2, and
' 1/2

2(2lp +1)
& np lp II V(~2p)R (21 )2lln pip &=C(lp 200;l 0)

la
&np lp I

V'(~2p) Inp lp & . (815)

4. The spin-orbit interactions

If we apply the baryon center-of-momentum frame identities

1 l
P &

=
~~ Pp+ ~~ Px (816)

»= ~2PP+ ~6px ~
(817)

2
p3= —

~6 px

to the spin-«»t P«enti»s (A19) and (A29) we obtain [because of the unusual dependence of the spin orbit eff~t on the
quark masses, we show both the (12) and (13) potentia)s]

1V(r» ) (4g 1) {S,+S,) lp , (S, S,). p—
P ~II2 m ) I) V3 {819)
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dV«i3) '

2g —1 1, 2g —1+Si ~ p'Xp~, +, S& ~ li, —S, p'Xp
2v 2p d&i3 mi ~ 3 m3

2g
P7l 1ttT 3

1
(Si+S3) 1 ~ —(Si —S3) p'XpiP v3 (820)

where g= 1 and Y=G for the one-gluon-exchange potential, and g=0 and V= V„„„sfor the spin-orbit potential from
confinement. The terms proportional to pXpi and p'Xpi are the three-body spin-orbit potentials. These can be under-
stood as consequences of the Wigner rotation which occurs when boosting from the center-of-mass frame of the baryon
to the center-of-mass frame of quarks i and j. They must be dealt with specially, because they are of a completely dif-
ferent form than the rest of the operators dealt with so far. Let us write a general (12) spin-orbit potential [a similar
form holds with different mass dependencies for the (13) potentials in the primed frame] in the form

1 F(p) 1
C182b IP+C283b' j- P XPA,

2V2m]m2 P V 3
(821)

where ci and c2 are constants, and where S2b and S3b are of the form aS, +bS2. Then we may apply the Wigner-
Eckhart theorem to the spin-space scalar product to obtain

( —1) W(L~L pS~Sp', IJ)+2L~+ I +2S~+ 1

c1 L~nP lP ng lg
F(p)

lp Lynch lp ni li (S ~~S2b~~Sp)
p

+c2 L~np lp ni li
F(p)

p 3
pxv, L~~«1«n, ,4,)(& Il&„ll&~1. (822)

%e may then apply the theorem again to the spatial reduced matrix elements

F(p) +I —1 —l~

lp Lpnp lp ni„ li =( —1) 'W(lp l~ L~Lp, lli~)Pa Pp a ' a

X[(2Lp+1)lp (lp +l)(2!p +1)]'

F(p)
p p~ A, A~ A, A~ a a p

(823)

F(p) 1

p v3~ pXpi Lpnp lp np lia P P

(L,
=[(2Lp+1)(21' +1)(2li +1)]' X lp

Lp 1

lp 1 C(lp 100 lp 0)

lg

(2m~ +l~ ) —[2m~ +l~ ]

X( —i) ~ s C(l~ 100;li 0)(nz lz ~F(p) ~nz lz )(ni, l~
~

1l, ~ni li ), (824)

where X is a 9-j coefficient. The spin reduced matrix elements appearing (822) are

—, ( —, )' (a +b) —,
' (a b)—(a +b)

2 3

(S.
~
~~S&+bS2~ ~S&) = — —(~ —b) 0 ——,

' (a —b)

1 1

6
(&+b) —

2 (a b) —(a +b)
3
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where the ij th entry in the matrix corresponds to (X; i iaSi+bSqi iXJ. ), with the X; as in (814).

5. The three-body string energy

We saw above that V„„„scan be simply expressed in terms of p, A, , and cos8=p 1(,/pA, . Similarly the effective two-
body string potential can be written down in terms of these variables. We now form the function V3b(p, l,,cos0) from
V„„.„s by subtracting fb g, r;~ [see (A27)j. Our task is to find the matrix element (a

i V3b i
P). First, we evaluate the

angular integral (the Clebsch-Gordan sums required to couple the p and A, angular momenta are suppressed for simplici-
ty)

J dQQQi„Fi" (Q )YP„(Qi)V3b(p, i,, cos8)Y'~ (Q )Fi (Qi) .
Pa Pa ~a ~a Pp Pp Ap Ap

This is accomplished by rewriting the product of the two F(Qz) s as a sum over a single YL M (Q&), and similarly for
P P

the F(Qi)'s. Then we note that the angle 8 is the angle of the A, vector with respect to the p vector, and that we may
perform the dQi integral if we first rotate the F(Qi ) into the coordinate frame where p lies along the z axis, using the
relation

p1'L,~,(Qi.) = g ~L,x(Qi.»xM, ( —~» (827)

where PL is a Laguerre polynomial. Carrying out the sum over X, we find that the D matrix turns into a 1'(Q ), which

may then be integrated against the remaining Fl ~ (Qz) to yield
P P

lp —l~ +lp —l~
( —1) ~ ~(2L+l)[(2lp +1)(2lp +1)(21'. +1)(21'. +1)j' '

. .., t', , )(„
(m

mq M] (mp mq M)'

I-p I~ ~~, L p

x (2L +1)(—1) ''
L M

—m m —M —m~ my M
Pa PP P a P

P P

flp lp Lp) fli li Lp'1

x&O O 0) (0 O O jV', (p~) (829)

where D is a rotation matrix, R is the rotation with Euler angles P~, e~, and —P~, and Qi =(8,&g) is the angular position
of A, with respect to p. The resulting dpi integral is proportional to

1

5~0VL„(p, lt, ) =5&o f d cos8PL, (cos8) V»(p, k.,cosg), (828)

(a
i V3b i p) =5s s 5L L [(21' +1)(2lp +1)(2li +1)(2li +1)j' ( —1)

where
i
LM) is the orbital angular momentum of both

i
cr) and P), and we have written all Clebsch-Gordan coeffi-

cients in terms of the 3-j coefficients for clarity. The next step is to identify the sum over the magnetic quantum num-
bers as a Racah coefficient and restore the radial integrations which results in (after some algebra)

L+l~ +lg
a P

x g C(lp Olp 0;Lpo)C(li Oli 0;Lpo)W(lp lp li li,LpL)
E.

X(np l~ i(ni li
i

Vi (p, A)i nl i)iin 1 ), (830)

where the last line is the obvious generalization of the radial integral in (82). The cos8 integrals in (828) and the p and A,

integrals in (830) can be carried out numerically.

6. Momentum-dependent terms

It remains to discuss how we deal with the momentum dependence of various terms in H. The center-of-momentum
frame formulas (816)—(818) indicate that the way to proceed with the kinetic energy is to evaluate the matrix element
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&a
~
(p3 +m3 )' ~P& in the p, A, basis, since there p3 is just proportional to px. Then we may note that since ~a& and

~ P & are antisymmetric under exchange of quarks one and two

&~ I
(pt'+m t')'"

l P& = &~
I
(pz'+~ i')'"

I && (831)

and these matrix elements are best evaluated in the p', A,
' basis, where pz ———(2/v 6)px. Then we have that

&~
I
(p3'+~3')'"

I
~& =&s.ski.LP..., ~t, l ~tg Ig &nA. lx

I
( ~

p~'+m3')'"
I nx, lx, & . (832)

(833)

Using the relation between the Fourier transform of a harmonic-oscillator wave function and itself [see Eq. (39)], we find

& nx.4. I
( 3 pt '+m3')'"

I nx, l~, & =( —t) '&n~.4. I
( 3

~'+~'3)'"
I n~,4, &{~.,

, I ~'d~e ' ' (~/cs) 'L., (v 2l/ct)

X V(~)L,„"„' (~2X/~) . (834)

The calculation of the matrix elements of the momentum-dependent factors in (A15)—(A29) is made simpler by the
ansatz that the momentum appearing in the (ij) factor is p t {,~~

——(p; —pt )/2, since the relations (816)—(818) tell us that

(835)

and the obvious corolIary

1

ZPp
1

2Pp +Pl )

S sef)I Le~I! ~
~ ~ ~l~ t~ nA

Then, for example, the factor appearing in V&z"' has the matrix elements
+ ~COU1

(837)

where

1

TPp
2 2

2Pp +02 )

1+ T.P
1

2p +I)

1/2+ Fc

nz lp . (838)
1/a

S'imilar expressions hold for the other (12) momentum-dependent factor (A21); the (13) terms are calculated in much the
same way except in their case there are two masses involved.
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